| [2650] | 1 | #include "sopnamsp.h" | 
|---|
|  | 2 | #include "simplex.h" | 
|---|
|  | 3 | #include "ntuple.h" | 
|---|
|  | 4 | #include <math.h> | 
|---|
|  | 5 |  | 
|---|
|  | 6 | #include "timing.h" | 
|---|
|  | 7 |  | 
|---|
|  | 8 | //--------------------------------------------------------------- | 
|---|
|  | 9 | //-------------------  Classe   MinZFunction  ------------------- | 
|---|
|  | 10 | //--------------------------------------------------------------- | 
|---|
|  | 11 | // Interface de classe de function multivariable pour le SimplexMinmizer | 
|---|
| [2808] | 12 | /*! | 
|---|
|  | 13 | \class SOPHYA::MinZFunction | 
|---|
|  | 14 | \ingroup NTools | 
|---|
|  | 15 | Interface definition for a function object f(x[]) for which MinZSimplex can | 
|---|
|  | 16 | search the minimum. | 
|---|
|  | 17 | The pure virtual method Value() should be implemented by the derived classes. | 
|---|
|  | 18 | */ | 
|---|
| [2650] | 19 |  | 
|---|
|  | 20 | MinZFunction::MinZFunction(unsigned int nvar) | 
|---|
|  | 21 | : mNVar(nvar) | 
|---|
|  | 22 | { | 
|---|
|  | 23 | } | 
|---|
|  | 24 |  | 
|---|
|  | 25 | MinZFunction::~MinZFunction() | 
|---|
|  | 26 | { | 
|---|
|  | 27 | } | 
|---|
|  | 28 |  | 
|---|
|  | 29 | //--------------------------------------------------------------- | 
|---|
|  | 30 | //-------------------  Classe   MinZFuncXi2  -------------------- | 
|---|
|  | 31 | //--------------------------------------------------------------- | 
|---|
| [2808] | 32 | /*! | 
|---|
|  | 33 | \class SOPHYA::MinZXi2 | 
|---|
|  | 34 | \ingroup NTools | 
|---|
|  | 35 | Implements the MinZFunction interface using a xi2 calculator | 
|---|
|  | 36 | \sa GeneralXi2 GeneralFitData | 
|---|
|  | 37 | */ | 
|---|
| [2650] | 38 | MinZFuncXi2::MinZFuncXi2(GeneralXi2* gxi2, GeneralFitData* gd) | 
|---|
|  | 39 | : mGXi2(gxi2) , mGData(gd), MinZFunction(gxi2->NPar()) | 
|---|
|  | 40 | { | 
|---|
|  | 41 | } | 
|---|
|  | 42 |  | 
|---|
|  | 43 | MinZFuncXi2::~MinZFuncXi2() | 
|---|
|  | 44 | { | 
|---|
|  | 45 | } | 
|---|
|  | 46 |  | 
|---|
|  | 47 | double MinZFuncXi2::Value(double const xp[]) | 
|---|
|  | 48 | { | 
|---|
|  | 49 | int ndataused; | 
|---|
|  | 50 | return mGXi2->Value(*mGData, const_cast<double *>(xp), ndataused); | 
|---|
|  | 51 | } | 
|---|
|  | 52 |  | 
|---|
|  | 53 | //--------------------------------------------------------------- | 
|---|
|  | 54 | //-------------------  Classe  MinZTestFunc   ------------------- | 
|---|
|  | 55 | //--------------------------------------------------------------- | 
|---|
|  | 56 | class MinZTestFunc : public  MinZFunction { | 
|---|
|  | 57 | public: | 
|---|
|  | 58 | MinZTestFunc(int sel); | 
|---|
|  | 59 | virtual double Value(double const xp[]); | 
|---|
|  | 60 | string  ToString(); | 
|---|
|  | 61 | Vector  OptParms(); | 
|---|
|  | 62 | protected: | 
|---|
|  | 63 | static int ISelToNvar(int isel); | 
|---|
|  | 64 | int mSel; | 
|---|
|  | 65 | }; | 
|---|
|  | 66 |  | 
|---|
