| 1 | #include "lambdaBuilder.h"
 | 
|---|
| 2 | #include "nbconst.h"
 | 
|---|
| 3 | 
 | 
|---|
| 4 | 
 | 
|---|
| 5 | /*!
 | 
|---|
| 6 |   \class SOPHYA::Legendre
 | 
|---|
| 7 | generate Legendre polynomials : use in two steps : 
 | 
|---|
| 8 | 
 | 
|---|
| 9 | a) instanciate Legendre(\f$x\f$, \f$lmax\f$) ; \f$x\f$ is the value for wich Legendre polynomials will be required (usually equal to \f$\cos \theta\f$) and \f$lmax\f$ is the MAXIMUM value of the order of polynomials wich will be required in the following code (all polynomials, from \f$l=0 to lmax\f$, are computed once for all by an iterative formula).
 | 
|---|
| 10 | 
 | 
|---|
| 11 | b) get the value of Legendre polynomial for a particular value of \f$l\f$ by calling the method getPl.
 | 
|---|
| 12 | 
 | 
|---|
| 13 | */
 | 
|---|
| 14 | 
 | 
|---|
| 15 | 
 | 
|---|
| 16 | Legendre::Legendre(r_8 x, int_4 lmax) 
 | 
|---|
| 17 | {
 | 
|---|
| 18 |   if (fabs(x) > 1. ) 
 | 
|---|
| 19 |     {
 | 
|---|
| 20 |       throw RangeCheckError("variable for Legendre polynomials must have modules inferior to 1" );
 | 
|---|
| 21 |     }
 | 
|---|
| 22 |   x_ = x;
 | 
|---|
| 23 |   array_init(lmax);
 | 
|---|
| 24 | }
 | 
|---|
| 25 |    
 | 
|---|
| 26 | /*! \fn void SOPHYA::Legendre::array_init(int_4 lmax)
 | 
|---|
| 27 | 
 | 
|---|
| 28 | compute all \f$P_l(x,l_{max})\f$ for \f$l=1,l_{max}\f$ 
 | 
|---|
| 29 | */
 | 
|---|
| 30 | void Legendre::array_init(int_4 lmax)
 | 
|---|
| 31 | {
 | 
|---|
| 32 |   lmax_ = lmax;
 | 
|---|
| 33 |   Pl_.ReSize(lmax_+1);
 | 
|---|
| 34 |   Pl_(0)=1.;
 | 
|---|
| 35 |   if (lmax>0) Pl_(1)=x_;
 | 
|---|
| 36 |   for (int k=2; k<Pl_.NElts(); k++)
 | 
|---|
| 37 |     {
 | 
|---|
| 38 |       Pl_(k) = ( (2.*k-1)*x_*Pl_(k-1)-(k-1)*Pl_(k-2) )/k;
 | 
|---|
| 39 |     }
 | 
|---|
| 40 | }
 | 
|---|
| 41 | 
 | 
|---|
| 42 | TriangularMatrix<r_8> LambdaLMBuilder::a_recurrence_ = TriangularMatrix<r_8>();
 | 
|---|
| 43 | TriangularMatrix<r_8> LambdaLMBuilder::lam_fact_     = TriangularMatrix<r_8>();
 | 
|---|
| 44 | TVector<r_8>* LambdaLMBuilder::normal_l_     = NULL;
 | 
|---|
| 45 | 
 | 
|---|
| 46 | 
 | 
|---|
| 47 | 
 | 
|---|
| 48 | /*! \class SOPHYA::LambdaLMBuilder
 | 
|---|
| 49 | 
 | 
|---|
| 50 | 
 | 
|---|
| 51 | This class generate the coefficients :
 | 
|---|
| 52 | \f[
 | 
|---|
| 53 |             \lambda_l^m=\sqrt{\frac{2l+1}{4\pi}\frac{(l-m)!}{(l+m)!}}
 | 
|---|
| 54 |             P_l^m(\cos{\theta})
 | 
|---|
| 55 | \f]
 | 
|---|
| 56 | where \f$P_l^m\f$ are the associated Legendre polynomials.  The above coefficients contain the theta-dependance of spheric harmonics : 
 | 
|---|
| 57 | \f[
 | 
|---|
| 58 |             Y_{lm}(\cos{\theta})=\lambda_l^m(\cos{\theta}) e^{im\phi}.
 | 
|---|
| 59 | \f]
 | 
|---|
| 60 | 
 | 
|---|
| 61 | Each object has a fixed theta (radians), and maximum l and m to be calculated
 | 
|---|
| 62 | (lmax and mmax).
