1 | #include "lambdaBuilder.h"
|
---|
2 | #include "nbconst.h"
|
---|
3 |
|
---|
4 |
|
---|
5 | /*!
|
---|
6 | \class SOPHYA::Legendre
|
---|
7 | generate Legendre polynomials : use in two steps :
|
---|
8 |
|
---|
9 | a) instanciate Legendre(\f$x\f$, \f$lmax\f$) ; \f$x\f$ is the value for wich Legendre polynomials will be required (usually equal to \f$\cos \theta\f$) and \f$lmax\f$ is the MAXIMUM value of the order of polynomials wich will be required in the following code (all polynomials, from \f$l=0 to lmax\f$, are computed once for all by an iterative formula).
|
---|
10 |
|
---|
11 | b) get the value of Legendre polynomial for a particular value of \f$l\f$ by calling the method getPl.
|
---|
12 |
|
---|
13 | */
|
---|
14 |
|
---|
15 |
|
---|
16 | Legendre::Legendre(r_8 x, int_4 lmax)
|
---|
17 | {
|
---|
18 | if (fabs(x) > 1. )
|
---|
19 | {
|
---|
20 | throw RangeCheckError("variable for Legendre polynomials must have modules inferior to 1" );
|
---|
21 | }
|
---|
22 | x_ = x;
|
---|
23 | array_init(lmax);
|
---|
24 | }
|
---|
25 |
|
---|
26 | /*! \fn void SOPHYA::Legendre::array_init(int_4 lmax)
|
---|
27 |
|
---|
28 | compute all \f$P_l(x,l_{max})\f$ for \f$l=1,l_{max}\f$
|
---|
29 | */
|
---|
30 | void Legendre::array_init(int_4 lmax)
|
---|
31 | {
|
---|
32 | lmax_ = lmax;
|
---|
33 | Pl_.ReSize(lmax_+1);
|
---|
34 | Pl_(0)=1.;
|
---|
35 | Pl_(1)=x_;
|
---|
36 | for (int k=2; k<Pl_.NElts(); k++)
|
---|
37 | {
|
---|
38 | Pl_(k) = ( (2.*k-1)*x_*Pl_(k-1)-(k-1)*Pl_(k-2) )/k;
|
---|
39 | }
|
---|
40 | }
|
---|
41 |
|
---|
42 | TriangularMatrix<r_8> LambdaLMBuilder::a_recurrence_ = TriangularMatrix<r_8>();
|
---|
43 | TriangularMatrix<r_8> LambdaLMBuilder::lam_fact_ = TriangularMatrix<r_8>();
|
---|
44 | TVector<r_8>* LambdaLMBuilder::normal_l_ = NULL;
|
---|
45 |
|
---|
46 |
|
---|
47 |
|
---|
48 | /*! \class SOPHYA::LambdaLMBuilder
|
---|
49 |
|
---|
50 |
|
---|
51 | This class generate the coefficients :
|
---|
52 | \f[
|
---|
53 | \lambda_l^m=\sqrt{\frac{2l+1}{4\pi}\frac{(l-m)!}{(l+m)!}}
|
---|
54 | P_l^m(\cos{\theta})
|
---|
55 | \f]
|
---|
56 | where \f$P_l^m\f$ are the associated Legendre polynomials. The above coefficients contain the theta-dependance of spheric harmonics :
|
---|
57 | \f[
|
---|
58 | Y_{lm}(\cos{\theta})=\lambda_l^m(\cos{\theta}) e^{im\phi}.
|
---|
59 | \f]
|
---|
60 |
|
---|
61 | Each object has a fixed theta (radians), and maximum l and m to be calculated
|
---|
62 | (lmax and mmax).
|
---|
63 | use the class in two steps :
|
---|
64 | a) instanciate LambdaLMBuilder(\f$\theta\f$, \f$lmax\f$, \f$mmax\f$) ; \f$lmax\f$ and \f$mmax\f$ are MAXIMUM values for which \f$\lambda_l^m\f$ will be required in the following code (all coefficients, from \f$l=0 to lmax\f$, are computed once for all by an iterative formula).
|
---|
65 | b) get the values of coefficients for particular values of \f$l\f$ and \f$m\f$ by calling the method lamlm.
