source: Sophya/trunk/SophyaLib/Samba/circle.cc@ 1758

Last change on this file since 1758 was 1758, checked in by lemeur, 24 years ago

nouveau circle, pour ELDESTINO

File size: 7.8 KB
RevLine 
[262]1#include <math.h>
2#include "circle.h"
[568]3//++
4// Class Circle
5//
6// include circle.h math.h
7//--
8//++
9//
10// Links Parents
11//
12// Geometry
13//
14//--
15//++
16// Titre Constructors
17//--
18//++
[262]19Circle::Circle()
[568]20//
21//--
[262]22{
23 UnitVector temp;
24 SetCircle(temp,M_PI/2.);
25}
[568]26//++
[262]27Circle::Circle(double theta, double phi, double aperture)
[568]28//
29//--
[262]30{
31 UnitVector temp(theta,phi);
32 SetCircle(temp,aperture);
33}
[568]34//++
[262]35Circle::Circle(double x, double y, double z, double aperture)
[568]36//
37//--
[262]38{
39 UnitVector temp(x,y,z);
40 SetCircle(temp,aperture);
41}
[568]42//++
[262]43Circle::Circle(const Vector3d& v, double aperture)
[568]44//
45//--
[262]46{
47 UnitVector temp=v;
48 SetCircle(temp,aperture);
49}
[568]50//++
[262]51Circle::Circle(const Circle& c)
[568]52//
53// copy constructor
54//--
[262]55{
[1758]56 UnitVector temp= c.Omega();
[262]57 SetCircle(temp,c._angouv);
58}
[568]59//++
60// Titre Public Methods
61//--
62//++
[262]63void Circle::SetCircle(const UnitVector& temp, double aperture)
[568]64//
65//--
[262]66{
[1758]67 _spinunitaxis= temp;
68
69 _angouv = aperture;
70 _cangouv= cos(_angouv);
71 _sangouv= sin(_angouv);
72
73 _spinaxis=_spinunitaxis*fabs(_cangouv);
74
75 _theta =_spinunitaxis.Theta();
76 _ctheta= cos(_theta);
77 _stheta= sin(_theta);
78
79 _phi =_spinunitaxis.Phi();
80 _cphi= cos(_phi);
81 _sphi= sin(_phi);
82
83 _x= _spinunitaxis.X();
84 _y= _spinunitaxis.Y();
85 _z= _spinunitaxis.Z();
[262]86}
[568]87//++
[262]88void Circle::SetSpinAxis(double theta, double phi)
[568]89//
90//--
[262]91{
92 UnitVector temp(theta,phi);
93 SetCircle(temp,_angouv);
94}
[568]95//++
[262]96void Circle::SetSpinAxis(const Vector3d& u)
[568]97//
98//--
[262]99{
100 UnitVector temp=u;
101 SetCircle(temp,_angouv);
102}
[568]103//++
[262]104void Circle::SetSpinAxis(double x, double y, double z)
[568]105//
106//--
[262]107{
108 UnitVector temp(x,y,z);
109 SetCircle(temp,_angouv);
110}
[568]111//++
[262]112void Circle::SetApertureAngle(double aperture)
[568]113//
114//--
[262]115{
116 SetCircle(_spinunitaxis,aperture);
117}
[568]118//++
[262]119void Circle::SetApertureAngle(const Circle& c)
[568]120//
121//--
[262]122{
123 SetCircle(_spinunitaxis,c._angouv);
124}
[1758]125
[568]126//++
[262]127bool Circle::Intersection(const Circle& c, double* psi) const
[568]128//
129// psi contains 4 values of the intersection angles.
