[729] | 1 | #include "lambdaBuilder.h"
|
---|
| 2 | #include "nbconst.h"
|
---|
| 3 |
|
---|
| 4 |
|
---|
| 5 | Legendre::Legendre(r_8 x, int_4 lmax)
|
---|
| 6 | {
|
---|
| 7 | if (abs(x) >1 )
|
---|
| 8 | {
|
---|
| 9 | throw RangeCheckError("variable for Legendre polynomials must have modules inferior to 1" );
|
---|
| 10 | }
|
---|
| 11 | x_ = x;
|
---|
| 12 | array_init(lmax);
|
---|
| 13 | }
|
---|
| 14 | void Legendre::array_init(int_4 lmax)
|
---|
| 15 | {
|
---|
| 16 | lmax_ = lmax;
|
---|
| 17 | Pl_.ReSize(lmax_+1);
|
---|
| 18 | Pl_(0)=1.;
|
---|
| 19 | Pl_(1)=x_;
|
---|
| 20 | for (int k=2; k<Pl_.NElts(); k++)
|
---|
| 21 | {
|
---|
| 22 | Pl_(k) = ( (2.*k-1)*x_*Pl_(k-1)-(k-1)*Pl_(k-2) )/k;
|
---|
| 23 | }
|
---|
| 24 | }
|
---|
| 25 |
|
---|
| 26 | TriangularMatrix<r_8>* LambdaLMBuilder::a_recurrence_ = NULL;
|
---|
| 27 | TriangularMatrix<r_8>* LambdaLMBuilder::lam_fact_ = NULL;
|
---|
| 28 | TVector<r_8>* LambdaLMBuilder::normal_l_ = NULL;
|
---|
| 29 |
|
---|
| 30 | LambdaLMBuilder::LambdaLMBuilder(r_8 theta,int_4 lmax, int_4 mmax)
|
---|
| 31 | {
|
---|
| 32 | cth_=cos(theta);
|
---|
| 33 | sth_=sin(theta);
|
---|
| 34 | array_init(lmax, mmax);
|
---|
| 35 | }
|
---|
| 36 | void LambdaLMBuilder::array_init(int lmax, int mmax)
|
---|
| 37 | {
|
---|
| 38 | if (a_recurrence_ == NULL)
|
---|
| 39 | {
|
---|
| 40 | a_recurrence_ = new TriangularMatrix<r_8>;
|
---|
| 41 | updateArrayRecurrence(lmax);
|
---|
| 42 | }
|
---|
| 43 | else
|
---|
| 44 | if ( lmax > (*a_recurrence_).rowNumber()-1 )
|
---|
| 45 | {
|
---|
| 46 | cout << " WARNING : The classes LambdaXXBuilder will be more efficient if instanciated with parameter lmax = maximum value of l index which will be needed in the whole application (arrays not recomputed) " << endl;
|
---|
| 47 | cout << "lmax= " << lmax << " previous instanciation with lmax= " << (*a_recurrence_).rowNumber() << endl;
|
---|
| 48 | updateArrayRecurrence(lmax);
|
---|
| 49 | }
|
---|
| 50 | lmax_=lmax;
|
---|
| 51 | mmax_=mmax;
|
---|
| 52 | r_8 bignorm2 = 1.e268; // = 1e-20*1.d288
|
---|
| 53 |
|
---|
| 54 | lambda_.ReSizeRow(lmax_+1);
|
---|
| 55 |
|
---|
| 56 | r_8 lam_mm = 1. / sqrt(4.*Pi) *bignorm2;
|
---|
| 57 |
|
---|
| 58 | for (int m=0; m<=mmax_;m++)
|
---|
| 59 | {
|
---|
| 60 |
|
---|
| 61 |
|
---|
| 62 | lambda_(m,m)= lam_mm / bignorm2;
|
---|
| 63 |
|
---|
| 64 | r_8 lam_0=0.;
|
---|
| 65 | r_8 lam_1=1. /bignorm2 ;
|
---|
| 66 | // r_8 a_rec = LWK->a_recurr(m,m);
|
---|
| 67 | r_8 a_rec = (*a_recurrence_)(m,m);
|
---|
| 68 | r_8 b_rec = 0.;
|
---|
| 69 | for (int l=m+1; l<=lmax_; l++)
|
---|
| 70 | {
|
---|
| 71 | r_8 lam_2 = (cth_*lam_1-b_rec*lam_0)*a_rec;
|
---|
| 72 | lambda_(l,m) = lam_2*lam_mm;
|
---|
| 73 | b_rec=1./a_rec;