|
---|
66 | */
|
---|
67 |
|
---|
68 |
|
---|
69 | LambdaLMBuilder::LambdaLMBuilder(r_8 theta,int_4 lmax, int_4 mmax)
|
---|
70 | {
|
---|
71 | cth_=cos(theta);
|
---|
72 | sth_=sin(theta);
|
---|
73 | array_init(lmax, mmax);
|
---|
74 | }
|
---|
75 | LambdaLMBuilder::LambdaLMBuilder(r_8 costet, r_8 sintet,int_4 lmax, int_4 mmax)
|
---|
76 | {
|
---|
77 | cth_=costet;
|
---|
78 | sth_=sintet;
|
---|
79 | array_init(lmax, mmax);
|
---|
80 | }
|
---|
81 | void LambdaLMBuilder::array_init(int lmax, int mmax)
|
---|
82 | {
|
---|
83 | if (a_recurrence_.Size() == 0)
|
---|
84 | {
|
---|
85 | // a_recurrence_ = new TriangularMatrix<r_8>;
|
---|
86 | updateArrayRecurrence(lmax);
|
---|
87 | }
|
---|
88 | else
|
---|
89 | if ( lmax > (a_recurrence_).rowNumber()-1 )
|
---|
90 | {
|
---|
91 | cout << " WARNING : The classes LambdaXXBuilder will be more efficient if instanciated with parameter lmax = maximum value of l index which will be needed in the whole application (arrays not recomputed) " << endl;
|
---|
92 | cout << "lmax= " << lmax << " previous instanciation with lmax= " << (a_recurrence_).rowNumber() << endl;
|
---|
93 | updateArrayRecurrence(lmax);
|
---|
94 | }
|
---|
95 | lmax_=lmax;
|
---|
96 | mmax_=mmax;
|
---|
97 | r_8 bignorm2 = 1.e268; // = 1e-20*1.d288
|
---|
98 |
|
---|
99 | lambda_.ReSizeRow(lmax_+1);
|
---|
100 |
|
---|
101 | r_8 lam_mm = 1. / sqrt(4.*Pi) *bignorm2;
|
---|
102 |
|
---|
103 | for (int m=0; m<=mmax_;m++)
|
---|
104 | {
|
---|
105 |
|
---|
106 |
|
---|
107 | lambda_(m,m)= lam_mm / bignorm2;
|
---|
108 |
|
---|
109 | r_8 lam_0=0.;
|
---|
110 | r_8 lam_1=1. /bignorm2 ;
|
---|
111 | // r_8 a_rec = LWK->a_recurr(m,m);
|
---|
112 | r_8 a_rec = a_recurrence_(m,m);
|
---|
113 | r_8 b_rec = 0.;
|
---|
114 | for (int l=m+1; l<=lmax_; l++)
|
---|
115 | {
|
---|
116 | r_8 lam_2 = (cth_*lam_1-b_rec*lam_0)*a_rec;
|
---|
117 | lambda_(l,m) = lam_2*lam_mm;
|
---|
118 | b_rec=1./a_rec;
|
---|
119 | // a_rec= LWK->a_recurr(l,m);
|
---|
120 | a_rec= a_recurrence_(l,m);
|
---|
121 | lam_0 = lam_1;
|
---|
122 | lam_1 = lam_2;
|
---|
123 | }
|
---|
124 |
|
---|
125 | lam_mm = -lam_mm*sth_* sqrt( (2.*m+3.)/ (2.*m+2.) );
|
---|
126 |
|
---|
127 | }
|
---|
128 | }
|
---|
129 |
|
---|
130 |
|
---|
131 | /*! \fn void SOPHYA::LambdaLMBuilder::updateArrayRecurrence(int_4 lmax)
|
---|
132 |
|
---|
