source: Sophya/trunk/SophyaLib/NTools/poly.h@ 1159

Last change on this file since 1159 was 958, checked in by ansari, 25 years ago

doc + vire warning cmv 18/04/00

File size: 9.2 KB
RevLine 
[220]1// This may look like C code, but it is really -*- C++ -*-
2//
[958]3// $Id: poly.h,v 1.8 2000-04-18 13:38:36 ansari Exp $
[220]4//
5
6// Des polynomes avec des operations de bases et surtout des fits.
7
8#ifndef POLY_SEEN
9#define POLY_SEEN
10
[514]11#include "objfio.h"
[220]12#include <stdio.h>
13#include "peida.h"
[514]14#include "tvector.h"
15#include "ppersist.h"
16#include "anydataobj.h"
[220]17
[552]18namespace SOPHYA {
[514]19
[220]20class Poly2;
21
[514]22//////////////////////////////////////////////////////////////////////////
[958]23//! Class of 1 dimension polynomials P(x)
[938]24class Poly : public TVector<r_8> {
[514]25 friend class ObjFileIO<Poly>;
[220]26public:
27 Poly(int degre = 0);
[514]28 Poly(Poly const& a);
[220]29
[958]30 //! Return degre of polynomials
[220]31 inline int Degre() const {UpdateDegIfDirty(); return deg;}
32
[958]33 //! Return space for a \b n degre polynomial
34 /*!
35 \param \b n : degre of new polynomial
36 \param \b force : force re-allocation if true,\
37 if not allocation occurs only
38 if space needed is greater than the old one
39 */
[938]40 inline void Realloc(int n, bool force=false)
41 {TVector<r_8>::Realloc(n+1,force);}
[220]42
[805]43 // Pour compatibilite PEIDA - Reza 03/2000
[958]44 //! Return coefficient of degre \b i
[805]45 inline double Element(int i) const { return Elem(i,0,0,0,0); }
[958]46 //! Return coefficient of degre \b i
[805]47 inline double & Element(int i) { return Elem(i,0,0,0,0); }
48
[958]49 //! Return coefficient of degre \b i
[805]50 inline double operator[](int i) const {return Elem(i,0,0,0,0);}
[958]51 //! Return coefficient of degre \b i
[805]52 inline double& operator[](int i) {dirty = 1; return Elem(i,0,0,0,0);}
[220]53 // Retourne le coefficient de degre i
54
55 double operator()(double x) const;
56 // Retourne la valeur prise en x.
57
58 void Derivate();
59 // Derive le polynome en place
60
61 void Derivate(Poly& der) const;
62 // Derive le polynome dans un autre
63
[938]64 int Roots(TVector<r_8>& roots) const;
[220]65 // retourne les racines si on peut les calculer...
66
67 int Root1(double& r) const;
68 // special degre 1
69
70 int Root2(double& r1, double& r2) const;
71 // special degre 2
72
73 Poly& operator = (Poly const& b);
74 Poly& operator += (Poly const& b);
75 Poly& operator -= (Poly const& b);
76
77 Poly& operator *= (double a);
78
[514]79 Poly Mult(Poly const& b) const;
80
[220]81 Poly power(int n) const;
82 Poly operator() (Poly const& b) const;
83 Poly2 operator() (Poly2 const& b) const;
84
[805]85 void Print(ostream& s, int_4 maxprt=-1, bool si=false) const;
[220]86
[938]87 double Fit(TVector<r_8> const& x, TVector<r_8> const& y, int degre);
[220]88 // Fit d'un polynome de degre donne sur les x et y.
89
[938]90 double Fit(TVector<r_8> const& x, TVector<r_8> const& y,
91 TVector<r_8> const& erry2, int degre, TVector<r_8>& errCoef);
[220]92 // En plus, on fournit les carres des erreurs sur y et on a les erreurs
93 // sur les coefficients dans un vecteur.