|  | 67 | int MinZTestFunc::ISelToNvar(int isel) | 
|---|
|  | 68 | { | 
|---|
|  | 69 | if (isel == 0) return 1; | 
|---|
|  | 70 | if (isel == 1) return 1; | 
|---|
|  | 71 | else if (isel == 2) return 1; | 
|---|
|  | 72 | else if (isel == 3) return 2; | 
|---|
|  | 73 | else if (isel == 4) return 3; | 
|---|
|  | 74 | else return 1; | 
|---|
|  | 75 | } | 
|---|
|  | 76 |  | 
|---|
|  | 77 | MinZTestFunc::MinZTestFunc(int sel) | 
|---|
|  | 78 | : MinZFunction(ISelToNvar(sel)) | 
|---|
|  | 79 | { | 
|---|
|  | 80 | if ((sel < 0) || (sel > 4)) sel = 0; | 
|---|
|  | 81 | mSel = sel; | 
|---|
|  | 82 | } | 
|---|
|  | 83 |  | 
|---|
|  | 84 | string MinZTestFunc::ToString() | 
|---|
|  | 85 | { | 
|---|
|  | 86 | string rs; | 
|---|
|  | 87 | if (mSel == 0) { | 
|---|
|  | 88 | rs = "-x+(x-2)^2"; | 
|---|
|  | 89 | } | 
|---|
|  | 90 | else if (mSel == 1) { | 
|---|
|  | 91 | rs = "0.1*x^2-3exp(-(x-2)^2)-5*exp(-0.5*(x+3)^2)"; | 
|---|
|  | 92 | } | 
|---|
|  | 93 | else if (mSel == 2) { | 
|---|
|  | 94 | rs = "0.1*x^2-3exp(-(x-2)^2)+5*exp(-0.5*(x+3)^2)"; | 
|---|
|  | 95 | } | 
|---|
|  | 96 | else if (mSel == 3) { | 
|---|
|  | 97 | rs = "1.3*(x-50.35)^2+25*(y+3.14)^2"; | 
|---|
|  | 98 | } | 
|---|
|  | 99 | else if (mSel == 4) { | 
|---|
|  | 100 | rs = "(x-2.2)^2+2.*(y+3.6)^2+3.*(z-1.1)^2"; | 
|---|
|  | 101 | } | 
|---|
|  | 102 | else rs = "????"; | 
|---|
|  | 103 | return  rs; | 
|---|
|  | 104 | } | 
|---|
|  | 105 |  | 
|---|
|  | 106 | Vector MinZTestFunc::OptParms() | 
|---|
|  | 107 | { | 
|---|
|  | 108 | Vector xx; | 
|---|
|  | 109 | if (mSel == 0) { | 
|---|
|  | 110 | Vector rv(1); | 
|---|
|  | 111 | rv = 2.5; | 
|---|
|  | 112 | return rv; | 
|---|
|  | 113 | } | 
|---|
|  | 114 | else if (mSel == 1) { | 
|---|
|  | 115 | Vector rv(1); | 
|---|
|  | 116 | rv = -2.883; | 
|---|
|  | 117 | return rv; | 
|---|
|  | 118 | } | 
|---|
|  | 119 | else if (mSel == 2) { | 
|---|
|  | 120 | Vector rv(1); | 
|---|
|  | 121 | rv = 1.812; | 
|---|
|  | 122 | return rv; | 
|---|
|  | 123 | } | 
|---|
|  | 124 | else if (mSel == 3) { | 
|---|
|  | 125 | Vector rv(2); | 
|---|
|  | 126 | rv(0) = 50.35; | 
|---|
|  | 127 | rv(1) = -3.14; | 
|---|
|  | 128 | return rv; | 
|---|
|  | 129 | } | 
|---|
|  | 130 | else if (mSel == 4) { | 
|---|
|  | 131 | Vector rv(3); | 
|---|
|  | 132 | rv(0) = 2.2; | 
|---|
|  | 133 | rv(1) = -3.6; | 
|---|
|  | 134 | rv(2) = 1.1; | 
|---|
|  | 135 | return rv; | 
|---|
|  | 136 | } | 
|---|
|  | 137 | else xx = 0.; | 
|---|
|  | 138 | return xx ; | 
|---|
|  | 139 | } | 
|---|
|  | 140 |  | 
|---|
|  | 141 |  | 
|---|
|  | 142 | double MinZTestFunc::Value(double const xp[]) | 
|---|
|  | 143 | { | 
|---|
|  | 144 | double retval = 0; | 
|---|
|  | 145 | if (mSel == 0) { | 
|---|
|  | 146 | double x = xp[0]; | 
|---|
|  | 147 | retval = -x+(x-2.)*(x-2.); | 
|---|
|  | 148 | } | 
|---|
|  | 149 | else if ((mSel == 1) || (mSel == 2)) { | 
|---|
|  | 150 | double x = xp[0]; | 
|---|
|  | 151 | retval = 0.1*x*x; | 
|---|
|  | 152 | x = xp[0]-2.; | 