133 | compute a static array of coefficients independant from theta (common to all instances of the LambdaBuilder Class
|
---|
134 | */
|
---|
135 | void LambdaLMBuilder::updateArrayRecurrence(int_4 lmax)
|
---|
136 | {
|
---|
137 | a_recurrence_.ReSizeRow(lmax+1);
|
---|
138 | for (int m=0; m<=lmax;m++)
|
---|
139 | {
|
---|
140 | a_recurrence_(m,m) = sqrt( 2.*m +3.);
|
---|
141 | for (int l=m+1; l<=lmax; l++)
|
---|
142 | {
|
---|
143 | r_8 fl2 = (l+1.)*(l+1.);
|
---|
144 | a_recurrence_(l,m)=sqrt( (4.*fl2-1.)/(fl2-m*m) );
|
---|
145 | }
|
---|
146 | }
|
---|
147 | }
|
---|
148 |
|
---|
149 | /*! \fn void SOPHYA::LambdaLMBuilder::updateArrayLamNorm()
|
---|
150 |
|
---|
151 | compute static arrays of coefficients independant from theta (common to all instances of the derived classes
|
---|
152 | */
|
---|
153 | void LambdaLMBuilder::updateArrayLamNorm()
|
---|
154 | {
|
---|
155 | lam_fact_.ReSizeRow(lmax_+1);
|
---|
156 | for(int m = 0;m<= lmax_; m++)
|
---|
157 | {
|
---|
158 | for (int l=m; l<=lmax_; l++)
|
---|
159 | {
|
---|
160 | lam_fact_(l,m) =2.*(r_8)sqrt( (2.*l+1)*(l+m)*(l-m)/(2.*l-1) );
|
---|
161 | }
|
---|
162 | }
|
---|
163 | (*normal_l_).ReSize(lmax_+1);
|
---|
164 | (*normal_l_)(0)=0.;
|
---|
165 | (*normal_l_)(1)=0.;
|
---|
166 | for (int l=2; l< (*normal_l_).NElts(); l++)
|
---|
167 | {
|
---|
168 | (*normal_l_)(l) =(r_8)sqrt( 2./( (l+2)*(l+1)*l*(l-1) ) );
|
---|
169 | }
|
---|
170 | }
|
---|
171 |
|
---|
172 |
|
---|
173 | /*! \class SOPHYA::LambdaWXBuilder
|
---|
174 |
|
---|
175 | This class generates the coefficients :
|
---|
176 | \f[
|
---|
177 | _{w}\lambda_l^m=-2\sqrt{\frac{2(l-2)!}{(l+2)!}\frac{(2l+1)}{4\pi}\frac{(l-m)!}{(l+m)!}} G^+_{lm}
|
---|
178 | \f]
|
---|
179 | \f[
|
---|
180 | _{x}\lambda_l^m=-2\sqrt{\frac{2(l-2)!}{(l+2)!}\frac{(2l+1)}{4\pi}\frac{(l-m)!}{(l+m)!}}G^-_{lm}
|
---|
181 | \f]
|
---|
182 | where
|
---|
183 | \f[G^+_{lm}(\cos{\theta})=-\left( \frac{l-m^2}{\sin^2{\theta}}+\frac{1}{2}l\left(l-1\right)\right)P_l^m(\cos{\theta})+\left(l+m\right)\frac{\cos{\theta}}{\sin^2{\theta}}P^m_{l-1}(\cos{\theta})
|
---|
184 | \f]
|
---|
185 | and
|
---|
186 | \f[G^-_{lm}(\cos{\theta})=\frac{m}{\sin^2{\theta}}\left(\left(l-1\right)\cos{\theta}P^m_l(\cos{\theta})-\left(l+m\right)P^m_{l-1}(\cos{\theta})\right)
|
---|
187 | \f]
|
---|
188 | \f$P_l^m\f$ are the associated Legendre polynomials.