94
95private:
96 int dirty;
97 int_4 deg;
98 void UpdateDeg() const;
99 void UpdateDegIfDirty() const {if (dirty) UpdateDeg();}
100};
101
[958]102/*! \ingroup NTools \fn operator*(Poly const&,Poly const&)
103 \brief perform and return P(X) = a(x) * b(x) */
[514]104inline Poly operator* (Poly const& a, Poly const& b)
105 { return a.Mult(b); }
[220]106
[958]107/*! \ingroup NTools \fn operator+(Poly const&,Poly const&)
108 \brief perform and return P(X) = a(x) + b(x) */
[514]109inline Poly operator+ (Poly const& a, Poly const& b)
110 { Poly c((a.Degre() > b.Degre())?(a.Degre()+1):(b.Degre()+1));
111 c = a; c += b; return c; }
[220]112
[958]113/*! \ingroup NTools \fn operator-(Poly const&,Poly const&)
114 \brief perform and return P(X) = a(x) - b(x) */
[514]115inline Poly operator- (Poly const& a, Poly const& b)
116 { Poly c((a.Degre() > b.Degre())?(a.Degre()+1):(b.Degre()+1));
117 c = a; c -= b; return c; }
[220]118
[958]119/*! \ingroup NTools \fn operator*(double,Poly const&)
120 \brief perform and return P(X) = a * b(x) */
[514]121inline Poly operator* (double a, Poly const& b)
122 { Poly c(b); c *= a; return c; }
123
[958]124/*! \ingroup NTools \fn operator<<(ostream&,const Poly&)
125 \brief Print a(x) on stream \b s */
[514]126inline ostream& operator << (ostream& s, const Poly& a)
127 { a.Print(s); return s; }
128
129//////////////////////////////////////////////////////////////////////////
[958]130/*! \ingroup NTools \fn operator<<(POutPersist&,Poly&)
131 \brief For persistance management */
[514]132inline POutPersist& operator << (POutPersist& os, Poly & obj)
133 { ObjFileIO<Poly> fio(&obj); fio.Write(os); return(os); }
[958]134/*! \ingroup NTools \fn operator<<(PInPersist&,,Poly&)
135 \brief For persistance management */
[514]136inline PInPersist& operator >> (PInPersist& is, Poly & obj)
137 { ObjFileIO<Poly> fio(&obj); fio.Read(is); return(is); }
138// Classe pour la gestion de persistance
139// ObjFileIO<Poly>
140
141//////////////////////////////////////////////////////////////////////////
142int binomial(int n, int p);
143
144//////////////////////////////////////////////////////////////////////////
[958]145//! Class of 2 dimensions polynomials P(x,y)
[938]146class Poly2 : public TVector<r_8> {
[514]147 friend class ObjFileIO<Poly2>;
[220]148public:
149 Poly2(int degreX=0, int degreY=0);
150 // degres alloues.
151 Poly2(Poly const& polX, Poly const& polY);
152 Poly2(Poly2 const& a);
153
[958]154 //! Return polynomial partial degre for X
[220]155 inline int DegX() const {UpdateDegIfDirty(); return degX;}
[958]156 //! Return polynomial partial degre for Y
[220]157 inline int DegY() const {UpdateDegIfDirty(); return degY;}
[958]158 //! Return polynomial maximum partial degre for X
[220]159 inline int MaxDegX() const {return maxDegX;}
[958]160 //! Return polynomial maximum partial degre for Y
[220]161 inline int MaxDegY() const {return maxDegY;}
[958]162 //! Return polynomial total degre for X
[220]163 inline int Deg() const {UpdateDegIfDirty(); return deg;}
164 // les degres partiels en x et y, et totaux.
165
[805]166 // Pour compatibilite PEIDA - Reza 03/2000
[958]167 //! Return coefficient of degre \b i
[805]168 inline double Element(int i) const { return Elem(i,0,0,0,0); }
[958]169 //! Return coefficient of degre \b i
[805]170 inline double & Element(int i) { return Elem(i,0,0,0,0); }
171
[220]172 double operator()(double x, double y) const;
173 // retourne la valeur en (x,y)
174
[958]175 //! Return index of coefficient of X^dx * Y^dy in the vector
[220]176 inline int IndCoef(int dx, int dy) const {
177 if (dx>maxDegX || dy>maxDegY) THROW(rangeCheckErr);
178 return dx + (maxDegX+1)*dy;
179 }
180 // l'indice du coefficient dans le vecteur. Public uniquement parce
181 // que ca sert a recuperer les erreurs sur les coefficients lors
182 // d'un fit...
