1 | #include <math.h>
|
---|
2 | #include "anagen.h"
|
---|
3 | #include "lambuilder.h"
|
---|
4 | #include "fftserver.h"
|
---|
5 |
|
---|
6 | /* assumes the map is symmetric about the equator and that
|
---|
7 | each strip is divided equally*/
|
---|
8 |
|
---|
9 | extern "C" {
|
---|
10 | void fft_gpd_(long double* ,int& ,int& ,int& ,int& ,long double*);
|
---|
11 | }
|
---|
12 |
|
---|
13 | void map2almgen(int nsmax,int nlmax,int nmmax,const SphericalMap& map,
|
---|
14 | vector< vector< complex<double> > >& alm, double cos_theta_cut){
|
---|
15 |
|
---|
16 | // REAL*4 map(12*nsmax**2) ! 4*12*nsmax**2
|
---|
17 |
|
---|
18 | // REAL*4 powspec(0:nlmax)
|
---|
19 |
|
---|
20 | // integer npmiss,npmt,id_miss(10000)
|
---|
21 |
|
---|
22 | alm.resize(nlmax+1);
|
---|
23 | for (int i=0; i< (signed) alm.size();i++)
|
---|
24 | {
|
---|
25 | alm[i].resize(nmmax+1);
|
---|
26 | for (int j=0; j< (signed) alm[i].size();j++)alm[i][j]=0;
|
---|
27 | }
|
---|
28 |
|
---|
29 | /*-----------------------------------------------------------------------
|
---|
30 | computes the integral in phi : phas_m(theta)
|
---|
31 | for each parallele from north to south pole
|
---|
32 | -----------------------------------------------------------------------*/
|
---|
33 |
|
---|
34 | vector< complex<double> > phas_n(nmmax+1), phas_s(nmmax+1);
|
---|
35 | for (int ith = 0; ith <= (map.NbThetaSlices()+1)/2-1;ith++){
|
---|
36 | int nph;
|
---|
37 | double phi0;
|
---|
38 | float theta;
|
---|
39 | Vector phin, datan, phis, datas;
|
---|
40 | map.GetThetaSlice(map.NbThetaSlices()-ith-1,theta,phis,datas);
|
---|
41 | map.GetThetaSlice(ith,theta,phin,datan);
|
---|
42 | for (int i=0;i< nmmax+1;i++){
|
---|
43 | phas_n[i]=0; phas_s[i]=0;
|
---|
44 | }
|
---|
45 | nph = phin.NElts();
|
---|
46 | phi0 = phin(0);
|
---|
47 | double cth = cos(theta);
|
---|
48 |
|
---|
49 | //part of the sky out of the symetric cut
|
---|
50 | bool keep_it = (abs(cth) >= cos_theta_cut);
|
---|
51 |
|
---|
52 | //make sure that map is well defined
|
---|
53 | if (keep_it){
|
---|
54 | comp_phas2gen(nsmax,nlmax,nmmax,datan,nph,phas_n,phi0);
|
---|
55 | }
|
---|
56 |
|
---|
57 | if (ith != map.NbThetaSlices()/2 && keep_it){
|
---|
58 | comp_phas2gen(nsmax,nlmax,nmmax,datas,nph,phas_s,phi0);
|
---|
59 | }
|
---|
60 | /*-----------------------------------------------------------------------
|
---|
61 | computes the a_lm by integrating over theta
|
---|
62 | lambda_lm(theta) * phas_m(theta)
|
---|
63 | for each m and l
|
---|
64 | -----------------------------------------------------------------------*/
|
---|
65 | LambdaBuilder lb(acos(cth),nlmax,nmmax);
|
---|
66 | double domega=map.PixSolAngle(map.PixIndexSph(theta,phi0));
|
---|
67 | for (int m = 0; m <= nmmax; m++)
|
---|
68 | {
|
---|
69 | alm[m][m] += (lb.lamlm(m,m) * (phas_n[m] + phas_s[m])) * domega; //m,m even
|
---|
70 | for (int l = m+1; l<= nlmax; l++)
|
---|
71 | {
|
---|
72 | alm[l][m] += (lb.lamlm(l,m) * phas_n[m] + lb.lamlm(l,m,-1)*phas_s[m])*domega; //assuming the map is symmetric about the equator
|
---|
73 | }
|
---|
74 | }
|
---|
75 | }
|
---|
76 | }
|
---|
77 |
|
---|
78 |
|
---|
79 | void comp_phas2gen(int nsmax,int nlmax,int nmmax, Vector datain,
|
---|
80 | int nph,vector< complex<double> >& dataout,double phi0){
|
---|
81 | /*=======================================================================
|
---|
82 | integrates (data * phi-dependence-of-Ylm) over phi
|
---|
83 | --> function of m can be computed by FFT
|
---|
84 | with 0<= m <= npoints/2 (: Nyquist)
|
---|
85 | because the data is real the negative m are the conjugate of the
|
---|
86 | positive ones
|
---|
87 |
|
---|
88 | arguments d'appels : GLM
|
---|
89 | =======================================================================*/
|
---|
90 |
|
---|
91 | //FFTVector inf(datain);
|
---|
92 | //FFTVector outf=FFTServer::solve(inf,-1);
|
---|
93 | FFTServer fft;
|
---|
94 | Vector outf;
|
---|
95 | //cout<<"in :"<<datain<<endl;
|
---|
96 | fft.fftb(datain,outf);
|
---|
97 | // cout<<outf<<endl;
|
---|
98 | long double * data = new long double[nph*2];
|
---|
99 | //outf.d((double*)data, nph);
|
---|
100 | data[0]=outf(0); data[1]=0;
|
---|
101 | for (int i=2;i<=nph;i++) data[i]=outf(i-1);
|
---|
102 | for (int i=nph+1;i<2*nph;i++) data[i]=0;
|
---|
103 |
|
---|
104 | int ksign = -1;
|
---|
105 | // long double data[nph*2];
|
---|
106 |
|
---|
107 | // for (int i = 0; i< nph;i++){
|
---|
108 | // data[2*i] = datain(i);
|
---|
109 | // data[2*i+1]=0;
|
---|
110 | // }
|
---|
111 |
|
---|
112 | // long double work[nph*2];
|
---|
113 | // int dum1=1;
|
---|
114 | // int dum0=0;
|
---|
115 | // fft_gpd_(data,nph,dum1,ksign,dum0,work); /* real to complex
|
---|
116 | // for any nph (not necessary power of 2)*/
|
---|
117 | // //in the output the frequencies are respectively 0,1,2,..,nph/2,-nph/2+1,..,-2,-1
|
---|
118 | // // only the first nph/2+1 (positive freq.) are interesting
|
---|
119 | // for (int i=0;i<nph*2;i++){cout << "heh"<<test[i]<<" "<<data[i]<<endl;}*/
|
---|
120 |
|
---|
121 | int im_max = min(nph/2,nmmax);
|
---|
122 | dataout.resize(nmmax+1);
|
---|
123 | for (int i = 1;i <= im_max + 1;i++){
|
---|
124 | int m = ksign*(i-1);
|
---|
125 | complex<double> shit(data[2*(i-1)],data[2*(i-1)+1]);
|
---|
126 | complex<double> fuck(cos(m*phi0),sin(m*phi0));
|
---|
127 | dataout[i-1]=shit*fuck;
|
---|
128 | }
|
---|
129 | for (int i = im_max + 2;i <= nmmax + 1;i++){
|
---|
130 | dataout[i-1] = 0;
|
---|
131 | }
|
---|
132 | delete data;
|
---|
133 | }
|
---|