|---|
|  | 153 | x = x*x; | 
|---|
|  | 154 | retval -= 3*exp(-x); | 
|---|
|  | 155 | x = xp[0]+3.; | 
|---|
|  | 156 | x = 0.5*x*x; | 
|---|
|  | 157 | if (mSel == 1) retval -= 5*exp(-x); | 
|---|
|  | 158 | else retval += 5*exp(-x); | 
|---|
|  | 159 | } | 
|---|
|  | 160 | else if (mSel == 3) { | 
|---|
|  | 161 | double x = xp[0]-50.35; | 
|---|
|  | 162 | double y = xp[1]+3.14; | 
|---|
|  | 163 | retval = 1.3*x*x+25.*y*y; | 
|---|
|  | 164 | } | 
|---|
|  | 165 | else if (mSel == 4) { | 
|---|
|  | 166 | double x = xp[0]-2.2; | 
|---|
|  | 167 | double y = xp[1]+3.6; | 
|---|
|  | 168 | double z = xp[2]-1.1; | 
|---|
|  | 169 | retval = x*x+2.*y*y+3.*z*z; | 
|---|
|  | 170 | } | 
|---|
|  | 171 | else retval = 0.; | 
|---|
|  | 172 | return retval; | 
|---|
|  | 173 | } | 
|---|
|  | 174 |  | 
|---|
|  | 175 | //--------------------------------------------------------------- | 
|---|
|  | 176 | //-------------------  Classe   MinZSimplex  -------------------- | 
|---|
|  | 177 | //--------------------------------------------------------------- | 
|---|
|  | 178 | string __Vec2Str4MinZ_AutoTest(Vector& xx) | 
|---|
|  | 179 | { | 
|---|
|  | 180 | string rs; | 
|---|
|  | 181 | char buff[32]; | 
|---|
|  | 182 | for(int i=0; i<xx.Size(); i++) { | 
|---|
|  | 183 | sprintf(buff," %g " , xx(i)); | 
|---|
|  | 184 | rs += buff; | 
|---|
|  | 185 | } | 
|---|
|  | 186 | return rs; | 
|---|
|  | 187 | } | 
|---|
|  | 188 |  | 
|---|
| [2808] | 189 | /*! | 
|---|
|  | 190 | \class SOPHYA::MinZSimplex | 
|---|
|  | 191 | \ingroup NTools | 
|---|
|  | 192 | This class implements non linear minimization (optimization) | 
|---|
|  | 193 | in a multidimensional space following the \b Simplex method. | 
|---|
|  | 194 | A \b Simplex is a geometrical figure made of N+1 points in a | 
|---|
|  | 195 | N-dimensional space. (triangle in a plane, tetrahedron in 3-d space). | 
|---|
|  | 196 | The minimization method implemented in this class is based on the | 
|---|
|  | 197 | algorithm described in "Numerical Recipes, Chapter X". | 
|---|
|  | 198 |  | 
|---|
|  | 199 | The algorithm has been slightly enhanced : | 
|---|
|  | 200 | - More complex convergence / stop test | 
|---|
|  | 201 | - A new transformation of the simplex has been included (ExpandHigh) | 
|---|
|  | 202 |  | 
|---|
|  | 203 | For each step, on of the following geometrical transform is performed | 
|---|
|  | 204 | on the Simplex figure: | 
|---|
|  | 205 | - Reflection : reflection away from the high point (expansion by factor Alpha) | 
|---|
|  | 206 | - ReflecExpand : reflection way from the high point and expansion by factor Beta2 | 
|---|
|  | 207 | - ContractHigh : Contraction along the high point (factor Beta) | 
|---|
|  | 208 | - ContractLow : Contraction toward the low point (factor Beta2) | 
|---|
|  | 209 | - ExpandHigh : Expansion along the high point | 
|---|
|  | 210 |  | 
|---|
|  | 211 | \sa GeneralFit | 
|---|
|  | 212 |  | 
|---|
|  | 213 | The following sample code shows a usage example: | 
