| [2615] | 1 | #include "sopnamsp.h" | 
|---|
| [729] | 2 | #include "lambdaBuilder.h" | 
|---|
|  | 3 | #include "nbconst.h" | 
|---|
|  | 4 |  | 
|---|
|  | 5 |  | 
|---|
| [1218] | 6 | /*! | 
|---|
|  | 7 | \class SOPHYA::Legendre | 
|---|
|  | 8 | generate Legendre polynomials : use in two steps : | 
|---|
|  | 9 |  | 
|---|
|  | 10 | a) instanciate Legendre(\f$x\f$, \f$lmax\f$) ; \f$x\f$ is the value for wich Legendre polynomials will be required (usually equal to \f$\cos \theta\f$) and \f$lmax\f$ is the MAXIMUM value of the order of polynomials wich will be required in the following code (all polynomials, from \f$l=0 to lmax\f$, are computed once for all by an iterative formula). | 
|---|
|  | 11 |  | 
|---|
|  | 12 | b) get the value of Legendre polynomial for a particular value of \f$l\f$ by calling the method getPl. | 
|---|
|  | 13 |  | 
|---|
|  | 14 | */ | 
|---|
|  | 15 |  | 
|---|
|  | 16 |  | 
|---|
| [729] | 17 | Legendre::Legendre(r_8 x, int_4 lmax) | 
|---|
|  | 18 | { | 
|---|
| [1428] | 19 | if (fabs(x) > 1. ) | 
|---|
| [729] | 20 | { | 
|---|
|  | 21 | throw RangeCheckError("variable for Legendre polynomials must have modules inferior to 1" ); | 
|---|
|  | 22 | } | 
|---|
|  | 23 | x_ = x; | 
|---|
|  | 24 | array_init(lmax); | 
|---|
|  | 25 | } | 
|---|
| [1218] | 26 |  | 
|---|
|  | 27 | /*! \fn void SOPHYA::Legendre::array_init(int_4 lmax) | 
|---|
|  | 28 |  | 
|---|
|  | 29 | compute all \f$P_l(x,l_{max})\f$ for \f$l=1,l_{max}\f$ | 
|---|
|  | 30 | */ | 
|---|
| [729] | 31 | void Legendre::array_init(int_4 lmax) | 
|---|
|  | 32 | { | 
|---|
|  | 33 | lmax_ = lmax; | 
|---|
|  | 34 | Pl_.ReSize(lmax_+1); | 
|---|
|  | 35 | Pl_(0)=1.; | 
|---|
| [2277] | 36 | if (lmax>0) Pl_(1)=x_; | 
|---|
| [729] | 37 | for (int k=2; k<Pl_.NElts(); k++) | 
|---|
|  | 38 | { | 
|---|
|  | 39 | Pl_(k) = ( (2.*k-1)*x_*Pl_(k-1)-(k-1)*Pl_(k-2) )/k; | 
|---|
|  | 40 | } | 
|---|
|  | 41 | } | 
|---|
|  | 42 |  | 
|---|
| [1756] | 43 | TriangularMatrix<r_8> LambdaLMBuilder::a_recurrence_ = TriangularMatrix<r_8>(); | 
|---|
|  | 44 | TriangularMatrix<r_8> LambdaLMBuilder::lam_fact_     = TriangularMatrix<r_8>(); | 
|---|
| [729] | 45 | TVector<r_8>* LambdaLMBuilder::normal_l_     = NULL; | 
|---|
|  | 46 |  | 
|---|
| [1218] | 47 |  | 
|---|
|  | 48 |  | 
|---|
|  | 49 | /*! \class SOPHYA::LambdaLMBuilder | 
|---|
|  | 50 |  | 
|---|
|  | 51 |  | 
|---|
|  | 52 | This class generate the coefficients : | 
|---|
|  | 53 | \f[ | 
|---|
|  | 54 | \lambda_l^m=\sqrt{\frac{2l+1}{4\pi}\frac{(l-m)!}{(l+m)!}} | 
|---|
|  | 55 | P_l^m(\cos{\theta}) | 
|---|
|  | 56 | \f] | 
|---|
