#include #include #include #include #include "ana2fast.h" #include "lambuilder.h" #ifdef __MWERKS__ #include "unixmac.h" #endif /*extern "C" { void fft_gpd_(long double* ,int& ,int& ,int& ,int& ,long double*); }*/ void map2a2lm(int nsmax,int nlmax,int nmmax,const vector& mapq, const vector& mapu, vector< vector< complex > >& a2lme, vector< vector< complex > >& a2lmb, double cos_theta_cut){ // REAL*4 powspec(0:nlmax) // integer npmiss,npmt,id_miss(10000) //create the maps for which there are nice basis functions vector< complex > mapp(mapq.size()); vector< complex > mapm(mapq.size()); for (int i=0;i< (signed) mapq.size();i++){ mapp[i]=complex(mapq[i],mapu[i]); mapm[i]=complex(mapq[i],-mapu[i]); //cout <<"the maps"<< mapp[i]<<" "< > > a2lmp; vector< vector< complex > > a2lmm; a2lmp.resize(nlmax+1); for (int i=0; i< (signed) a2lmp.size();i++){ a2lmp[i].resize(nmmax+1); for (int j=0; j< (signed) a2lmp[i].size();j++)a2lmp[i][j]=0; } a2lmm.resize(nlmax+1); for (int i=0; i< (signed) a2lmm.size();i++){ a2lmm[i].resize(nmmax+1); for (int j=0; j< (signed) a2lmm[i].size();j++)a2lmm[i][j]=0; } /*----------------------------------------------------------------------- computes the integral in phi : phas_m(theta) for each parallele from north to south pole -----------------------------------------------------------------------*/ int istart_north = 0; int istart_south = 12*nsmax*nsmax; double dth1 = 1. / (3.*nsmax*nsmax); double dth2 = 2. / (3.*nsmax); double dst1 = 1. / (sqrt(6.) * nsmax); vector< complex > phas_np(nmmax+1), phas_sp(nmmax+1), phas_nm(nmmax+1),phas_sm(nmmax+1); for (int ith = 1; ith <= 2*nsmax;ith++){ int nph, kphi0; double cth, sth, sth2; //assign doesn't seem to exist in our compiler //phas_n.assign(nmmax+1,(complex) 0); //phas_s.assign(nmmax+1,(complex) 0); for (int i=0;i< nmmax+1;i++){ phas_np[i]=0; phas_sp[i]=0;phas_nm[i]=0;phas_sm[i]=0; } if (ith <= nsmax-1){ /* north polar cap */ nph = 4*ith; kphi0 = 1; cth = 1. - dth1*ith*ith; /* cos(theta) */ sth = sin( 2. * asin( ith * dst1 ) ) ; /* sin(theta) */ sth2 = sth*sth; } else { /* tropical band + equat. */ nph = 4*nsmax; kphi0 = (ith+1-nsmax) % 2; cth = (2.*nsmax-ith) * dth2; sth = sqrt((1.-cth)*(1.+cth)); /* ! sin(theta)*/ sth2=(1.-cth)*(1.+cth); } //part of the sky out of the symetric cut bool keep_it = (abs(cth) >= cos_theta_cut); //make sure that map is well defined if (keep_it){ comp_phas2_2(nsmax,nlmax,nmmax,mapp,mapm,istart_north,nph,phas_np, phas_nm,kphi0); } istart_north = istart_north + nph; istart_south = istart_south - nph; if (ith < 2*nsmax && keep_it){ comp_phas2_2(nsmax,nlmax,nmmax,mapp,mapm,istart_south,nph,phas_sp, phas_sm,kphi0); } /*----------------------------------------------------------------------- computes the a_lm by integrating over theta lambda_lm(theta) * phas_m(theta) for each m and l -----------------------------------------------------------------------*/ Lambda2Builder l2b(acos(cth),nlmax,nmmax); //cout << "fft:"< im(0,1); a2lme.resize(nlmax+1); for (int i=0; i< (signed) a2lme.size();i++){ a2lme[i].resize(nmmax+1); } a2lmb.resize(nlmax+1); for (int i=0; i< (signed) a2lmb.size();i++){ a2lmb[i].resize(nmmax+1); } float domega=(4.*M_PI)/(12.*nsmax*nsmax); for (int m = 0; m <= nmmax; m++){ a2lme[m][m]=-(a2lmp[m][m]+a2lmm[m][m])/2.*static_cast(domega); a2lmb[m][m]=im*(a2lmp[m][m]-a2lmm[m][m])/2.*static_cast(domega); for (int l = m+1; l<= nlmax; l++){ a2lme[l][m]=-(a2lmp[l][m]+a2lmm[l][m])/2.*static_cast(domega); a2lmb[l][m]=im*(a2lmp[l][m]-a2lmm[l][m])/2.*static_cast(domega); } } //for (int l = 2; l<= nlmax; l++){ //cout << "calc almp,m"< >& datain, const vector< complex >& datain2, int start,int nph,vector< complex >& dataout, vector< complex >& dataout2, int kphi0){ /*======================================================================= integrates (data * phi-dependence-of-Ylm) over phi --> function of m can be computed by FFT with 0<= m <= npoints/2 (: Nyquist) because the data is real the negative m are the conjugate of the positive ones arguments d'appels : GLM =======================================================================*/ int ksign = -1; double phi0 = kphi0*M_PI/nph; complex* data= new complex[4*nsmax]; complex* data2= new complex[4*nsmax]; for (int i = 0; i< nph;i++){ data[i] = datain[i+start]; data2[i] = datain2[i+start]; } for (int i = nph; i< 4*nsmax;i++){ data[i] = 0; data2[i] = 0; } FFTServer fft; fft.fftb(nph,data); fft.fftb(nph,data2); //in the output the frequencies are respectively 0,1,2,..,nph/2,-nph/2+1,..,-2,-1 // only the first nph/2+1 (positive freq.) are interesting int im_max = min(nph/2,nmmax); dataout.resize(nmmax+1); dataout2.resize(nmmax+1); for (int i = 1;i <= im_max + 1;i++){ int m = ksign*(i-1); complex fuck(cos(m*phi0),sin(m*phi0)); dataout[i-1]=data[i-1]*fuck; dataout2[i-1]=data2[i-1]*fuck; } for (int i = im_max + 2;i <= nmmax + 1;i++){ dataout[i-1] = 0; dataout2[i-1]=0; } delete[] data; delete[] data2; }