|---|
|  | 214 | \code | 
|---|
|  | 215 | include "simplex.h" | 
|---|
|  | 216 | ... | 
|---|
|  | 217 | // Define our function to be minimized: | 
|---|
|  | 218 | class MySFunc : public MinZFunction { | 
|---|
|  | 219 | public: | 
|---|
|  | 220 | MySFunc() : MinZFunction(2) {} | 
|---|
|  | 221 | virtual double Value(double const xp[]) | 
|---|
|  | 222 | { return (xp[0]*xp[0]+2*xp[1]*xp[1]); } | 
|---|
|  | 223 | }; | 
|---|
|  | 224 |  | 
|---|
|  | 225 | ... | 
|---|
|  | 226 |  | 
|---|
|  | 227 | MySFunc mysf; | 
|---|
|  | 228 | MinZSimplex simplex(&mysf); | 
|---|
|  | 229 | // Guess the center and step for constructing the initial simplex | 
|---|
|  | 230 | Vector x0(2); x0 = 1.; | 
|---|
|  | 231 | Vector step(2); step = 2.; | 
|---|
|  | 232 | simplex.SetInitialPoint(x0); | 
|---|
|  | 233 | simplex.SetInitialStep(step); | 
|---|
|  | 234 | Vector oparm(2); | 
|---|
|  | 235 | int rc = simplex.Minimize(oparm); | 
|---|
|  | 236 | if (rc != 0) { | 
|---|
|  | 237 | string srt; | 
|---|
|  | 238 | int sr = simplex.StopReason(srt); | 
|---|
|  | 239 | cout << " Convergence Pb, StopReason= " << sr << " : " << srt << endl; | 
|---|
|  | 240 | } | 
|---|
|  | 241 | else { | 
|---|
|  | 242 | cout << " Converged: NStep= " << simplex.NbIter() | 
|---|
|  | 243 | << " OParm= " << oparm << endl; | 
|---|
|  | 244 | } | 
|---|
|  | 245 | \endcode | 
|---|
|  | 246 | */ | 
|---|
|  | 247 |  | 
|---|
|  | 248 | /*! | 
|---|
|  | 249 | \brief Auto test function | 
|---|
|  | 250 | \param tsel : select autotest (0,1,2,3,4)  , tsel<0 -> all | 
|---|
|  | 251 | \param prtlev : printlevel | 
|---|
|  | 252 | */ | 
|---|
| [2650] | 253 | int MinZSimplex::AutoTest(int tsel, int prtlev) | 
|---|
|  | 254 | { | 
|---|
|  | 255 | int rc = 0; | 
|---|
|  | 256 | cout << " --- MinZSimplex::AutoTest() --- TSel= " << tsel << " PrtLev=" << prtlev << endl; | 
|---|
|  | 257 | for(int i=0; i<5; i++) { | 
|---|
|  | 258 | if ((tsel >= 0) && (tsel != i))  continue; | 
|---|
|  | 259 | cout << " ======= Test avec ISel= " << i; | 
|---|
|  | 260 | Vector xx; | 
|---|
|  | 261 | MinZTestFunc mzf(i); | 
|---|
|  | 262 | cout << " - Func= " << mzf.ToString() << endl; | 
|---|
|  | 263 | Vector rv = mzf.OptParms(); | 
|---|
|  | 264 | xx = rv; | 
|---|
|  | 265 | for(int j=0; j<2; j++) { | 
|---|
|  | 266 | double vi = 50.*(j-0.5); | 
|---|
|  | 267 | for(int k=0; k<2; k++) { | 
|---|
|  | 268 | double vs = (k == 0) ? 1. : 10. ; | 
|---|
|  | 269 | cout << "--[" << j << "," << k | 
|---|
|  | 270 | << "] Initialisation avec IniPoint= " << vi << " IniStep= " << vs << endl; | 
|---|
|  | 271 | MinZSimplex simplex(&mzf); | 
|---|
|  | 272 | xx = vi; | 
|---|
|  | 273 | simplex.SetInitialPoint(xx); | 
|---|
|  | 274 | xx = vs; | 
|---|
|  | 275 | simplex.SetInitialStep(xx); | 
|---|
|  | 276 | simplex.SetPrtLevel(prtlev); | 
|---|
|  | 277 | int rcs = simplex.Minimize(xx); | 
|---|
|  | 278 | Vector diff = rv-xx; | 
|---|
|  | 279 | double d2 = diff.Norm2(); | 
|---|
