source: Sophya/trunk/SophyaLib/Samba/lambdaBuilder.cc@ 2313

Last change on this file since 2313 was 2277, checked in by plaszczy, 23 years ago

correction a Legendre pour l=0

File size: 9.8 KB
Line 
1#include "lambdaBuilder.h"
2#include "nbconst.h"
3
4
5/*!
6 \class SOPHYA::Legendre
7generate Legendre polynomials : use in two steps :
8
9a) instanciate Legendre(\f$x\f$, \f$lmax\f$) ; \f$x\f$ is the value for wich Legendre polynomials will be required (usually equal to \f$\cos \theta\f$) and \f$lmax\f$ is the MAXIMUM value of the order of polynomials wich will be required in the following code (all polynomials, from \f$l=0 to lmax\f$, are computed once for all by an iterative formula).
10
11b) get the value of Legendre polynomial for a particular value of \f$l\f$ by calling the method getPl.
12
13*/
14
15
16Legendre::Legendre(r_8 x, int_4 lmax)
17{
18 if (fabs(x) > 1. )
19 {
20 throw RangeCheckError("variable for Legendre polynomials must have modules inferior to 1" );
21 }
22 x_ = x;
23 array_init(lmax);
24}
25
26/*! \fn void SOPHYA::Legendre::array_init(int_4 lmax)
27
28compute all \f$P_l(x,l_{max})\f$ for \f$l=1,l_{max}\f$
29*/
30void Legendre::array_init(int_4 lmax)
31{
32 lmax_ = lmax;
33 Pl_.ReSize(lmax_+1);
34 Pl_(0)=1.;
35 if (lmax>0) Pl_(1)=x_;
36 for (int k=2; k<Pl_.NElts(); k++)
37 {
38 Pl_(k) = ( (2.*k-1)*x_*Pl_(k-1)-(k-1)*Pl_(k-2) )/k;
39 }
40}
41
42TriangularMatrix<r_8> LambdaLMBuilder::a_recurrence_ = TriangularMatrix<r_8>();
43TriangularMatrix<r_8> LambdaLMBuilder::lam_fact_ = TriangularMatrix<r_8>();
44TVector<r_8>* LambdaLMBuilder::normal_l_ = NULL;
45
46
47
48/*! \class SOPHYA::LambdaLMBuilder
49
50
51This class generate the coefficients :
52\f[
53 \lambda_l^m=\sqrt{\frac{2l+1}{4\pi}\frac{(l-m)!}{(l+m)!}}
54 P_l^m(\cos{\theta})
55\f]
56where \f$P_l^m\f$ are the associated Legendre polynomials. The above coefficients contain the theta-dependance of spheric harmonics :
57\f[
58 Y_{lm}(\cos{\theta})=\lambda_l^m(\cos{\theta}) e^{im\phi}.
59\f]
60
61Each object has a fixed theta (radians), and maximum l and m to be calculated
62(lmax and mmax).
63 use the class in two steps :
64a) instanciate LambdaLMBuilder(\f$\theta\f$, \f$lmax\f$, \f$mmax\f$) ; \f$lmax\f$ and \f$mmax\f$ are MAXIMUM values for which \f$\lambda_l^m\f$ will be required in the following code (all coefficients, from \f$l=0 to lmax\f$, are computed once for all by an iterative formula).
65b) get the values of coefficients for particular values of \f$l\f$ and \f$m\f$ by calling the method lamlm.