|  | 57 | where \f$P_l^m\f$ are the associated Legendre polynomials.  The above coefficients contain the theta-dependance of spheric harmonics : | 
|---|
|  | 58 | \f[ | 
|---|
|  | 59 | Y_{lm}(\cos{\theta})=\lambda_l^m(\cos{\theta}) e^{im\phi}. | 
|---|
|  | 60 | \f] | 
|---|
|  | 61 |  | 
|---|
|  | 62 | Each object has a fixed theta (radians), and maximum l and m to be calculated | 
|---|
|  | 63 | (lmax and mmax). | 
|---|
|  | 64 | use the class in two steps : | 
|---|
|  | 65 | a) instanciate  LambdaLMBuilder(\f$\theta\f$, \f$lmax\f$, \f$mmax\f$) ;  \f$lmax\f$ and \f$mmax\f$ are  MAXIMUM values for which \f$\lambda_l^m\f$ will be required in the following code (all coefficients, from \f$l=0 to lmax\f$, are computed once for all by an iterative formula). | 
|---|
|  | 66 | b) get the values of coefficients for  particular values of \f$l\f$ and \f$m\f$ by calling the method lamlm. | 
|---|
|  | 67 | */ | 
|---|
|  | 68 |  | 
|---|
|  | 69 |  | 
|---|
| [729] | 70 | LambdaLMBuilder::LambdaLMBuilder(r_8 theta,int_4 lmax, int_4 mmax) | 
|---|
|  | 71 | { | 
|---|
|  | 72 | cth_=cos(theta); | 
|---|
|  | 73 | sth_=sin(theta); | 
|---|
|  | 74 | array_init(lmax, mmax); | 
|---|
|  | 75 | } | 
|---|
| [1683] | 76 | LambdaLMBuilder::LambdaLMBuilder(r_8 costet, r_8 sintet,int_4 lmax, int_4 mmax) | 
|---|
|  | 77 | { | 
|---|
|  | 78 | cth_=costet; | 
|---|
|  | 79 | sth_=sintet; | 
|---|
|  | 80 | array_init(lmax, mmax); | 
|---|
|  | 81 | } | 
|---|
| [729] | 82 | void LambdaLMBuilder::array_init(int lmax, int mmax) | 
|---|
|  | 83 | { | 
|---|
| [1756] | 84 | if (a_recurrence_.Size() == 0) | 
|---|
| [729] | 85 | { | 
|---|
| [1756] | 86 | //      a_recurrence_ = new TriangularMatrix<r_8>; | 
|---|
| [729] | 87 | updateArrayRecurrence(lmax); | 
|---|
|  | 88 | } | 
|---|
|  | 89 | else | 
|---|
| [1756] | 90 | if ( lmax > (a_recurrence_).rowNumber()-1     ) | 
|---|
| [729] | 91 | { | 
|---|
|  | 92 | cout << " WARNING : The classes LambdaXXBuilder will be more efficient if instanciated with parameter lmax = maximum value of l index which will be needed in the whole application (arrays not recomputed) " << endl; | 
|---|
| [1756] | 93 | cout << "lmax= " << lmax << " previous instanciation with lmax= " <<  (a_recurrence_).rowNumber() << endl; | 
|---|
| [729] | 94 | updateArrayRecurrence(lmax); | 
|---|
|  | 95 | } | 
|---|
|  | 96 | lmax_=lmax; | 
|---|
|  | 97 | mmax_=mmax; | 
|---|
|  | 98 | r_8 bignorm2 = 1.e268; // = 1e-20*1.d288 | 
|---|
|  | 99 |  | 
|---|
|  | 100 | lambda_.ReSizeRow(lmax_+1); | 
|---|
|  | 101 |  | 
|---|
|  | 102 | r_8 lam_mm = 1. / sqrt(4.*Pi) *bignorm2; | 
|---|
|  | 103 |  | 
|---|
|  | 104 | for (int m=0; m<=mmax_;m++) | 
|---|
|  | 105 | { | 
|---|
|  | 106 |  | 
|---|
|  | 107 |  | 