|
---|
189 |
|
---|
190 | The coefficients express the theta-dependance of the \f$W_{lm}(\cos{\theta})\f$ and \f$X_{lm}(\cos{\theta})\f$ functions :
|
---|
191 | \f[W_{lm}(\cos{\theta}) = \sqrt{\frac{(l+2)!}{2(l-2)!}}_w\lambda_l^m(\cos{\theta})e^{im\phi}
|
---|
192 | \f]
|
---|
193 | \f[X_{lm}(\cos{\theta}) = -i\sqrt{\frac{(l+2)!}{2(l-2)!}}_x\lambda_l^m(\cos{\theta})e^{im\phi}
|
---|
194 | \f]
|
---|
195 | where \f$W_{lm}(\cos{\theta})\f$ and \f$X_{lm}(\cos{\theta})\f$ are defined as :
|
---|
196 |
|
---|
197 | \f[
|
---|
198 | W_{lm}(\cos{\theta})=-\frac{1}{2}\sqrt{\frac{(l+2)!}{(l-2)!}}\left(
|
---|
199 | _{+2}Y_l^m(\cos{\theta})+_{-2}Y_l^m(\cos{\theta})\right)
|
---|
200 | \f]
|
---|
201 | \f[X_{lm}(\cos{\theta})=-\frac{i}{2}\sqrt{\frac{(l+2)!}{(l-2)!}}\left(
|
---|
202 | _{+2}Y_l^m(\cos{\theta})-_{-2}Y_l^m(\cos{\theta})\right)
|
---|
203 | \f]
|
---|
204 |
|
---|
205 | */
|
---|
206 |
|
---|
207 |
|
---|
208 | LambdaWXBuilder::LambdaWXBuilder(r_8 theta, int_4 lmax, int_4 mmax) : LambdaLMBuilder(theta, lmax, mmax)
|
---|
209 | {
|
---|
210 | array_init();
|
---|
211 | }
|
---|
212 |
|
---|
213 |
|
---|
214 | void LambdaWXBuilder::array_init()
|
---|
215 | {
|
---|
216 | if (lam_fact_.Size() < 1 || normal_l_ == NULL)
|
---|
217 | {
|
---|
218 | // lam_fact_ = new TriangularMatrix<r_8>;
|
---|
219 | normal_l_ = new TVector<r_8>;
|
---|
220 | updateArrayLamNorm();
|
---|
221 | }
|
---|
222 | else
|
---|
223 | if ( lmax_ > lam_fact_.rowNumber()-1 || lmax_ > (*normal_l_).NElts()-1 )
|
---|
224 | {
|
---|
225 | updateArrayLamNorm();
|
---|
226 | }
|
---|
227 |
|
---|
228 | r_8 one_on_s2 = 1. / (sth_*sth_) ; // 1/sin^2
|
---|
229 | r_8 c_on_s2 = cth_*one_on_s2;
|
---|
230 | lamWlm_.ReSizeRow(lmax_+1);
|
---|
231 | lamXlm_.ReSizeRow(lmax_+1);
|
---|
232 |
|
---|
233 | // calcul des lambda
|
---|
234 | for(int m = 0;m<= mmax_; m++)
|
---|
235 | {
|
---|
236 | for (int l=m; l<=lmax_; l++)
|
---|
237 | {
|
---|
238 | lamWlm_(l,m) = 0.;
|
---|
239 | lamXlm_(l,m) = 0.;
|
---|
240 | }
|
---|
241 | }
|
---|
242 | for(int l = 2;l<= lmax_; l++)
|
---|
243 | {
|
---|
244 | r_8 normal_l = (*normal_l_)(l);
|
---|
245 | for (int m=0; m<=l; m++)
|
---|
246 | {
|
---|
247 | r_8 lam_lm1m = LambdaLMBuilder::lamlm(l-1,m);
|
---|
248 | r_8 lam_lm = LambdaLMBuilder::lamlm(l,m);
|
---|
249 | r_8 lam_fact_l_m = lam_fact_(l,m);
|
---|
250 | r_8 a_w = 2. * (l - m*m) * one_on_s2 + l*(l-1.);
|
---|
251 | r_8 b_w = c_on_s2 * lam_fact_l_m;
|
---|
252 | r_8 a_x = 2. * cth_ * (l-1.);
|
---|
253 | lamWlm_(l,m) = normal_l * ( a_w * lam_lm - b_w * lam_lm1m );
|
---|
254 | lamXlm_(l,m) = - normal_l * m* one_on_s2* ( a_x * lam_lm - lam_fact_l_m * lam_lm1m );
|
---|
255 | }
|
---|
256 | }
|
---|
257 |
|
---|
258 | }
|
---|
259 |
|
---|
260 | /*! \class SOPHYA::LambdaPMBuilder
|
---|
261 |
|
---|
262 | This class generates the coefficients
|
---|
263 | \f[
|
---|
264 | _{\pm}\lambda_l^m=2\sqrt{\frac{(l-2)!}{(l+2)!}\frac{(2l+1)}{4\pi}\frac{(l-m)!}{(l+m)!}}\left( G^+_{lm} \mp G^-_{lm}\right)
|
---|
265 | \f]
|
---|
266 | where
|
---|
267 | \f[G^+_{lm}(\cos{\theta})=-\left( \frac{l-m^2}{\sin^2{\theta}}+\frac{1}{2}l\left(l-1\right)\right)P_l^m(\cos{\theta})+\left(l+m\right)\frac{\cos{\theta}}{\sin^2{\theta}}P^m_{l-1}(\cos{\theta})
|
---|
268 | \f]
|
---|
269 | and
|
---|
270 | \f[G^-_{lm}(\cos{\theta})=\frac{m}{\sin^2{\theta}}\left(\left(l-1\right)\cos{\theta}P^m_l(\cos{\theta})-\left(l+m\right)P^m_{l-1}(\cos{\theta})\right)
|
---|
271 | \f]
|
---|
272 | and \f$P_l^m\f$ are the associated Legendre polynomials.
