1 | #include <math.h>
|
---|
2 | #include <vector>
|
---|
3 | #include <fftserver.h>
|
---|
4 | #include <complex>
|
---|
5 | #include "ana2fast.h"
|
---|
6 | #include "lambuilder.h"
|
---|
7 |
|
---|
8 | /*extern "C" {
|
---|
9 | void fft_gpd_(long double* ,int& ,int& ,int& ,int& ,long double*);
|
---|
10 | }*/
|
---|
11 |
|
---|
12 | void map2a2lm(int nsmax,int nlmax,int nmmax,const vector<float>& mapq,
|
---|
13 | const vector<float>& mapu,
|
---|
14 | vector< vector< complex<double> > >& a2lme,
|
---|
15 | vector< vector< complex<double> > >& a2lmb,
|
---|
16 | double cos_theta_cut){
|
---|
17 |
|
---|
18 | // REAL*4 powspec(0:nlmax)
|
---|
19 |
|
---|
20 | // integer npmiss,npmt,id_miss(10000)
|
---|
21 |
|
---|
22 | //create the maps for which there are nice basis functions
|
---|
23 |
|
---|
24 | vector< complex<float> > mapp(mapq.size());
|
---|
25 | vector< complex<float> > mapm(mapq.size());
|
---|
26 | for (int i=0;i< (signed) mapq.size();i++){
|
---|
27 | mapp[i]=complex<float>(mapq[i],mapu[i]);
|
---|
28 | mapm[i]=complex<float>(mapq[i],-mapu[i]);
|
---|
29 | //cout <<"the maps"<< mapp[i]<<" "<<mapm[i]<<endl;
|
---|
30 | }
|
---|
31 |
|
---|
32 | vector< vector< complex<double> > > a2lmp;
|
---|
33 | vector< vector< complex<double> > > a2lmm;
|
---|
34 | a2lmp.resize(nlmax+1);
|
---|
35 | for (int i=0; i< (signed) a2lmp.size();i++){
|
---|
36 | a2lmp[i].resize(nmmax+1);
|
---|
37 | for (int j=0; j< (signed) a2lmp[i].size();j++)a2lmp[i][j]=0;
|
---|
38 | }
|
---|
39 | a2lmm.resize(nlmax+1);
|
---|
40 | for (int i=0; i< (signed) a2lmm.size();i++){
|
---|
41 | a2lmm[i].resize(nmmax+1);
|
---|
42 | for (int j=0; j< (signed) a2lmm[i].size();j++)a2lmm[i][j]=0;
|
---|
43 | }
|
---|
44 |
|
---|
45 | /*-----------------------------------------------------------------------
|
---|
46 | computes the integral in phi : phas_m(theta)
|
---|
47 | for each parallele from north to south pole
|
---|
48 | -----------------------------------------------------------------------*/
|
---|
49 |
|
---|
50 | int istart_north = 0;
|
---|
51 | int istart_south = 12*nsmax*nsmax;
|
---|
52 |
|
---|
53 | double dth1 = 1. / (3.*nsmax*nsmax);
|
---|
54 | double dth2 = 2. / (3.*nsmax);
|
---|
55 | double dst1 = 1. / (sqrt(6.) * nsmax);
|
---|
56 |
|
---|
57 | vector< complex<double> > phas_np(nmmax+1), phas_sp(nmmax+1),
|
---|
58 | phas_nm(nmmax+1),phas_sm(nmmax+1);
|
---|
59 |
|
---|
60 | for (int ith = 1; ith <= 2*nsmax;ith++){
|
---|
61 | int nph, kphi0;
|
---|
62 | double cth, sth, sth2;
|
---|
63 | //assign doesn't seem to exist in our compiler
|
---|
64 | //phas_n.assign(nmmax+1,(complex<float>) 0);
|
---|
65 | //phas_s.assign(nmmax+1,(complex<float>) 0);
|
---|
66 | for (int i=0;i< nmmax+1;i++){