|---|
|  | 108 | lambda_(m,m)= lam_mm / bignorm2; | 
|---|
|  | 109 |  | 
|---|
|  | 110 | r_8 lam_0=0.; | 
|---|
|  | 111 | r_8 lam_1=1. /bignorm2 ; | 
|---|
|  | 112 | //      r_8 a_rec = LWK->a_recurr(m,m); | 
|---|
| [1756] | 113 | r_8 a_rec = a_recurrence_(m,m); | 
|---|
| [729] | 114 | r_8 b_rec = 0.; | 
|---|
|  | 115 | for (int l=m+1; l<=lmax_; l++) | 
|---|
|  | 116 | { | 
|---|
|  | 117 | r_8 lam_2 = (cth_*lam_1-b_rec*lam_0)*a_rec; | 
|---|
|  | 118 | lambda_(l,m) = lam_2*lam_mm; | 
|---|
|  | 119 | b_rec=1./a_rec; | 
|---|
|  | 120 | //      a_rec= LWK->a_recurr(l,m); | 
|---|
| [1756] | 121 | a_rec= a_recurrence_(l,m); | 
|---|
| [729] | 122 | lam_0 = lam_1; | 
|---|
|  | 123 | lam_1 = lam_2; | 
|---|
|  | 124 | } | 
|---|
|  | 125 |  | 
|---|
|  | 126 | lam_mm = -lam_mm*sth_* sqrt( (2.*m+3.)/ (2.*m+2.) ); | 
|---|
|  | 127 |  | 
|---|
|  | 128 | } | 
|---|
|  | 129 | } | 
|---|
|  | 130 |  | 
|---|
|  | 131 |  | 
|---|
| [1218] | 132 | /*! \fn void  SOPHYA::LambdaLMBuilder::updateArrayRecurrence(int_4 lmax) | 
|---|
|  | 133 |  | 
|---|
|  | 134 | compute a static array of coefficients independant from theta (common to all instances of the LambdaBuilder Class | 
|---|
|  | 135 | */ | 
|---|
| [729] | 136 | void  LambdaLMBuilder::updateArrayRecurrence(int_4 lmax) | 
|---|
|  | 137 | { | 
|---|
| [1756] | 138 | a_recurrence_.ReSizeRow(lmax+1); | 
|---|
| [729] | 139 | for (int m=0; m<=lmax;m++) | 
|---|
|  | 140 | { | 
|---|
| [1756] | 141 | a_recurrence_(m,m) = sqrt( 2.*m +3.); | 
|---|
| [729] | 142 | for (int l=m+1; l<=lmax; l++) | 
|---|
|  | 143 | { | 
|---|
|  | 144 | r_8 fl2 = (l+1.)*(l+1.); | 
|---|
| [1756] | 145 | a_recurrence_(l,m)=sqrt( (4.*fl2-1.)/(fl2-m*m) ); | 
|---|
| [729] | 146 | } | 
|---|
|  | 147 | } | 
|---|
|  | 148 | } | 
|---|
|  | 149 |  | 
|---|
| [1218] | 150 | /*! \fn void  SOPHYA::LambdaLMBuilder::updateArrayLamNorm() | 
|---|
| [729] | 151 |  | 
|---|
| [1218] | 152 | compute  static arrays of coefficients independant from theta (common to all instances of the derived  classes | 
|---|
|  | 153 | */ | 
|---|
| [729] | 154 | void  LambdaLMBuilder::updateArrayLamNorm() | 
|---|
|  | 155 | { | 
|---|
| [1756] | 156 | lam_fact_.ReSizeRow(lmax_+1); | 
|---|
| [729] | 157 | for(int m = 0;m<= lmax_; m++) | 
|---|
|  | 158 | { | 
|---|
|  | 159 | for (int l=m; l<=lmax_; l++) | 
|---|
|  | 160 | { | 
|---|
| [1756] | 161 | lam_fact_(l,m) =2.*(r_8)sqrt( (2.*l+1)*(l+m)*(l-m)/(2.*l-1)  ); | 
|---|
| [729] | 162 | } | 
|---|
|  | 163 | } | 
|---|
|  | 164 | (*normal_l_).ReSize(lmax_+1); | 
|---|
|  | 165 | (*normal_l_)(0)=0.; | 
|---|
|  | 166 | (*normal_l_)(1)=0.; | 
|---|
|  | 167 | for (int l=2; l< (*normal_l_).NElts(); l++) | 