|
---|
273 | The coefficients express the theta-dependance of the spin-2 spherical harmonics :
|
---|
274 | \f[_{\pm2}Y_l^m(\cos{\theta})=_\pm\lambda_l^m(\cos{\theta})e^{im\phi}
|
---|
275 | \f]
|
---|
276 | */
|
---|
277 |
|
---|
278 | LambdaPMBuilder::LambdaPMBuilder(r_8 theta, int_4 lmax, int_4 mmax) : LambdaLMBuilder(theta, lmax, mmax)
|
---|
279 | {
|
---|
280 | array_init();
|
---|
281 | }
|
---|
282 |
|
---|
283 |
|
---|
284 | void LambdaPMBuilder::array_init()
|
---|
285 | {
|
---|
286 | if (lam_fact_.Size() < 1 || normal_l_ == NULL)
|
---|
287 | {
|
---|
288 | // lam_fact_ = new TriangularMatrix<r_8>;
|
---|
289 | normal_l_ = new TVector<r_8>;
|
---|
290 | updateArrayLamNorm();
|
---|
291 | }
|
---|
292 | else
|
---|
293 | if ( lmax_ > lam_fact_.rowNumber()-1 || lmax_ > (*normal_l_).NElts()-1 )
|
---|
294 | {
|
---|
295 | updateArrayLamNorm();
|
---|
296 | }
|
---|
297 |
|
---|
298 | r_8 one_on_s2 = 1. / (sth_*sth_) ;
|
---|
299 | r_8 c_on_s2 = cth_*one_on_s2;
|
---|
300 | lamPlm_.ReSizeRow(lmax_+1);
|
---|
301 | lamMlm_.ReSizeRow(lmax_+1);
|
---|
302 |
|
---|
303 | // calcul des lambda
|
---|
304 | for(int m = 0;m<= mmax_; m++)
|
---|
305 | {
|
---|
306 | for (int l=m; l<=lmax_; l++)
|
---|
307 | {
|
---|
308 | lamPlm_(l,m) = 0.;
|
---|
309 | lamMlm_(l,m) = 0.;
|
---|
310 | }
|
---|
311 | }
|
---|
312 |
|
---|
313 | for(int l = 2;l<= lmax_; l++)
|
---|
314 | {
|
---|
315 | r_8 normal_l = (*normal_l_)(l);
|
---|
316 | for (int m=0; m<=l; m++)
|
---|
317 | {
|
---|
318 | r_8 lam_lm1m = LambdaLMBuilder::lamlm(l-1,m);
|
---|
319 | r_8 lam_lm = LambdaLMBuilder::lamlm(l,m);
|
---|
320 | r_8 lam_fact_l_m = lam_fact_(l,m);
|
---|
321 | r_8 a_w = 2. * (l - m*m) * one_on_s2 + l*(l-1.);
|
---|
322 | r_8 f_w = lam_fact_l_m/(sth_*sth_);
|
---|
323 | r_8 c_w = 2*m*(l-1.) * c_on_s2;
|
---|
324 |
|
---|
325 | lamPlm_(l,m) = normal_l * ( -(a_w+c_w) * lam_lm + f_w*( cth_ + m) * lam_lm1m )/Rac2;
|
---|
326 | lamMlm_(l,m) = normal_l * ( -(a_w-c_w) * lam_lm + f_w*( cth_ - m) * lam_lm1m )/Rac2;
|
---|
327 | }
|
---|
328 | }
|
---|
329 |
|
---|
330 | }
|
---|
331 |
|
---|
332 |
|
---|