|  | 280 | cout << " Rc(simplex.Minimize() = " << rc << " NIter= " | 
|---|
|  | 281 | << simplex.NbIter() << " ===> Distance^2= " << d2 | 
|---|
|  | 282 | << "\nConverged to " <<  __Vec2Str4MinZ_AutoTest(xx) | 
|---|
|  | 283 | << "  Best Value= " << __Vec2Str4MinZ_AutoTest(rv) | 
|---|
|  | 284 | << "  Diff = " << __Vec2Str4MinZ_AutoTest(diff) << endl; | 
|---|
|  | 285 | if ((rcs > 5) || (d2 > 0.5))  rc ++; | 
|---|
|  | 286 | } | 
|---|
|  | 287 | } | 
|---|
|  | 288 | } | 
|---|
|  | 289 | cout << " --- MinZSimplex::AutoTest() --- Rc=" << rc << " -- END ----- " << endl; | 
|---|
|  | 290 | return rc; | 
|---|
|  | 291 | } | 
|---|
|  | 292 |  | 
|---|
| [2808] | 293 | //! Constructor from pointer to MinZFunction object | 
|---|
| [2650] | 294 | MinZSimplex::MinZSimplex(MinZFunction *mzf) | 
|---|
|  | 295 | : mZF(mzf) , mPoint0(mZF->NVar()) , mStep0(mZF->NVar()) | 
|---|
|  | 296 | { | 
|---|
|  | 297 | SetMaxIter(); | 
|---|
|  | 298 | SetControls(); | 
|---|
|  | 299 | Vector xx(NDim()); | 
|---|
|  | 300 | xx = 0.; | 
|---|
|  | 301 | SetInitialPoint(xx); | 
|---|
|  | 302 | xx = 1.0; | 
|---|
|  | 303 | SetInitialStep(xx); | 
|---|
|  | 304 | SetStopTolerance(); | 
|---|
|  | 305 | mIter = -1; | 
|---|
|  | 306 | mStop = -1; | 
|---|
|  | 307 | SetPrtLevel(); | 
|---|
|  | 308 | } | 
|---|
|  | 309 |  | 
|---|
|  | 310 | MinZSimplex::~MinZSimplex() | 
|---|
|  | 311 | { | 
|---|
|  | 312 | } | 
|---|
|  | 313 |  | 
|---|
| [2808] | 314 | //! Perform the minimization | 
|---|
|  | 315 | /*! | 
|---|
|  | 316 | Return 0 if success | 
|---|
|  | 317 | \param fpoint : vector containing the optimal point | 
|---|
|  | 318 |  | 
|---|
|  | 319 | Convergence test : | 
|---|
|  | 320 | \verbatim | 
|---|
|  | 321 | On minimise f(x) f=mZF->Value() , | 
|---|
|  | 322 | f_max = max(f) sur simplex , f_min = min(f) sur simplex | 
|---|
|  | 323 | fm = (abs(f_max)+abs(f_min)) | 
|---|
|  | 324 | [Delta f] = abs(f_max-f_min) | 
|---|
|  | 325 | [Delta f/f]simplex = 2.*Delta f / fm | 
|---|
|  | 326 | fm2 = (abs(f_max)+abs(f_max(iter-1))) | 
|---|
|  | 327 | [Delta f_max/f_max]iter = [f_max(iter-1)-f_max]/fm2 | 
|---|
|  | 328 | Test d'arret : | 
|---|
|  | 329 | fm < mTol0                                                       OU | 
|---|
|  | 330 | [Delta f/f]simplex              < mTol1   mRep1 fois de suite    OU | 
|---|
|  | 331 | [Delta f_max/f_max]iter         < mTol2   mRep2 fois de suite | 
|---|
|  | 332 | */ | 
|---|
| [2650] | 333 | int MinZSimplex::Minimize(Vector& fpoint) | 
|---|
|  | 334 | { | 
|---|
|  | 335 | // vector< TVector<r_8> > splx; | 
|---|
|  | 336 | Vector splx[100]; | 
|---|
|  | 337 | Vector Y(NDim()+1); | 
|---|
|  | 338 | // On calcule le simplex initial | 
|---|
|  | 339 | // N = NDim, N+1 points (pp) ds l'espace a N dimensions | 
|---|
|  | 340 | // Point0, Point0 + Step0(i) e_i | 
|---|
|  | 341 | Vector pp,ppc; | 
|---|
|  | 342 | pp = mPoint0; | 
|---|
|  | 343 | //ppc = pp; | 
|---|
|  | 344 | //splx.push_back(ppc); | 
|---|
|  | 345 | splx[0] = pp; | 