 | 
|---|
| 63 |  use the class in two steps : 
 | 
|---|
| 64 | a) instanciate  LambdaLMBuilder(\f$\theta\f$, \f$lmax\f$, \f$mmax\f$) ;  \f$lmax\f$ and \f$mmax\f$ are  MAXIMUM values for which \f$\lambda_l^m\f$ will be required in the following code (all coefficients, from \f$l=0 to lmax\f$, are computed once for all by an iterative formula).
 | 
|---|
| 65 | b) get the values of coefficients for  particular values of \f$l\f$ and \f$m\f$ by calling the method lamlm.
 | 
|---|
| 66 | */
 | 
|---|
| 67 | 
 | 
|---|
| 68 | 
 | 
|---|
| 69 | LambdaLMBuilder::LambdaLMBuilder(r_8 theta,int_4 lmax, int_4 mmax)
 | 
|---|
| 70 |     {
 | 
|---|
| 71 |       cth_=cos(theta);
 | 
|---|
| 72 |       sth_=sin(theta);
 | 
|---|
| 73 |       array_init(lmax, mmax);
 | 
|---|
| 74 |     }
 | 
|---|
| 75 | LambdaLMBuilder::LambdaLMBuilder(r_8 costet, r_8 sintet,int_4 lmax, int_4 mmax)
 | 
|---|
| 76 |     {
 | 
|---|
| 77 |       cth_=costet;
 | 
|---|
| 78 |       sth_=sintet;
 | 
|---|
| 79 |       array_init(lmax, mmax);
 | 
|---|
| 80 |     }
 | 
|---|
| 81 | void LambdaLMBuilder::array_init(int lmax, int mmax)
 | 
|---|
| 82 |    {
 | 
|---|
| 83 |      if (a_recurrence_.Size() == 0)
 | 
|---|
| 84 |        {
 | 
|---|
| 85 |          //      a_recurrence_ = new TriangularMatrix<r_8>;
 | 
|---|
| 86 |          updateArrayRecurrence(lmax);
 | 
|---|
| 87 |        }
 | 
|---|
| 88 |      else
 | 
|---|
| 89 |        if ( lmax > (a_recurrence_).rowNumber()-1     )
 | 
|---|
| 90 |          {
 | 
|---|
| 91 |            cout << " WARNING : The classes LambdaXXBuilder will be more efficient if instanciated with parameter lmax = maximum value of l index which will be needed in the whole application (arrays not recomputed) " << endl;
 | 
|---|
| 92 |            cout << "lmax= " << lmax << " previous instanciation with lmax= " <<  (a_recurrence_).rowNumber() << endl;
 | 
|---|
| 93 |          updateArrayRecurrence(lmax);
 | 
|---|
| 94 |          }
 | 
|---|
| 95 |      lmax_=lmax;
 | 
|---|
| 96 |      mmax_=mmax;
 | 
|---|
| 97 |      r_8 bignorm2 = 1.e268; // = 1e-20*1.d288
 | 
|---|
| 98 | 
 | 
|---|
| 99 |      lambda_.ReSizeRow(lmax_+1);
 | 
|---|
| 100 | 
 | 
|---|
| 101 |      r_8 lam_mm = 1. / sqrt(4.*Pi) *bignorm2;
 | 
|---|
| 102 |           
 | 
|---|
| 103 |      for (int m=0; m<=mmax_;m++)
 | 
|---|
| 104 |        {
 | 
|---|
| 105 | 
 | 
|---|
| 106 | 
 | 
|---|
| 107 |          lambda_(m,m)= lam_mm / bignorm2; 
 | 
|---|
| 108 | 
 | 
|---|
| 109 |          r_8 lam_0=0.;
 | 
|---|
| 110 |          r_8 lam_1=1. /bignorm2 ;
 | 
|---|
| 111 |          //      r_8 a_rec = LWK->a_recurr(m,m);
 | 
|---|
| 112 |          r_8 a_rec = a_recurrence_(m,m);
 | 
|---|
| 113 |          r_8 b_rec = 0.;
 | 
|---|
| 114 |          for (int l=m+1; l<=lmax_; l++)
 | 
|---|
| 115 |          {
 | 
|---|
| 116 |            r_8 lam_2 = (cth_*lam_1-b_rec*lam_0)*a_rec;
 | 
|---|
| 117 |            lambda_(l,m) = lam_2*lam_mm;
 | 
|---|
| 118 |            b_rec=1./a_rec;
 | 
|---|
| 119 |            //      a_rec= LWK->a_recurr(l,m);