|---|
|  | 168 | { | 
|---|
|  | 169 | (*normal_l_)(l) =(r_8)sqrt( 2./( (l+2)*(l+1)*l*(l-1) ) ); | 
|---|
|  | 170 | } | 
|---|
|  | 171 | } | 
|---|
|  | 172 |  | 
|---|
|  | 173 |  | 
|---|
| [1218] | 174 | /*! \class SOPHYA::LambdaWXBuilder | 
|---|
| [729] | 175 |  | 
|---|
| [1218] | 176 | This class generates the coefficients : | 
|---|
|  | 177 | \f[ | 
|---|
|  | 178 | _{w}\lambda_l^m=-2\sqrt{\frac{2(l-2)!}{(l+2)!}\frac{(2l+1)}{4\pi}\frac{(l-m)!}{(l+m)!}} G^+_{lm} | 
|---|
|  | 179 | \f] | 
|---|
|  | 180 | \f[ | 
|---|
|  | 181 | _{x}\lambda_l^m=-2\sqrt{\frac{2(l-2)!}{(l+2)!}\frac{(2l+1)}{4\pi}\frac{(l-m)!}{(l+m)!}}G^-_{lm} | 
|---|
|  | 182 | \f] | 
|---|
|  | 183 | where | 
|---|
|  | 184 | \f[G^+_{lm}(\cos{\theta})=-\left( \frac{l-m^2}{\sin^2{\theta}}+\frac{1}{2}l\left(l-1\right)\right)P_l^m(\cos{\theta})+\left(l+m\right)\frac{\cos{\theta}}{\sin^2{\theta}}P^m_{l-1}(\cos{\theta}) | 
|---|
|  | 185 | \f] | 
|---|
|  | 186 | and | 
|---|
|  | 187 | \f[G^-_{lm}(\cos{\theta})=\frac{m}{\sin^2{\theta}}\left(\left(l-1\right)\cos{\theta}P^m_l(\cos{\theta})-\left(l+m\right)P^m_{l-1}(\cos{\theta})\right) | 
|---|
|  | 188 | \f] | 
|---|
|  | 189 | \f$P_l^m\f$ are the associated Legendre polynomials. | 
|---|
| [729] | 190 |  | 
|---|
| [1218] | 191 | The coefficients express the theta-dependance of the \f$W_{lm}(\cos{\theta})\f$ and \f$X_{lm}(\cos{\theta})\f$ functions : | 
|---|
|  | 192 | \f[W_{lm}(\cos{\theta}) = \sqrt{\frac{(l+2)!}{2(l-2)!}}_w\lambda_l^m(\cos{\theta})e^{im\phi} | 
|---|
|  | 193 | \f] | 
|---|
|  | 194 | \f[X_{lm}(\cos{\theta}) = -i\sqrt{\frac{(l+2)!}{2(l-2)!}}_x\lambda_l^m(\cos{\theta})e^{im\phi} | 
|---|
|  | 195 | \f] | 
|---|
|  | 196 | where \f$W_{lm}(\cos{\theta})\f$ and \f$X_{lm}(\cos{\theta})\f$ are defined as : | 
|---|
|  | 197 |  | 
|---|
|  | 198 | \f[ | 
|---|
|  | 199 | W_{lm}(\cos{\theta})=-\frac{1}{2}\sqrt{\frac{(l+2)!}{(l-2)!}}\left( | 
|---|
|  | 200 | _{+2}Y_l^m(\cos{\theta})+_{-2}Y_l^m(\cos{\theta})\right) | 
|---|
|  | 201 | \f] | 
|---|
|  | 202 | \f[X_{lm}(\cos{\theta})=-\frac{i}{2}\sqrt{\frac{(l+2)!}{(l-2)!}}\left( | 
|---|
|  | 203 | _{+2}Y_l^m(\cos{\theta})-_{-2}Y_l^m(\cos{\theta})\right) | 
|---|
|  | 204 | \f] | 
|---|
|  | 205 |  | 
|---|
|  | 206 | */ | 
|---|
|  | 207 |  | 
|---|
|  | 208 |  | 
|---|
| [729] | 209 | LambdaWXBuilder::LambdaWXBuilder(r_8 theta, int_4 lmax, int_4 mmax) : LambdaLMBuilder(theta, lmax, mmax) | 
|---|
|  | 210 | { | 
|---|
|  | 211 | array_init(); | 
|---|
|  | 212 | } | 
|---|
|  | 213 |  | 
|---|
|  | 214 |  | 
|---|
|  | 215 | void LambdaWXBuilder::array_init() | 
|---|
|  | 216 | { | 
|---|
| [1756] | 217 | if (lam_fact_.Size() < 1 || normal_l_ == NULL) | 