|
---|
| 74 | // a_rec= LWK->a_recurr(l,m);
|
---|
| 75 | a_rec= (*a_recurrence_)(l,m);
|
---|
| 76 | lam_0 = lam_1;
|
---|
| 77 | lam_1 = lam_2;
|
---|
| 78 | }
|
---|
| 79 |
|
---|
| 80 | lam_mm = -lam_mm*sth_* sqrt( (2.*m+3.)/ (2.*m+2.) );
|
---|
| 81 |
|
---|
| 82 | }
|
---|
| 83 | }
|
---|
| 84 |
|
---|
| 85 |
|
---|
| 86 | void LambdaLMBuilder::updateArrayRecurrence(int_4 lmax)
|
---|
| 87 | {
|
---|
| 88 | (*a_recurrence_).ReSizeRow(lmax+1);
|
---|
| 89 | for (int m=0; m<=lmax;m++)
|
---|
| 90 | {
|
---|
| 91 | (*a_recurrence_)(m,m) = sqrt( 2.*m +3.);
|
---|
| 92 | for (int l=m+1; l<=lmax; l++)
|
---|
| 93 | {
|
---|
| 94 | r_8 fl2 = (l+1.)*(l+1.);
|
---|
| 95 | (*a_recurrence_)(l,m)=sqrt( (4.*fl2-1.)/(fl2-m*m) );
|
---|
| 96 | }
|
---|
| 97 | }
|
---|
| 98 | }
|
---|
| 99 |
|
---|
| 100 |
|
---|
| 101 | void LambdaLMBuilder::updateArrayLamNorm()
|
---|
| 102 | {
|
---|
| 103 | (*lam_fact_).ReSizeRow(lmax_+1);
|
---|
| 104 | for(int m = 0;m<= lmax_; m++)
|
---|
| 105 | {
|
---|
| 106 | for (int l=m; l<=lmax_; l++)
|
---|
| 107 | {
|
---|
| 108 | (*lam_fact_)(l,m) =2.*(r_8)sqrt( (2.*l+1)*(l+m)*(l-m)/(2.*l-1) );
|
---|
| 109 | }
|
---|
| 110 | }
|
---|
| 111 | (*normal_l_).ReSize(lmax_+1);
|
---|
| 112 | (*normal_l_)(0)=0.;
|
---|
| 113 | (*normal_l_)(1)=0.;
|
---|
| 114 | for (int l=2; l< (*normal_l_).NElts(); l++)
|
---|
| 115 | {
|
---|
| 116 | (*normal_l_)(l) =(r_8)sqrt( 2./( (l+2)*(l+1)*l*(l-1) ) );
|
---|
| 117 | }
|
---|
| 118 | }
|
---|
| 119 |
|
---|
| 120 |
|
---|
| 121 |
|
---|
| 122 |
|
---|
| 123 | LambdaWXBuilder::LambdaWXBuilder(r_8 theta, int_4 lmax, int_4 mmax) : LambdaLMBuilder(theta, lmax, mmax)
|
---|
| 124 | {
|
---|
| 125 | array_init();
|
---|
| 126 | }
|
---|
| 127 |
|
---|
| 128 |
|
---|
| 129 | void LambdaWXBuilder::array_init()
|
---|
| 130 | {
|
---|
| 131 | if (lam_fact_ == NULL || normal_l_ == NULL)
|
---|
| 132 | {
|
---|
| 133 | lam_fact_ = new TriangularMatrix<r_8>;
|
---|
| 134 | normal_l_ = new TVector<r_8>;
|
---|
| 135 | updateArrayLamNorm();
|
---|
| 136 | }
|
---|
| 137 | else
|
---|
| 138 | if ( lmax_ > (*lam_fact_).rowNumber()-1 || lmax_ > (*normal_l_).NElts()-1 )
|
---|
| 139 | {
|
---|
| 140 | updateArrayLamNorm();
|
---|
| 141 | }
|
---|
| 142 |
|
---|
| 143 | r_8 one_on_s2 = 1. / (sth_*sth_) ; // 1/sin^2
|
---|
| 144 | r_8 c_on_s2 = cth_*one_on_s2;
|
---|
| 145 | lamWlm_.ReSizeRow(lmax_+1);
|
---|
| 146 | lamXlm_.ReSizeRow(lmax_+1);
|
---|
| 147 |
|
---|
| 148 | // calcul des lambda
|
---|
| 149 | for(int m = 0;m<= mmax_; m++)
|
---|
| 150 | {
|
---|
| 151 | for (int l=m; l<=lmax_; l++)
|
---|
| 152 | {
|
---|
| 153 | lamWlm_(l,m) = 0.;
|
---|
| 154 | lamXlm_(l,m) = 0.;
|
---|
| 155 | }
|
---|
| 156 | }
|
---|
| 157 | for(int l = 2;l<= lmax_; l++)
