source: Sophya/trunk/SophyaLib/Samba/circle.cc@ 738

Last change on this file since 738 was 568, checked in by ansari, 26 years ago

ajout doc GLM

File size: 6.1 KB
Line 
1#include <math.h>
2#include "circle.h"
3//++
4// Class Circle
5//
6// include circle.h math.h
7//--
8//++
9//
10// Links Parents
11//
12// Geometry
13//
14//--
15//++
16// Titre Constructors
17//--
18//++
19Circle::Circle()
20//
21//--
22{
23 UnitVector temp;
24 SetCircle(temp,M_PI/2.);
25}
26//++
27Circle::Circle(double theta, double phi, double aperture)
28//
29//--
30{
31 UnitVector temp(theta,phi);
32 SetCircle(temp,aperture);
33}
34//++
35Circle::Circle(double x, double y, double z, double aperture)
36//
37//--
38{
39 UnitVector temp(x,y,z);
40 SetCircle(temp,aperture);
41}
42//++
43Circle::Circle(const Vector3d& v, double aperture)
44//
45//--
46{
47 UnitVector temp=v;
48 SetCircle(temp,aperture);
49}
50//++
51Circle::Circle(const Circle& c)
52//
53// copy constructor
54//--
55{
56 UnitVector temp=c.Omega();
57 SetCircle(temp,c._angouv);
58}
59//++
60// Titre Public Methods
61//--
62//++
63void Circle::SetCircle(const UnitVector& temp, double aperture)
64//
65//--
66{
67 _spinunitaxis=temp;
68 _angouv=aperture;
69 _spinaxis=_spinunitaxis*fabs(cos(_angouv));
70 _theta=_spinunitaxis.Theta();
71 _phi=_spinunitaxis.Phi();
72 _x=_spinunitaxis.X();
73 _y=_spinunitaxis.Y();
74 _z=_spinunitaxis.Z();
75}
76//++
77void Circle::SetSpinAxis(double theta, double phi)
78//
79//--
80{
81 UnitVector temp(theta,phi);
82 SetCircle(temp,_angouv);
83}
84//++
85void Circle::SetSpinAxis(const Vector3d& u)
86//
87//--
88{
89 UnitVector temp=u;
90 SetCircle(temp,_angouv);
91}
92//++
93void Circle::SetSpinAxis(double x, double y, double z)
94//
95//--
96{
97 UnitVector temp(x,y,z);
98 SetCircle(temp,_angouv);
99}
100//++
101void Circle::SetApertureAngle(double aperture)
102//
103//--
104{
105 SetCircle(_spinunitaxis,aperture);
106}
107//++
108void Circle::SetApertureAngle(const Circle& c)
109//
110//--
111{
112 SetCircle(_spinunitaxis,c._angouv);
113}
114//++
115bool Circle::Intersection(const Circle& c, double* psi) const
116//
117// psi contains 4 values of the intersection angles.
118// -1 if circles do not intersect
119// psi[0]=psi(i,j,0)
120// psi[1]=psi(i,j,1)
121// psi[2]=psi(j,i,0)
122// psi[3]=psi(j,i,1)
123//--
124{
125 double alphak=_angouv;
126 double alphal=c._angouv;
127 Vector3d ok=_spinaxis;
128 Vector3d ol=c._spinaxis;
129 double gamma=ok.SepAngle(ol);
130 if( fabs(alphak-alphal) < gamma && gamma <= (alphak+alphal) && this != &c )
131 {
132 // then the 2 circles intersect
133 double sg=sin(gamma),cg=cos(gamma);
134 double sak=sin(alphak),cak=cos(alphak);
135 double sal=sin(alphal),cal=cos(alphal);
136 double st=sin(_theta),ct=cos(_theta);
137 double stc=sin(c._theta),ctc=cos(c._theta);
138 double dphi=_phi-c._phi;
139 double sdphi=sin(dphi),cdphi=cos(dphi);
140 double sinusk=stc*sdphi/sg,cosinusk=(ctc*st-stc*ct*cdphi)/sg;
141 double sinusl=-st*sdphi/sg,cosinusl=(ct*stc-st*ctc*cdphi)/sg;
142 double gammaik=scangle(sinusk,cosinusk);
143 double gammail=scangle(sinusl,cosinusl);
144 double omegak=acos((cal-cak*cg)/sg/sak);
145 double omegal=acos((cak-cal*cg)/sg/sal);
146 psi[0]=fmod(gammaik-omegak+pi2,pi2);
147 psi[1]=fmod(gammaik+omegak+pi2,pi2);
148 psi[2]=fmod(gammail-omegal+pi2,pi2);
149 psi[3]=fmod(gammail+omegal+pi2,pi2);
150 if( psi[0] > psi[1] )
151 {
152 // psi[0]=psi(i,j,0)
153 // psi[1]=psi(i,j,1)