|---|
|  | 346 | int i,j,k; | 
|---|
|  | 347 | for(i=0; i<NDim(); i++) { | 
|---|
|  | 348 | Vector pps; | 
|---|
|  | 349 | pps = mPoint0; | 
|---|
|  | 350 | pps(i) += mStep0(i); | 
|---|
|  | 351 | //splx.push_back(pps); | 
|---|
|  | 352 | splx[i+1] = pps; | 
|---|
|  | 353 | } | 
|---|
|  | 354 | int mpts = NDim()+1; | 
|---|
|  | 355 | // calcul des valeurs de la fonction sur les sommets | 
|---|
|  | 356 | for(i=0; i<mpts; i++) | 
|---|
|  | 357 | Y(i) = Value(splx[i]); | 
|---|
|  | 358 |  | 
|---|
|  | 359 | int iter = 0; | 
|---|
|  | 360 | mIter = iter; | 
|---|
|  | 361 | mStop = 0; | 
|---|
|  | 362 |  | 
|---|
|  | 363 | int nbugrtol2 = 0; | 
|---|
|  | 364 | bool stop = false, stop0=false; | 
|---|
|  | 365 | int rc = 0; | 
|---|
|  | 366 | int ilo, ihi, inhi; | 
|---|
|  | 367 | int move = 0; | 
|---|
| [3572] | 368 | const char* smov[6] = { "None", "Reflection", "ReflecExpand", "ContractHigh", "ContractLow", "ExpandHigh" }; | 
|---|
| [2650] | 369 | int movcnt[6] = {0,0,0,0,0,0}; | 
|---|
|  | 370 |  | 
|---|
|  | 371 | int nrep1=0, nrep2=0; | 
|---|
|  | 372 | FindMinMax12(Y, ilo, ihi, inhi); | 
|---|
|  | 373 | double yhilast = Y(ihi); | 
|---|
|  | 374 | yhilast += fabs(yhilast); | 
|---|
|  | 375 |  | 
|---|
|  | 376 | while (!stop) {  // | 
|---|
|  | 377 | FindMinMax12(Y, ilo, ihi, inhi); | 
|---|
|  | 378 | double ymean = (fabs(Y(ihi))+fabs(Y(ilo))); | 
|---|
|  | 379 | if (ymean < mTol0) { stop0 = true; ymean = mTol0; } | 
|---|
|  | 380 | double rtol1 = 2.*fabs(Y(ihi)-Y(ilo))/ymean; | 
|---|
|  | 381 | double ym2 = (fabs(yhilast)+fabs(Y(ihi))); | 
|---|
|  | 382 | if (ym2 < mTol0) ym2 = mTol0; | 
|---|
|  | 383 | double rtol2 = 2.*(yhilast-Y(ihi))/ym2; | 
|---|
|  | 384 | yhilast = Y(ihi); | 
|---|
|  | 385 | if (rtol2 < 0.) { | 
|---|
|  | 386 | if (move != 40) { | 
|---|
|  | 387 | cout << " !!!! MinZSimplex::Minimize() BUG RTol2< 0. --> Chs " << endl; | 
|---|
|  | 388 | nbugrtol2++; | 
|---|
|  | 389 | } | 
|---|
|  | 390 | else nrep2 = 0; | 
|---|
|  | 391 | rtol2 = -rtol2; | 
|---|
|  | 392 | } | 
|---|
|  | 393 | if (PrtLevel() > 1) | 
|---|
|  | 394 | cout << "--MinZSimplex::Minimize() - Iter=" << iter | 
|---|
|  | 395 | << " Move= " << move << " (" <<  smov[move/10] << ")" << endl; | 
|---|
|  | 396 | if (PrtLevel() > 2) | 
|---|
|  | 397 | cout << "..ILO=" << ilo << " IHI=" << ihi << " INHI=" << inhi | 
|---|
|  | 398 | << " Y(ILO)=" << Y(ilo) << " Y(IHI)=" << Y(ihi) << "\n" | 
|---|
|  | 399 | << "...YMean_Abs=" << ymean <<  " RTOL1=" << rtol1 << " RTOL2=" << rtol2 <<  endl; | 
|---|
|  | 400 | if (PrtLevel() > 3) { | 
|---|
|  | 401 | for(i=0; i<mpts; i++) { | 
|---|
|  | 402 | cout << "....Simplex[" << i << "]= "; | 
|---|
|  | 403 | for(j=0; j<NDim(); j++) cout << splx[i](j) << " , "; | 
|---|
|  | 404 | cout << " Y=Value= " << Y(i) << endl; | 
|---|
|  | 405 | } | 
|---|
|  | 406 | } | 
|---|
|  | 407 | if (rtol1 < mTol1) nrep1++; | 
|---|
|  | 408 | else nrep1 = 0; | 
|---|
|  | 409 | if (rtol2 < mTol2) nrep2++; | 
|---|