|
---|
| 158 | {
|
---|
| 159 | r_8 normal_l = (*normal_l_)(l);
|
---|
| 160 | for (int m=0; m<=l; m++)
|
---|
| 161 | {
|
---|
| 162 | r_8 lam_lm1m = LambdaLMBuilder::lamlm(l-1,m);
|
---|
| 163 | r_8 lam_lm = LambdaLMBuilder::lamlm(l,m);
|
---|
| 164 | r_8 lam_fact_l_m = (*lam_fact_)(l,m);
|
---|
| 165 | r_8 a_w = 2. * (l - m*m) * one_on_s2 + l*(l-1.);
|
---|
| 166 | r_8 b_w = c_on_s2 * lam_fact_l_m;
|
---|
| 167 | r_8 a_x = 2. * cth_ * (l-1.);
|
---|
| 168 | lamWlm_(l,m) = normal_l * ( a_w * lam_lm - b_w * lam_lm1m );
|
---|
| 169 | lamXlm_(l,m) = - normal_l * m* one_on_s2* ( a_x * lam_lm - lam_fact_l_m * lam_lm1m );
|
---|
| 170 | }
|
---|
| 171 | }
|
---|
| 172 |
|
---|
| 173 | }
|
---|
| 174 |
|
---|
| 175 |
|
---|
| 176 | LambdaPMBuilder::LambdaPMBuilder(r_8 theta, int_4 lmax, int_4 mmax) : LambdaLMBuilder(theta, lmax, mmax)
|
---|
| 177 | {
|
---|
| 178 | array_init();
|
---|
| 179 | }
|
---|
| 180 |
|
---|
| 181 |
|
---|
| 182 | void LambdaPMBuilder::array_init()
|
---|
| 183 | {
|
---|
| 184 | if (lam_fact_ == NULL || normal_l_ == NULL)
|
---|
| 185 | {
|
---|
| 186 | lam_fact_ = new TriangularMatrix<r_8>;
|
---|
| 187 | normal_l_ = new TVector<r_8>;
|
---|
| 188 | updateArrayLamNorm();
|
---|
| 189 | }
|
---|
| 190 | else
|
---|
| 191 | if ( lmax_ > (*lam_fact_).rowNumber()-1 || lmax_ > (*normal_l_).NElts()-1 )
|
---|
| 192 | {
|
---|
| 193 | updateArrayLamNorm();
|
---|
| 194 | }
|
---|
| 195 |
|
---|
| 196 | r_8 one_on_s2 = 1. / (sth_*sth_) ;
|
---|
| 197 | r_8 c_on_s2 = cth_*one_on_s2;
|
---|
| 198 | lamPlm_.ReSizeRow(lmax_+1);
|
---|
| 199 | lamMlm_.ReSizeRow(lmax_+1);
|
---|
| 200 |
|
---|
| 201 | // calcul des lambda
|
---|
| 202 | for(int m = 0;m<= mmax_; m++)
|
---|
| 203 | {
|
---|
| 204 | for (int l=m; l<=lmax_; l++)
|
---|
| 205 | {
|
---|
| 206 | lamPlm_(l,m) = 0.;
|
---|
| 207 | lamMlm_(l,m) = 0.;
|
---|
| 208 | }
|
---|
| 209 | }
|
---|
| 210 |
|
---|
| 211 | for(int l = 2;l<= lmax_; l++)
|
---|
| 212 | {
|
---|
| 213 | r_8 normal_l = (*normal_l_)(l);
|
---|
| 214 | for (int m=0; m<=l; m++)
|
---|
| 215 | {
|
---|
| 216 | r_8 lam_lm1m = LambdaLMBuilder::lamlm(l-1,m);
|
---|
| 217 | r_8 lam_lm = LambdaLMBuilder::lamlm(l,m);
|
---|
| 218 | r_8 lam_fact_l_m = (*lam_fact_)(l,m);
|
---|
| 219 | r_8 a_w = 2. * (l - m*m) * one_on_s2 + l*(l-1.);
|
---|
| 220 | r_8 f_w = lam_fact_l_m/(sth_*sth_);
|
---|
| 221 | r_8 c_w = 2*m*(l-1.) * c_on_s2;
|
---|
| 222 |
|
---|
| 223 | lamPlm_(l,m) = normal_l * ( -(a_w+c_w) * lam_lm + f_w*( cth_ + m) * lam_lm1m )/Rac2;
|
---|
| 224 | lamMlm_(l,m) = normal_l * ( -(a_w-c_w) * lam_lm + f_w*( cth_ - m) * lam_lm1m )/Rac2;
|
---|
| 225 | }
|
---|
| 226 | }
|
---|
| 227 |
|
---|
| 228 | }
|
---|
| 229 |
|
---|
| 230 |
|
---|