|
---|
67 | phas_np[i]=0; phas_sp[i]=0;phas_nm[i]=0;phas_sm[i]=0;
|
---|
68 | }
|
---|
69 |
|
---|
70 | if (ith <= nsmax-1){ /* north polar cap */
|
---|
71 | nph = 4*ith;
|
---|
72 | kphi0 = 1;
|
---|
73 | cth = 1. - dth1*ith*ith; /* cos(theta) */
|
---|
74 | sth = sin( 2. * asin( ith * dst1 ) ) ; /* sin(theta) */
|
---|
75 | sth2 = sth*sth;
|
---|
76 | } else { /* tropical band + equat. */
|
---|
77 | nph = 4*nsmax;
|
---|
78 | kphi0 = (ith+1-nsmax) % 2;
|
---|
79 | cth = (2.*nsmax-ith) * dth2;
|
---|
80 | sth = sqrt((1.-cth)*(1.+cth)); /* ! sin(theta)*/
|
---|
81 | sth2=(1.-cth)*(1.+cth);
|
---|
82 | }
|
---|
83 |
|
---|
84 | //part of the sky out of the symetric cut
|
---|
85 | bool keep_it = (abs(cth) >= cos_theta_cut);
|
---|
86 |
|
---|
87 | //make sure that map is well defined
|
---|
88 | if (keep_it){
|
---|
89 | comp_phas2_2(nsmax,nlmax,nmmax,mapp,mapm,istart_north,nph,phas_np,
|
---|
90 | phas_nm,kphi0);
|
---|
91 | }
|
---|
92 | istart_north = istart_north + nph;
|
---|
93 |
|
---|
94 | istart_south = istart_south - nph;
|
---|
95 | if (ith < 2*nsmax && keep_it){
|
---|
96 | comp_phas2_2(nsmax,nlmax,nmmax,mapp,mapm,istart_south,nph,phas_sp,
|
---|
97 | phas_sm,kphi0);
|
---|
98 | }
|
---|
99 | /*-----------------------------------------------------------------------
|
---|
100 | computes the a_lm by integrating over theta
|
---|
101 | lambda_lm(theta) * phas_m(theta)
|
---|
102 | for each m and l
|
---|
103 | -----------------------------------------------------------------------*/
|
---|
104 | Lambda2Builder l2b(acos(cth),nlmax,nmmax);
|
---|
105 | //cout << "fft:"<<phas_np[0]<<" "<<phas_sp[0]<<" "<<phas_nm[0]<<" "<<phas_sm[0]<<endl;
|
---|
106 | for (int m = 0; m <= nmmax; m++){
|
---|
107 | cout << phas_np[m]<<" "<<phas_sp[m]<<" "<<phas_nm[m]<<" "<<phas_sm[m]<<endl;
|
---|
108 | a2lmp[m][m]+=l2b.lam2lmp(m,m)*phas_np[m]+l2b.lam2lmp(m,m,-1)*phas_sp[m];
|
---|
109 | a2lmm[m][m]+=l2b.lam2lmm(m,m)*phas_nm[m]+l2b.lam2lmm(m,m,-1)*phas_sm[m];
|
---|
110 | for (int l = m+1; l<= nlmax; l++){
|
---|
111 | a2lmp[l][m]+=
|
---|
112 | l2b.lam2lmp(l,m)*phas_np[m]+l2b.lam2lmp(l,m,-1)*phas_sp[m];
|
---|
113 | a2lmm[l][m]+=
|
---|
114 | l2b.lam2lmm(l,m)*phas_nm[m]+l2b.lam2lmm(l,m,-1)*phas_sm[m];
|
---|
115 | }
|
---|
116 | }
|
---|
117 | }
|
---|
118 | complex<double> im(0,1);
|
---|
119 | a2lme.resize(nlmax+1);
|
---|
120 | for (int i=0; i< (signed) a2lme.size();i++){
|
---|
121 | a2lme[i].resize(nmmax+1);
|
---|
122 | }
|
---|
123 | a2lmb.resize(nlmax+1);
|
---|
124 | for (int i=0; i< (signed) a2lmb.size();i++){
|
---|
125 | a2lmb[i].resize(nmmax+1);
|
---|
126 | }
|
---|
127 | float domega=(4.*M_PI)/(12.*nsmax*nsmax);
|
---|
128 | for (int m = 0; m <= nmmax; m++){