130// -1 if circles do not intersect
131// psi[0]=psi(i,j,0)
132// psi[1]=psi(i,j,1)
133// psi[2]=psi(j,i,0)
134// psi[3]=psi(j,i,1)
135//--
[262]136{
137 double alphak=_angouv;
138 double alphal=c._angouv;
139 Vector3d ok=_spinaxis;
140 Vector3d ol=c._spinaxis;
141 double gamma=ok.SepAngle(ol);
[1758]142
[262]143 if( fabs(alphak-alphal) < gamma && gamma <= (alphak+alphal) && this != &c )
144 {
145 // then the 2 circles intersect
146 double sg=sin(gamma),cg=cos(gamma);
147 double sak=sin(alphak),cak=cos(alphak);
148 double sal=sin(alphal),cal=cos(alphal);
149 double st=sin(_theta),ct=cos(_theta);
150 double stc=sin(c._theta),ctc=cos(c._theta);
151 double dphi=_phi-c._phi;
152 double sdphi=sin(dphi),cdphi=cos(dphi);
153 double sinusk=stc*sdphi/sg,cosinusk=(ctc*st-stc*ct*cdphi)/sg;
154 double sinusl=-st*sdphi/sg,cosinusl=(ct*stc-st*ctc*cdphi)/sg;
155 double gammaik=scangle(sinusk,cosinusk);
156 double gammail=scangle(sinusl,cosinusl);
157 double omegak=acos((cal-cak*cg)/sg/sak);
158 double omegal=acos((cak-cal*cg)/sg/sal);
159 psi[0]=fmod(gammaik-omegak+pi2,pi2);
160 psi[1]=fmod(gammaik+omegak+pi2,pi2);
161 psi[2]=fmod(gammail-omegal+pi2,pi2);
162 psi[3]=fmod(gammail+omegal+pi2,pi2);
163 if( psi[0] > psi[1] )
164 {
165 // psi[0]=psi(i,j,0)
166 // psi[1]=psi(i,j,1)
167 // psi[2]=psi(j,i,0)
168 // psi[3]=psi(j,i,1)
169 swap(psi[0],psi[1]);
170 swap(psi[2],psi[3]);
171 }
172 return true;
173 }
174 else
175 {
176 psi[0] = -1.;
177 psi[1] = -1.;
178 psi[2] = -1.;
179 psi[3] = -1.;
180 return false;
181 }
182}
[568]183//++
[470]184UnitVector Circle::ConvToSphere(double psi) const
[568]185//
186// Return UnitVector corresponding to a given position donnee on the circle
187//--
[262]188{
189 psi=mod(psi,pi2);
190 double xout, yout, zout;
191 double cosa=cos(_angouv);
192 double sina=sin(_angouv);
193 double cost=cos(_theta);
194 double sint=sin(_theta);
195 double cosphi=cos(_phi);
196 double sinphi=sin(_phi);
197 double cosp=cos(psi);
198 double sinp=sin(psi);
199 xout = cosa*sint*cosphi+sina*(sinphi*sinp-cost*cosphi*cosp);
200 yout = cosa*sint*sinphi-sina*(cosphi*sinp+cost*sinphi*cosp);
201 zout = cosa*cost+sina*sint*cosp;
202 return UnitVector(xout,yout,zout);
203}
[568]204//++
[262]205UnitVector Circle::TanOnCircle(double psi) const
[568]206//
207// Return UnitVector corresponding to the tangent to the circle
208// at given position on the circle.
209//--
[262]210{
211 psi=mod(psi,pi2);
212 double xout, yout, zout;
213 double cost=cos(_theta);
214 double sint=sin(_theta);
215 double cosphi=cos(_phi);
216 double sinphi=sin(_phi);
217 double cosp=cos(psi);
218 double sinp=sin(psi);
219 xout = cosp*sinphi+sinp*sint*cosphi;
220 yout = -cosp*cosphi+sinp*sint*sinphi;
221 zout = -sinp*cost;
222 return UnitVector(xout,yout,zout);
223}
[568]224//++
[262]225UnitVector Circle::EPhi(double psi) const
[568]226//
227// Return the vector tangent to the sphere in the plane (xy)
228// at a given position on the circle.