66*/
67
68
69LambdaLMBuilder::LambdaLMBuilder(r_8 theta,int_4 lmax, int_4 mmax)
70 {
71 cth_=cos(theta);
72 sth_=sin(theta);
73 array_init(lmax, mmax);
74 }
75LambdaLMBuilder::LambdaLMBuilder(r_8 costet, r_8 sintet,int_4 lmax, int_4 mmax)
76 {
77 cth_=costet;
78 sth_=sintet;
79 array_init(lmax, mmax);
80 }
81void LambdaLMBuilder::array_init(int lmax, int mmax)
82 {
83 if (a_recurrence_.Size() == 0)
84 {
85 // a_recurrence_ = new TriangularMatrix<r_8>;
86 updateArrayRecurrence(lmax);
87 }
88 else
89 if ( lmax > (a_recurrence_).rowNumber()-1 )
90 {
91 cout << " WARNING : The classes LambdaXXBuilder will be more efficient if instanciated with parameter lmax = maximum value of l index which will be needed in the whole application (arrays not recomputed) " << endl;
92 cout << "lmax= " << lmax << " previous instanciation with lmax= " << (a_recurrence_).rowNumber() << endl;
93 updateArrayRecurrence(lmax);
94 }
95 lmax_=lmax;
96 mmax_=mmax;
97 r_8 bignorm2 = 1.e268; // = 1e-20*1.d288
98
99 lambda_.ReSizeRow(lmax_+1);
100
101 r_8 lam_mm = 1. / sqrt(4.*Pi) *bignorm2;
102
103 for (int m=0; m<=mmax_;m++)
104 {
105
106
107 lambda_(m,m)= lam_mm / bignorm2;
108
109 r_8 lam_0=0.;
110 r_8 lam_1=1. /bignorm2 ;
111 // r_8 a_rec = LWK->a_recurr(m,m);
112 r_8 a_rec = a_recurrence_(m,m);
113 r_8 b_rec = 0.;
114 for (int l=m+1; l<=lmax_; l++)
115 {
116 r_8 lam_2 = (cth_*lam_1-b_rec*lam_0)*a_rec;
117 lambda_(l,m) = lam_2*lam_mm;
118 b_rec=1./a_rec;
119 // a_rec= LWK->a_recurr(l,m);
120 a_rec= a_recurrence_(l,m);
121 lam_0 = lam_1;
122 lam_1 = lam_2;
123 }
124
125 lam_mm = -lam_mm*sth_* sqrt( (2.*m+3.)/ (2.*m+2.) );
126
127 }
128 }
129
130
131/*! \fn void SOPHYA::LambdaLMBuilder::updateArrayRecurrence(int_4 lmax)
132
133 compute a static array of coefficients independant from theta (common to all instances of the LambdaBuilder Class
134*/
135void LambdaLMBuilder::updateArrayRecurrence(int_4 lmax)
136 {
137 a_recurrence_.ReSizeRow(lmax+1);
138 for (int m=0; m<=lmax;m++)
139 {
140 a_recurrence_(m,m) = sqrt( 2.*m +3.);
141 for (int l=m+1; l<=lmax; l++)
142 {
143 r_8 fl2 = (l+1.)*(l+1.);
144 a_recurrence_(l,m)=sqrt( (4.*fl2-1.)/(fl2-m*m) );
145 }
146 }
147 }
148
149/*! \fn void SOPHYA::LambdaLMBuilder::updateArrayLamNorm()
150
151 compute static arrays of coefficients independant from theta (common to all instances of the derived classes
152*/
153void LambdaLMBuilder::updateArrayLamNorm()
154 {
155 lam_fact_.ReSizeRow(lmax_+1);
156 for(int m = 0;m<= lmax_; m++)
157 {
158 for (int l=m; l<=lmax_; l++)
159 {
160 lam_fact_(l,m) =2.*(r_8)sqrt( (2.*l+1)*(l+m)*(l-m)/(2.*l-1) );
161 }
162 }
163 (*normal_l_).ReSize(lmax_+1);
164 (*normal_l_)(0)=0.;
165 (*normal_l_)(1)=0.;
166 for (int l=2; l< (*normal_l_).NElts(); l++)
167 {
168 (*normal_l_)(l) =(r_8)sqrt( 2./( (l+2)*(l+1)*l*(l-1) ) );
169 }
170 }
171
172
173/*! \class SOPHYA::LambdaWXBuilder
174
175This class generates the coefficients :
176\f[
177 _{w}\lambda_l^m=-2\sqrt{\frac{2(l-2)!}{(l+2)!}\frac{(2l+1)}{4\pi}\frac{(l-m)!}{(l+m)!}} G^+_{lm}
178\f]
179\f[
180 _{x}\lambda_l^m=-2\sqrt{\frac{2(l-2)!}{(l+2)!}\frac{(2l+1)}{4\pi}\frac{(l-m)!}{(l+m)!}}G^-_{lm}
181\f]
182where
183\f[G^+_{lm}(\cos{\theta})=-\left( \frac{l-m^2}{\sin^2{\theta}}+\frac{1}{2}l\left(l-1\right)\right)P_l^m(\cos{\theta})+\left(l+m\right)\frac{\cos{\theta}}{\sin^2{\theta}}P^m_{l-1}(\cos{\theta})
184\f]
185and
186\f[G^-_{lm}(\cos{\theta})=\frac{m}{\sin^2{\theta}}\left(\left(l-1\right)\cos{\theta}P^m_l(\cos{\theta})-\left(l+m\right)P^m_{l-1}(\cos{\theta})\right)
187\f]
188 \f$P_l^m\f$ are the associated Legendre polynomials.