|  | 410 | else nrep2 = 0; | 
|---|
|  | 411 |  | 
|---|
|  | 412 | if (stop0) { mStop = 1; rc = 0; stop = true; break; } | 
|---|
|  | 413 | if (nrep1 > mRep1) { mStop = 2; rc = 0; stop = true; break; } | 
|---|
|  | 414 | if (nrep2 > mRep2) { mStop = 3; rc = 0; stop = true; break; } | 
|---|
|  | 415 | if (iter > MaxIter() ) { mStop = 0, rc = iter;  break; } | 
|---|
|  | 416 | iter++; | 
|---|
|  | 417 | if (iter > 0)  movcnt[move/10]++; | 
|---|
|  | 418 |  | 
|---|
|  | 419 | // Next iteration, on modifie le simplex | 
|---|
|  | 420 | // Calcul du centre de gravite su simplex, hors le point le + haut | 
|---|
|  | 421 | Vector pbar(NDim()); | 
|---|
|  | 422 | pbar = 0.; | 
|---|
|  | 423 | for(i=0; i<mpts; i++) { | 
|---|
|  | 424 | if (i == ihi)  continue; | 
|---|
|  | 425 | pbar += splx[i]; | 
|---|
|  | 426 | } | 
|---|
|  | 427 | pbar /= (double)NDim(); | 
|---|
|  | 428 | // On calcule le sommet oppose a point IHI (le + haut) | 
|---|
|  | 429 | Vector pr, prr; | 
|---|
|  | 430 | double YPR, YPRR; | 
|---|
|  | 431 | pr = (1.+Alpha())*pbar-Alpha()*splx[ihi]; | 
|---|
|  | 432 | YPR = Value(pr); | 
|---|
|  | 433 | if (YPR < Y(ilo)) {   // Amelioaration par rapport au meilleur point, | 
|---|
|  | 434 | // on va plus loin d'un facteur gamma | 
|---|
|  | 435 | prr = Gamma()*pr+(1.-Gamma())*pbar; | 
|---|
|  | 436 | YPRR = Value(prr); | 
|---|
|  | 437 | if (YPRR < Y(ilo)) {  // On remplace le IHI par YPRR | 
|---|
|  | 438 | splx[ihi] = prr; | 
|---|
|  | 439 | Y(ihi) = YPRR; | 
|---|
|  | 440 | move = 20; | 
|---|
|  | 441 | } | 
|---|
|  | 442 | else {  // sinon, on remplace par YPR | 
|---|
|  | 443 | splx[ihi] = pr; | 
|---|
|  | 444 | Y(ihi) = YPR; | 
|---|
|  | 445 | move = 10; | 
|---|
|  | 446 | } | 
|---|
|  | 447 | } | 
|---|
|  | 448 | else {  // Moins bon que le meilleur point .. | 
|---|
|  | 449 | if (YPR > Y(inhi)) {  // Plus mauvais que le second plus haut (INHI) | 
|---|
|  | 450 | if (YPR < Y(ihi)) {   // Mais meilleur que le plus haut (IHI) | 
|---|
|  | 451 | splx[ihi] = pr;     // On remplace donc le plus haut | 
|---|
|  | 452 | Y(ihi) = YPR; | 
|---|
|  | 453 | move = 11; | 
|---|
|  | 454 | } | 
|---|
|  | 455 | else { // Plus mauvais que le plus mauvais IHI | 
|---|
|  | 456 | // on tente avec un point intermediaire | 
|---|
|  | 457 | prr = Beta()*splx[ihi]+(1.-Beta())*pbar; | 
|---|
|  | 458 | YPRR = Value(prr); | 
|---|
|  | 459 | if (YPRR < Y(ihi)) {   // Le point intermediaire ameliore les choses | 
|---|
|  | 460 | splx[ihi] = prr;     // On remplace donc le point le + haut | 
|---|
|  | 461 | Y(ihi) = YPRR; | 
|---|
|  | 462 | move = 30; | 
|---|
|  | 463 | } | 
|---|
|  | 464 | else { | 
|---|
|  | 465 | // On tente aussi de rester du meme cote, mais aller plus loin | 
|---|
|  | 466 | prr = Gamma2()*splx[ihi]+(1.-Gamma2())*pbar; | 
|---|
|  | 467 | YPRR = Value(prr); | 
|---|
|  | 468 | if (YPRR < Y(ihi)) {   // Le point intermediaire ameliore les choses | 
|---|
|  | 469 | splx[ihi] = prr;     // On remplace donc le point le + haut | 