|---|
| [729] | 218 | { | 
|---|
| [1756] | 219 | //      lam_fact_ = new  TriangularMatrix<r_8>; | 
|---|
| [729] | 220 | normal_l_ = new TVector<r_8>; | 
|---|
|  | 221 | updateArrayLamNorm(); | 
|---|
|  | 222 | } | 
|---|
|  | 223 | else | 
|---|
| [1756] | 224 | if ( lmax_ > lam_fact_.rowNumber()-1  || lmax_ >  (*normal_l_).NElts()-1 ) | 
|---|
| [729] | 225 | { | 
|---|
|  | 226 | updateArrayLamNorm(); | 
|---|
|  | 227 | } | 
|---|
|  | 228 |  | 
|---|
|  | 229 | r_8 one_on_s2  = 1. / (sth_*sth_) ;    // 1/sin^2 | 
|---|
|  | 230 | r_8 c_on_s2    = cth_*one_on_s2; | 
|---|
|  | 231 | lamWlm_.ReSizeRow(lmax_+1); | 
|---|
|  | 232 | lamXlm_.ReSizeRow(lmax_+1); | 
|---|
|  | 233 |  | 
|---|
|  | 234 | // calcul des lambda | 
|---|
|  | 235 | for(int m = 0;m<= mmax_; m++) | 
|---|
|  | 236 | { | 
|---|
|  | 237 | for (int l=m; l<=lmax_; l++) | 
|---|
|  | 238 | { | 
|---|
|  | 239 | lamWlm_(l,m) =  0.; | 
|---|
|  | 240 | lamXlm_(l,m) =  0.; | 
|---|
|  | 241 | } | 
|---|
|  | 242 | } | 
|---|
|  | 243 | for(int l = 2;l<= lmax_; l++) | 
|---|
|  | 244 | { | 
|---|
|  | 245 | r_8 normal_l =  (*normal_l_)(l); | 
|---|
|  | 246 | for (int m=0; m<=l; m++) | 
|---|
|  | 247 | { | 
|---|
|  | 248 | r_8 lam_lm1m = LambdaLMBuilder::lamlm(l-1,m); | 
|---|
|  | 249 | r_8 lam_lm = LambdaLMBuilder::lamlm(l,m); | 
|---|
| [1756] | 250 | r_8 lam_fact_l_m = lam_fact_(l,m); | 
|---|
| [729] | 251 | r_8  a_w =  2. * (l - m*m) * one_on_s2 + l*(l-1.); | 
|---|
|  | 252 | r_8  b_w =  c_on_s2 * lam_fact_l_m; | 
|---|
|  | 253 | r_8  a_x =  2. * cth_ * (l-1.); | 
|---|
|  | 254 | lamWlm_(l,m) =   normal_l * ( a_w * lam_lm - b_w * lam_lm1m ); | 
|---|
|  | 255 | lamXlm_(l,m) = - normal_l * m* one_on_s2* ( a_x * lam_lm - lam_fact_l_m * lam_lm1m ); | 
|---|
|  | 256 | } | 
|---|
|  | 257 | } | 
|---|
|  | 258 |  | 
|---|
|  | 259 | } | 
|---|
|  | 260 |  | 
|---|
| [1218] | 261 | /*!   \class SOPHYA::LambdaPMBuilder | 
|---|
| [729] | 262 |  | 
|---|
| [1218] | 263 | This class generates the coefficients | 
|---|
|  | 264 | \f[ | 
|---|
|  | 265 | _{\pm}\lambda_l^m=2\sqrt{\frac{(l-2)!}{(l+2)!}\frac{(2l+1)}{4\pi}\frac{(l-m)!}{(l+m)!}}\left( G^+_{lm} \mp G^-_{lm}\right) | 
|---|
|  | 266 | \f] | 
|---|
|  | 267 | where | 
|---|
|  | 268 | \f[G^+_{lm}(\cos{\theta})=-\left( \frac{l-m^2}{\sin^2{\theta}}+\frac{1}{2}l\left(l-1\right)\right)P_l^m(\cos{\theta})+\left(l+m\right)\frac{\cos{\theta}}{\sin^2{\theta}}P^m_{l-1}(\cos{\theta}) | 
|---|
|  | 269 | \f] | 
|---|
|  | 270 | and | 
|---|
|  | 271 | \f[G^-_{lm}(\cos{\theta})=\frac{m}{\sin^2{\theta}}\left(\left(l-1\right)\cos{\theta}P^m_l(\cos{\theta})-\left(l+m\right)P^m_{l-1}(\cos{\theta})\right) | 
|---|