189
190The coefficients express the theta-dependance of the \f$W_{lm}(\cos{\theta})\f$ and \f$X_{lm}(\cos{\theta})\f$ functions :
191\f[W_{lm}(\cos{\theta}) = \sqrt{\frac{(l+2)!}{2(l-2)!}}_w\lambda_l^m(\cos{\theta})e^{im\phi}
192\f]
193\f[X_{lm}(\cos{\theta}) = -i\sqrt{\frac{(l+2)!}{2(l-2)!}}_x\lambda_l^m(\cos{\theta})e^{im\phi}
194\f]
195 where \f$W_{lm}(\cos{\theta})\f$ and \f$X_{lm}(\cos{\theta})\f$ are defined as :
196
197\f[
198W_{lm}(\cos{\theta})=-\frac{1}{2}\sqrt{\frac{(l+2)!}{(l-2)!}}\left(
199_{+2}Y_l^m(\cos{\theta})+_{-2}Y_l^m(\cos{\theta})\right)
200\f]
201\f[X_{lm}(\cos{\theta})=-\frac{i}{2}\sqrt{\frac{(l+2)!}{(l-2)!}}\left(
202_{+2}Y_l^m(\cos{\theta})-_{-2}Y_l^m(\cos{\theta})\right)
203\f]
204
205*/
206
207
208LambdaWXBuilder::LambdaWXBuilder(r_8 theta, int_4 lmax, int_4 mmax) : LambdaLMBuilder(theta, lmax, mmax)
209 {
210 array_init();
211 }
212
213
214void LambdaWXBuilder::array_init()
215 {
216 if (lam_fact_.Size() < 1 || normal_l_ == NULL)
217 {
218 // lam_fact_ = new TriangularMatrix<r_8>;
219 normal_l_ = new TVector<r_8>;
220 updateArrayLamNorm();
221 }
222 else
223 if ( lmax_ > lam_fact_.rowNumber()-1 || lmax_ > (*normal_l_).NElts()-1 )
224 {
225 updateArrayLamNorm();
226 }
227
228 r_8 one_on_s2 = 1. / (sth_*sth_) ; // 1/sin^2
229 r_8 c_on_s2 = cth_*one_on_s2;
230 lamWlm_.ReSizeRow(lmax_+1);
231 lamXlm_.ReSizeRow(lmax_+1);
232
233 // calcul des lambda
234 for(int m = 0;m<= mmax_; m++)
235 {
236 for (int l=m; l<=lmax_; l++)
237 {
238 lamWlm_(l,m) = 0.;
239 lamXlm_(l,m) = 0.;
240 }
241 }
242 for(int l = 2;l<= lmax_; l++)
243 {
244 r_8 normal_l = (*normal_l_)(l);
245 for (int m=0; m<=l; m++)
246 {
247 r_8 lam_lm1m = LambdaLMBuilder::lamlm(l-1,m);
248 r_8 lam_lm = LambdaLMBuilder::lamlm(l,m);
249 r_8 lam_fact_l_m = lam_fact_(l,m);
250 r_8 a_w = 2. * (l - m*m) * one_on_s2 + l*(l-1.);
251 r_8 b_w = c_on_s2 * lam_fact_l_m;
252 r_8 a_x = 2. * cth_ * (l-1.);
253 lamWlm_(l,m) = normal_l * ( a_w * lam_lm - b_w * lam_lm1m );
254 lamXlm_(l,m) = - normal_l * m* one_on_s2* ( a_x * lam_lm - lam_fact_l_m * lam_lm1m );
255 }
256 }
257
258 }
259
260/*! \class SOPHYA::LambdaPMBuilder
261
262This class generates the coefficients
263\f[