183
[958]184 //! Return coefficient of X^dx * Y^dy
[220]185 inline double Coef(int dx, int dy) const {
[514]186 return (dx>maxDegX || dy>maxDegY) ? 0 : Element(IndCoef(dx,dy));
[220]187 }
[958]188 //! Return coefficient of X^dx * Y^dy
[220]189 inline double& Coef(int dx, int dy) {
190 if (dx>maxDegX || dy>maxDegY) THROW(rangeCheckErr);
[514]191 dirty = 1; return Element(IndCoef(dx,dy));
[220]192 }
193 // retourne le coefficient de degre (dx,dy)
194
[938]195 double Fit(TVector<r_8> const& x, TVector<r_8> const& y, TVector<r_8> const& z,
[220]196 int degreX, int degreY);
[938]197 double Fit(TVector<r_8> const& x, TVector<r_8> const& y, TVector<r_8> const& z,
198 TVector<r_8> const& errz2, int degreX, int degreY,
199 TVector<r_8>& errCoef);
[220]200 // degres partiels imposes. cf Poly::Fit sinon
201
202
[938]203 double Fit(TVector<r_8> const& x, TVector<r_8> const& y, TVector<r_8> const& z,
[220]204 int degre);
[938]205 double Fit(TVector<r_8> const& x, TVector<r_8> const& y, TVector<r_8> const& z,
206 TVector<r_8> const& errz2, int degre,
207 TVector<r_8>& errCoef);
[220]208 // degre total impose. cf Poly::Fit sinon
209
210 Poly2& operator = (Poly2 const& b);
211
212 Poly2& operator += (Poly2 const& b);
213 Poly2& operator -= (Poly2 const& b);
214
[514]215 Poly2& operator *= (double a);
[220]216
[514]217 Poly2 Mult(Poly2 const& b) const;
218
[220]219 Poly2 power(int n) const;
220
221 Poly2 operator() (Poly const& px, Poly const& py) const;
222// Poly2 operator() (Poly2 const& px, Poly2 const& py) const;
223
224 void Realloc(int degreX, int degreY);
225
[805]226 void Print(ostream& s, int_4 maxprt=-1, bool si=false) const;
[220]227
228private:
229 int dirty;
230 int_4 maxDegX;
231 int_4 maxDegY;
232 int degX;
233 int degY;
234 int deg;
235 void UpdateDeg() const;
236 void UpdateDegIfDirty() const {if (dirty) UpdateDeg();}
237};
238
[958]239/*! \ingroup NTools \fn operator*(Poly2 const&,Poly2 const&)
240 \brief Perform P(x,y) = a(x,y) * b(x,y) */
[514]241inline Poly2 operator* (Poly2 const& a, Poly2 const& b)
242 { return a.Mult(b); }
243
[958]244/*! \ingroup NTools \fn operator+(Poly2 const&,Poly2 const&)
245 \brief Perform P(x,y) = a(x,y) + b(x,y) */
[514]246inline Poly2 operator+ (Poly2 const& a, Poly2 const& b)
247 { Poly2 c(a); c += b; return c; }
248
[958]249/*! \ingroup NTools \fn operator-(Poly2 const&,Poly2 const&)
250 \brief Perform P(x,y) = a(x,y) - b(x,y) */
[514]251inline Poly2 operator- (Poly2 const& a, Poly2 const& b)
252 { Poly2 c(a); c -= b; return c; }
253
[958]254/*! \ingroup NTools \fn operator-(double,Poly2 const&)
255 \brief Perform P(x,y) = a * b(x,y) */
[514]256inline Poly2 operator * (double a, Poly2 const& b)
257 { Poly2 c(b); c *= a; return c; }
258
[958]259/*! \ingroup NTools \fn operator<<(ostream&,const Poly2&)
260 \brief Print a(x,y) on stream \b s */
[514]261inline ostream& operator << (ostream& s, const Poly2& a)
262 { a.Print(s); return s; }
263
264//////////////////////////////////////////////////////////////////////////
[958]265/*! \ingroup NTools \fn operator<<(POutPersist&,Poly2&)
266 \brief For persistance management */
[514]267inline POutPersist& operator << (POutPersist& os, Poly2 & obj)
268 { ObjFileIO<Poly2> fio(&obj); fio.Write(os); return(os); }
[958]269/*! \ingroup NTools \fn operator<<(POutPersist&,Poly2&)
270 \brief For persistance management */
[514]271inline PInPersist& operator >> (PInPersist& is, Poly2 & obj)
272 { ObjFileIO<Poly2> fio(&obj); fio.Read(is); return(is); }
273// Classe pour la gestion de persistance
274// ObjFileIO<Poly2>
275
276
277} // Fin du namespace
278
[220]279#endif // POLY_SEEN
Note: See TracBrowser for help on using the repository browser.