|  | 272 | \f] | 
|---|
|  | 273 | and \f$P_l^m\f$ are the associated Legendre polynomials. | 
|---|
|  | 274 | The coefficients express the theta-dependance of the  spin-2 spherical harmonics : | 
|---|
|  | 275 | \f[_{\pm2}Y_l^m(\cos{\theta})=_\pm\lambda_l^m(\cos{\theta})e^{im\phi} | 
|---|
|  | 276 | \f] | 
|---|
|  | 277 | */ | 
|---|
|  | 278 |  | 
|---|
| [729] | 279 | LambdaPMBuilder::LambdaPMBuilder(r_8 theta, int_4 lmax, int_4 mmax) : LambdaLMBuilder(theta, lmax, mmax) | 
|---|
|  | 280 | { | 
|---|
|  | 281 | array_init(); | 
|---|
|  | 282 | } | 
|---|
|  | 283 |  | 
|---|
|  | 284 |  | 
|---|
|  | 285 | void LambdaPMBuilder::array_init() | 
|---|
|  | 286 | { | 
|---|
| [1756] | 287 | if (lam_fact_.Size() < 1 || normal_l_ == NULL) | 
|---|
| [729] | 288 | { | 
|---|
| [1756] | 289 | //      lam_fact_ = new  TriangularMatrix<r_8>; | 
|---|
| [729] | 290 | normal_l_ = new TVector<r_8>; | 
|---|
|  | 291 | updateArrayLamNorm(); | 
|---|
|  | 292 | } | 
|---|
|  | 293 | else | 
|---|
| [1756] | 294 | if ( lmax_ > lam_fact_.rowNumber()-1  || lmax_ >  (*normal_l_).NElts()-1 ) | 
|---|
| [729] | 295 | { | 
|---|
|  | 296 | updateArrayLamNorm(); | 
|---|
|  | 297 | } | 
|---|
|  | 298 |  | 
|---|
|  | 299 | r_8 one_on_s2 = 1. / (sth_*sth_) ; | 
|---|
|  | 300 | r_8 c_on_s2 = cth_*one_on_s2; | 
|---|
|  | 301 | lamPlm_.ReSizeRow(lmax_+1); | 
|---|
|  | 302 | lamMlm_.ReSizeRow(lmax_+1); | 
|---|
|  | 303 |  | 
|---|
|  | 304 | // calcul des lambda | 
|---|
|  | 305 | for(int m = 0;m<= mmax_; m++) | 
|---|
|  | 306 | { | 
|---|
|  | 307 | for (int l=m; l<=lmax_; l++) | 
|---|
|  | 308 | { | 
|---|
|  | 309 | lamPlm_(l,m) =  0.; | 
|---|
|  | 310 | lamMlm_(l,m) =  0.; | 
|---|
|  | 311 | } | 
|---|
|  | 312 | } | 
|---|
|  | 313 |  | 
|---|
|  | 314 | for(int l = 2;l<= lmax_; l++) | 
|---|
|  | 315 | { | 
|---|
|  | 316 | r_8 normal_l =  (*normal_l_)(l); | 
|---|
|  | 317 | for (int m=0; m<=l; m++) | 
|---|
|  | 318 | { | 
|---|
|  | 319 | r_8 lam_lm1m = LambdaLMBuilder::lamlm(l-1,m); | 
|---|
|  | 320 | r_8 lam_lm = LambdaLMBuilder::lamlm(l,m); | 
|---|
| [1756] | 321 | r_8 lam_fact_l_m = lam_fact_(l,m); | 
|---|
| [729] | 322 | r_8  a_w =  2. * (l - m*m) * one_on_s2 + l*(l-1.); | 
|---|
|  | 323 | r_8 f_w =  lam_fact_l_m/(sth_*sth_); | 
|---|
|  | 324 | r_8  c_w =  2*m*(l-1.) * c_on_s2; | 
|---|
|  | 325 |  | 
|---|
|  | 326 | lamPlm_(l,m)  = normal_l * ( -(a_w+c_w) * lam_lm + f_w*( cth_ + m) * lam_lm1m )/Rac2; | 
|---|
|  | 327 | lamMlm_(l,m) = normal_l * ( -(a_w-c_w) * lam_lm + f_w*( cth_ - m) * lam_lm1m )/Rac2; | 
|---|
|  | 328 | } | 
|---|
|  | 329 | } | 
|---|
|  | 330 |  | 
|---|
|  | 331 | } | 
|---|
|  | 332 |  | 
|---|
|  | 333 |  | 
|---|