264 _{\pm}\lambda_l^m=2\sqrt{\frac{(l-2)!}{(l+2)!}\frac{(2l+1)}{4\pi}\frac{(l-m)!}{(l+m)!}}\left( G^+_{lm} \mp G^-_{lm}\right)
265\f]
266where
267\f[G^+_{lm}(\cos{\theta})=-\left( \frac{l-m^2}{\sin^2{\theta}}+\frac{1}{2}l\left(l-1\right)\right)P_l^m(\cos{\theta})+\left(l+m\right)\frac{\cos{\theta}}{\sin^2{\theta}}P^m_{l-1}(\cos{\theta})
268\f]
269and
270\f[G^-_{lm}(\cos{\theta})=\frac{m}{\sin^2{\theta}}\left(\left(l-1\right)\cos{\theta}P^m_l(\cos{\theta})-\left(l+m\right)P^m_{l-1}(\cos{\theta})\right)
271\f]
272and \f$P_l^m\f$ are the associated Legendre polynomials.
273The coefficients express the theta-dependance of the spin-2 spherical harmonics :
274\f[_{\pm2}Y_l^m(\cos{\theta})=_\pm\lambda_l^m(\cos{\theta})e^{im\phi}
275\f]
276*/
277
278LambdaPMBuilder::LambdaPMBuilder(r_8 theta, int_4 lmax, int_4 mmax) : LambdaLMBuilder(theta, lmax, mmax)
279 {
280 array_init();
281 }
282
283
284void LambdaPMBuilder::array_init()
285 {
286 if (lam_fact_.Size() < 1 || normal_l_ == NULL)
287 {
288 // lam_fact_ = new TriangularMatrix<r_8>;
289 normal_l_ = new TVector<r_8>;
290 updateArrayLamNorm();
291 }
292 else
293 if ( lmax_ > lam_fact_.rowNumber()-1 || lmax_ > (*normal_l_).NElts()-1 )
294 {
295 updateArrayLamNorm();
296 }
297
298 r_8 one_on_s2 = 1. / (sth_*sth_) ;
299 r_8 c_on_s2 = cth_*one_on_s2;
300 lamPlm_.ReSizeRow(lmax_+1);
301 lamMlm_.ReSizeRow(lmax_+1);
302
303 // calcul des lambda
304 for(int m = 0;m<= mmax_; m++)
305 {
306 for (int l=m; l<=lmax_; l++)
307 {
308 lamPlm_(l,m) = 0.;
309 lamMlm_(l,m) = 0.;
310 }
311 }
312
313 for(int l = 2;l<= lmax_; l++)
314 {
315 r_8 normal_l = (*normal_l_)(l);
316 for (int m=0; m<=l; m++)
317 {
318 r_8 lam_lm1m = LambdaLMBuilder::lamlm(l-1,m);
319 r_8 lam_lm = LambdaLMBuilder::lamlm(l,m);
320 r_8 lam_fact_l_m = lam_fact_(l,m);
321 r_8 a_w = 2. * (l - m*m) * one_on_s2 + l*(l-1.);
322 r_8 f_w = lam_fact_l_m/(sth_*sth_);
323 r_8 c_w = 2*m*(l-1.) * c_on_s2;
324
325 lamPlm_(l,m) = normal_l * ( -(a_w+c_w) * lam_lm + f_w*( cth_ + m) * lam_lm1m )/Rac2;
326 lamMlm_(l,m) = normal_l * ( -(a_w-c_w) * lam_lm + f_w*( cth_ - m) * lam_lm1m )/Rac2;
327 }
328 }
329
330 }
331
332
Note: See TracBrowser for help on using the repository browser.