|
---|
129 | a2lme[m][m]=-(a2lmp[m][m]+a2lmm[m][m])/2.*static_cast<double>(domega);
|
---|
130 | a2lmb[m][m]=im*(a2lmp[m][m]-a2lmm[m][m])/2.*static_cast<double>(domega);
|
---|
131 | for (int l = m+1; l<= nlmax; l++){
|
---|
132 | a2lme[l][m]=-(a2lmp[l][m]+a2lmm[l][m])/2.*static_cast<double>(domega);
|
---|
133 | a2lmb[l][m]=im*(a2lmp[l][m]-a2lmm[l][m])/2.*static_cast<double>(domega);
|
---|
134 | }
|
---|
135 | }
|
---|
136 | //for (int l = 2; l<= nlmax; l++){
|
---|
137 | //cout << "calc almp,m"<<a2lmp[l][0]<<" "<<a2lmm[l][0]<<endl;}
|
---|
138 | }
|
---|
139 |
|
---|
140 | void comp_phas2_2(int nsmax,int nlmax,int nmmax,
|
---|
141 | const vector< complex<float> >& datain,
|
---|
142 | const vector< complex<float> >& datain2,
|
---|
143 | int start,int nph,vector< complex<double> >& dataout,
|
---|
144 | vector< complex<double> >& dataout2, int kphi0){
|
---|
145 | /*=======================================================================
|
---|
146 | integrates (data * phi-dependence-of-Ylm) over phi
|
---|
147 | --> function of m can be computed by FFT
|
---|
148 | with 0<= m <= npoints/2 (: Nyquist)
|
---|
149 | because the data is real the negative m are the conjugate of the
|
---|
150 | positive ones
|
---|
151 |
|
---|
152 | arguments d'appels : GLM
|
---|
153 | =======================================================================*/
|
---|
154 |
|
---|
155 | int ksign = -1;
|
---|
156 | double phi0 = kphi0*M_PI/nph;
|
---|
157 |
|
---|
158 | complex<double>* data= new complex<double>[4*nsmax];
|
---|
159 | complex<double>* data2= new complex<double>[4*nsmax];
|
---|
160 | for (int i = 0; i< nph;i++){
|
---|
161 | data[i] = datain[i+start];
|
---|
162 | data2[i] = datain2[i+start];
|
---|
163 | }
|
---|
164 | for (int i = nph; i< 4*nsmax;i++){
|
---|
165 | data[i] = 0;
|
---|
166 | data2[i] = 0;
|
---|
167 | }
|
---|
168 |
|
---|
169 | FFTServer fft;
|
---|
170 | fft.fftb(nph,data);
|
---|
171 | fft.fftb(nph,data2);
|
---|
172 |
|
---|
173 | //in the output the frequencies are respectively 0,1,2,..,nph/2,-nph/2+1,..,-2,-1
|
---|
174 | // only the first nph/2+1 (positive freq.) are interesting
|
---|
175 | int im_max = min(nph/2,nmmax);
|
---|
176 | dataout.resize(nmmax+1);
|
---|
177 | dataout2.resize(nmmax+1);
|
---|
178 | for (int i = 1;i <= im_max + 1;i++){
|
---|
179 | int m = ksign*(i-1);
|
---|
180 | complex<double> fuck(cos(m*phi0),sin(m*phi0));
|
---|
181 | dataout[i-1]=data[i-1]*fuck;
|
---|
182 | dataout2[i-1]=data2[i-1]*fuck;
|
---|
183 | }
|
---|
184 | for (int i = im_max + 2;i <= nmmax + 1;i++){
|
---|
185 | dataout[i-1] = 0; dataout2[i-1]=0;
|
---|
186 | }
|
---|
187 | delete[] data;
|
---|
188 | delete[] data2;
|
---|
189 | }
|
---|