229//--
[262]230{
231 psi=mod(psi,pi2);
[470]232 return ConvToSphere(psi).EPhi();
[262]233}
[568]234//++
[262]235UnitVector Circle::ETheta(double psi) const
[568]236//
237// Return the other tangent vector( orthogonal to EPhi)--
238// see previous method
239//--
[262]240{
241 psi=mod(psi,pi2);
[470]242 return ConvToSphere(psi).ETheta();
[262]243}
[568]244//++
[262]245double Circle::SepAngleTanEPhi02PI(double psi) const
[568]246//
247// Return separation angle in [0,2Pi] at a given position on the
248// circle and EPhi
249//--
[262]250{
251 psi=mod(psi,pi2);
252 UnitVector pol=this->TanOnCircle(psi);
253 UnitVector ephi=this->EPhi(psi);
254 double angle=pol.SepAngle(ephi);
255 if( pol.Z() <= 0 ) angle=pi2-angle;
256 return angle;
257}
[568]258//++
259void Circle::Print(ostream& os) const
260//
261//--
262{
263 os << "1 - Circle - Axe de Spin Unitaire : " << _spinunitaxis << endl;
264 os << "1 - Circle - Axe de Spin : " << _spinaxis << endl;
265 os << "2 - Circle - Angle d'ouverture : " << _angouv << endl;
266 os << "3 - Circle - Theta,Phi : " << _theta << "," << _phi << endl;
267 os << "4 - Circle - x,y,z : " << _x << "," << _y << "," << _z << endl;
268}
269//++
270//
271// inline double Theta() const
272// inline double Phi() const
273// inline double ApertureAngle() const
274// inline Vector3d Omega() const
275//--
276//++
277// Titre Operators
278//--
[262]279
280Circle& Circle::operator=(const Circle& c)
281{
282 if( this != &c )
283 {
284 UnitVector temp(c.Omega());
285 SetCircle(temp,c.ApertureAngle());
286 }
287 return *this;
288}
[568]289//++
[262]290bool Circle::operator==(const Circle& c) const
[568]291//
292//--
[262]293{
294 bool flag;
295 if( this == &c ) flag=true;
296 else flag=false;
297 return flag;
298}
[568]299//++
[262]300bool Circle::operator!=(const Circle& c) const
[568]301//
302//--
[262]303{
304 return (bool)(1-(this->operator==(c)));
305}
[1758]306//
307bool Circle::intersection(const Circle* c) const
308{
309 double alphak= _angouv;
310 double alphal= c->_angouv;
311 Vector3d ok= _spinaxis;
312 Vector3d ol= c->_spinaxis;
313 double gamma= ok.SepAngle(ol);
314
315 if(fabs(alphak-alphal) < gamma && gamma <= (alphak+alphal) && this != c) {
316 return true;
317 } else {
318 return false;
319 }
320}
321//
322bool Circle::intersection(const Circle& c, double* psi) const
323{
324 double alphak= _angouv;
325 double alphal= c._angouv;
326 Vector3d ok= _spinaxis;
327 Vector3d ol= c._spinaxis;
328 double gamma= ok.SepAngle(ol);
329
330 if(fabs(alphak-alphal) < gamma && gamma <= (alphak+alphal) && this != &c) {
331
332 double sgamma= sin(gamma);
333 double cgamma= cos(gamma);
334
335 double sdphi= _sphi*c._cphi - _cphi*c._sphi;
336 double cdphi= _cphi*c._cphi + _sphi*c._sphi;
337
338 double ssk= c._stheta*sdphi/sgamma;
339 double csk= (c._ctheta*_stheta-c._stheta*_ctheta*cdphi)/sgamma;
340
341 double ssl= -_stheta*sdphi/sgamma;
342 double csl= (_ctheta*c._stheta-_stheta*c._ctheta*cdphi)/sgamma;
343
344 double ak= atan2(ssk,csk);
345 double al= atan2(ssl,csl);
346 double omegak= acos((c._cangouv-_cangouv*cgamma)/sgamma/_sangouv);
347 double omegal= acos((_cangouv-c._cangouv*cgamma)/sgamma/c._sangouv);
348
349 psi[0]= fmod(ak-omegak+pi2,pi2);
350 psi[1]= fmod(ak+omegak+pi2,pi2);
351 psi[2]= fmod(al-omegal+pi2,pi2);
352 psi[3]= fmod(al+omegal+pi2,pi2);
353
354 if(psi[0] > psi[1]) {
355 swap(psi[0],psi[1]);
356 swap(psi[2],psi[3]);
357 }
358 return true;
359
360 } else {
361 psi[0] = -1.;
362 psi[1] = -1.;
363 psi[2] = -1.;
364 psi[3] = -1.;
365 return false;
366 }
367}
Note: See TracBrowser for help on using the repository browser.