|---|
|  | 470 | Y(ihi) = YPRR; | 
|---|
|  | 471 | move = 50; | 
|---|
|  | 472 | } | 
|---|
|  | 473 | else { | 
|---|
|  | 474 | // Rien n'y fait, on contracte autour du meilleur point | 
|---|
|  | 475 | for(i=0; i<mpts; i++) { | 
|---|
|  | 476 | if (i == ilo)  continue; | 
|---|
|  | 477 | splx[i] = Beta2()*splx[i]+(1.-Beta())*splx[ilo]; | 
|---|
|  | 478 | Y(i) = Value(splx[i]); | 
|---|
|  | 479 | move = 40; | 
|---|
|  | 480 | } | 
|---|
|  | 481 | } | 
|---|
|  | 482 | } | 
|---|
|  | 483 | } | 
|---|
|  | 484 | } | 
|---|
|  | 485 | else {  // Meilleur que le IHI et le INHI | 
|---|
|  | 486 | splx[ihi] = pr;     // On remplace le plus haut | 
|---|
|  | 487 | Y(ihi) = YPR; | 
|---|
|  | 488 | move = 12; | 
|---|
|  | 489 | } | 
|---|
|  | 490 | } | 
|---|
|  | 491 | }   // Fin de la boucle while principale | 
|---|
|  | 492 |  | 
|---|
|  | 493 | fpoint = splx[ilo]; | 
|---|
|  | 494 | mIter = iter; | 
|---|
|  | 495 |  | 
|---|
|  | 496 | if (PrtLevel() > 0) { | 
|---|
|  | 497 | string sr; | 
|---|
|  | 498 | StopReason(sr); | 
|---|
|  | 499 | cout << "-----MinZSimplex::Minimize()/Ended - NIter=" << iter | 
|---|
|  | 500 | << " Moves[0..5]= " << movcnt[0] << "," << movcnt[1] << "," | 
|---|
|  | 501 | << movcnt[2] << "," << movcnt[3] << "," | 
|---|
|  | 502 | << movcnt[4] << "," << movcnt[5] | 
|---|
|  | 503 | << "\n..MinZSimplex Stop=" << StopReason() << " -> " << sr << endl; | 
|---|
|  | 504 |  | 
|---|
|  | 505 | if (nbugrtol2 > 0)  cout << "MinZSimplex::Minimize()/Warning - nbugrtol2= " << nbugrtol2 << endl; | 
|---|
|  | 506 | } | 
|---|
|  | 507 | return rc; | 
|---|
|  | 508 | } | 
|---|
|  | 509 |  | 
|---|
| [2808] | 510 | //! Return the stop reason and fills the corresponding string description | 
|---|
| [2650] | 511 | int MinZSimplex::StopReason(string& s) | 
|---|
|  | 512 | { | 
|---|
| [3572] | 513 | const char* sr[5] = { "NoConverg, MaxIterReached", "OK, fm<Tol0", "OK, Df/f<Tol1", | 
|---|
| [2650] | 514 | "OK, [Df/f max]Iter<Tol2" "Error - Wrong StopReason" }; | 
|---|
|  | 515 | int stop = mStop; | 
|---|
|  | 516 | if ((stop < 0) || (stop > 3)) stop = 4; | 
|---|
|  | 517 | s = sr[stop]; | 
|---|
|  | 518 | return mStop; | 
|---|
|  | 519 | } | 
|---|
|  | 520 |  | 
|---|
|  | 521 | int MinZSimplex::FindMinMax12(Vector& fval, int& ilo, int& ihi, int& inhi) | 
|---|
|  | 522 | { | 
|---|
|  | 523 | ilo = 0; | 
|---|
|  | 524 | if (fval(0) > fval(1)) { ihi = 0;  inhi = 1; } | 
|---|
|  | 525 | else { ihi = 1;  inhi = 0; } | 
|---|
|  | 526 |  | 
|---|
|  | 527 | for(int k=0; k<fval.Size(); k++) { | 
|---|
|  | 528 | if (fval(k) < fval(ilo))  ilo = k; | 
|---|
|  | 529 | if (fval(k) > fval(ihi)) { | 
|---|
|  | 530 | inhi = ihi; | 
|---|
|  | 531 | ihi = k; | 
|---|
|  | 532 | } | 
|---|
|  | 533 | else if (fval(k) > fval(inhi)) { | 
|---|
|  | 534 | if (k != ihi)  inhi = k;  // ce test n'est peut-etre pas necessaire ??? | 
|---|
|  | 535 | } | 
|---|
|  | 536 | } | 
|---|
|  | 537 | return ilo; | 
|---|
|  | 538 | } | 
|---|