154 // psi[2]=psi(j,i,0)
155 // psi[3]=psi(j,i,1)
156 swap(psi[0],psi[1]);
157 swap(psi[2],psi[3]);
158 }
159 return true;
160 }
161 else
162 {
163 psi[0] = -1.;
164 psi[1] = -1.;
165 psi[2] = -1.;
166 psi[3] = -1.;
167 return false;
168 }
169}
170//++
171UnitVector Circle::ConvToSphere(double psi) const
172//
173// Return UnitVector corresponding to a given position donnee on the circle
174//--
175{
176 psi=mod(psi,pi2);
177 double xout, yout, zout;
178 double cosa=cos(_angouv);
179 double sina=sin(_angouv);
180 double cost=cos(_theta);
181 double sint=sin(_theta);
182 double cosphi=cos(_phi);
183 double sinphi=sin(_phi);
184 double cosp=cos(psi);
185 double sinp=sin(psi);
186 xout = cosa*sint*cosphi+sina*(sinphi*sinp-cost*cosphi*cosp);
187 yout = cosa*sint*sinphi-sina*(cosphi*sinp+cost*sinphi*cosp);
188 zout = cosa*cost+sina*sint*cosp;
189 return UnitVector(xout,yout,zout);
190}
191//++
192UnitVector Circle::TanOnCircle(double psi) const
193//
194// Return UnitVector corresponding to the tangent to the circle
195// at given position on the circle.
196//--
197{
198 psi=mod(psi,pi2);
199 double xout, yout, zout;
200 double cost=cos(_theta);
201 double sint=sin(_theta);
202 double cosphi=cos(_phi);
203 double sinphi=sin(_phi);
204 double cosp=cos(psi);
205 double sinp=sin(psi);
206 xout = cosp*sinphi+sinp*sint*cosphi;
207 yout = -cosp*cosphi+sinp*sint*sinphi;
208 zout = -sinp*cost;
209 return UnitVector(xout,yout,zout);
210}
211//++
212UnitVector Circle::EPhi(double psi) const
213//
214// Return the vector tangent to the sphere in the plane (xy)
215// at a given position on the circle.
216//--
217{
218 psi=mod(psi,pi2);
219 return ConvToSphere(psi).EPhi();
220}
221//++
222UnitVector Circle::ETheta(double psi) const
223//
224// Return the other tangent vector( orthogonal to EPhi)--
225// see previous method
226//--
227{
228 psi=mod(psi,pi2);
229 return ConvToSphere(psi).ETheta();
230}
231//++
232double Circle::SepAngleTanEPhi02PI(double psi) const
233//
234// Return separation angle in [0,2Pi] at a given position on the
235// circle and EPhi
236//--
237{
238 psi=mod(psi,pi2);
239 UnitVector pol=this->TanOnCircle(psi);
240 UnitVector ephi=this->EPhi(psi);
241 double angle=pol.SepAngle(ephi);
242 if( pol.Z() <= 0 ) angle=pi2-angle;
243 return angle;
244}
245//++
246void Circle::Print(ostream& os) const
247//
248//--
249{
250 os << "1 - Circle - Axe de Spin Unitaire : " << _spinunitaxis << endl;
251 os << "1 - Circle - Axe de Spin : " << _spinaxis << endl;
252 os << "2 - Circle - Angle d'ouverture : " << _angouv << endl;
253 os << "3 - Circle - Theta,Phi : " << _theta << "," << _phi << endl;
254 os << "4 - Circle - x,y,z : " << _x << "," << _y << "," << _z << endl;
255}
256//++
257//
258// inline double Theta() const
259// inline double Phi() const
260// inline double ApertureAngle() const
261// inline Vector3d Omega() const
262//--
263//++
264// Titre Operators
265//--
266
267Circle& Circle::operator=(const Circle& c)
268{
269 if( this != &c )
270 {
271 UnitVector temp(c.Omega());
272 SetCircle(temp,c.ApertureAngle());
273 }
274 return *this;
275}
276//++
277bool Circle::operator==(const Circle& c) const
278//
279//--
280{
281 bool flag;
282 if( this == &c ) flag=true;
283 else flag=false;
284 return flag;
285}
286//++
287bool Circle::operator!=(const Circle& c) const
288//
289//--
290{
291 return (bool)(1-(this->operator==(c)));
292}
Note: See TracBrowser for help on using the repository browser.