 | 
|---|
| 120 |            a_rec= a_recurrence_(l,m);
 | 
|---|
| 121 |            lam_0 = lam_1;
 | 
|---|
| 122 |            lam_1 = lam_2;
 | 
|---|
| 123 |          }
 | 
|---|
| 124 | 
 | 
|---|
| 125 |          lam_mm = -lam_mm*sth_* sqrt( (2.*m+3.)/ (2.*m+2.) );
 | 
|---|
| 126 | 
 | 
|---|
| 127 |        }
 | 
|---|
| 128 |    }
 | 
|---|
| 129 | 
 | 
|---|
| 130 | 
 | 
|---|
| 131 | /*! \fn void  SOPHYA::LambdaLMBuilder::updateArrayRecurrence(int_4 lmax)
 | 
|---|
| 132 | 
 | 
|---|
| 133 |  compute a static array of coefficients independant from theta (common to all instances of the LambdaBuilder Class 
 | 
|---|
| 134 | */
 | 
|---|
| 135 | void  LambdaLMBuilder::updateArrayRecurrence(int_4 lmax)
 | 
|---|
| 136 |    {
 | 
|---|
| 137 |      a_recurrence_.ReSizeRow(lmax+1);
 | 
|---|
| 138 |      for (int m=0; m<=lmax;m++)
 | 
|---|
| 139 |      {
 | 
|---|
| 140 |        a_recurrence_(m,m) = sqrt( 2.*m +3.);
 | 
|---|
| 141 |        for (int l=m+1; l<=lmax; l++)
 | 
|---|
| 142 |          {
 | 
|---|
| 143 |            r_8 fl2 = (l+1.)*(l+1.);
 | 
|---|
| 144 |            a_recurrence_(l,m)=sqrt( (4.*fl2-1.)/(fl2-m*m) );
 | 
|---|
| 145 |          }
 | 
|---|
| 146 |      }
 | 
|---|
| 147 |    }
 | 
|---|
| 148 | 
 | 
|---|
| 149 | /*! \fn void  SOPHYA::LambdaLMBuilder::updateArrayLamNorm()
 | 
|---|
| 150 | 
 | 
|---|
| 151 |  compute  static arrays of coefficients independant from theta (common to all instances of the derived  classes 
 | 
|---|
| 152 | */
 | 
|---|
| 153 | void  LambdaLMBuilder::updateArrayLamNorm()
 | 
|---|
| 154 |      {
 | 
|---|
| 155 |        lam_fact_.ReSizeRow(lmax_+1);
 | 
|---|
| 156 |        for(int m = 0;m<= lmax_; m++)
 | 
|---|
| 157 |          {
 | 
|---|
| 158 |            for (int l=m; l<=lmax_; l++)
 | 
|---|
| 159 |              {
 | 
|---|
| 160 |                lam_fact_(l,m) =2.*(r_8)sqrt( (2.*l+1)*(l+m)*(l-m)/(2.*l-1)  );
 | 
|---|
| 161 |              }
 | 
|---|
| 162 |          }
 | 
|---|
| 163 |        (*normal_l_).ReSize(lmax_+1);
 | 
|---|
| 164 |        (*normal_l_)(0)=0.;
 | 
|---|
| 165 |        (*normal_l_)(1)=0.;
 | 
|---|
| 166 |        for (int l=2; l< (*normal_l_).NElts(); l++)
 | 
|---|
| 167 |          {
 | 
|---|
| 168 |            (*normal_l_)(l) =(r_8)sqrt( 2./( (l+2)*(l+1)*l*(l-1) ) );    
 | 
|---|
| 169 |          }
 | 
|---|
| 170 |      }
 | 
|---|
| 171 | 
 | 
|---|
| 172 | 
 | 
|---|
| 173 | /*! \class SOPHYA::LambdaWXBuilder
 | 
|---|
| 174 | 
 | 
|---|
| 175 | This class generates the coefficients :
 | 
|---|
| 176 | \f[
 | 
|---|
| 177 |             _{w}\lambda_l^m=-2\sqrt{\frac{2(l-2)!}{(l+2)!}\frac{(2l+1)}{4\pi}\frac{(l-m)!}{(l+m)!}} G^+_{lm}
 | 
|---|
| 178 | \f]
 | 
|---|
| 179 | \f[
 | 
|---|
| 180 |             _{x}\lambda_l^m=-2\sqrt{\frac{2(l-2)!}{(l+2)!}\frac{(2l+1)}{4\pi}\frac{(l-m)!}{(l+m)!}}G^-_{lm}
 | 
|---|
| 181 | \f]
 | 
|---|
| 182 | where
 | 
|---|
| 183 | \f[G^+_{lm}(\cos{\theta})=-\left( \frac{l-m^2}{\sin^2{\theta}}+\frac{1}{2}l\left(l-1\right)\right)P_l^m(\cos{\theta})+\left(l+m\right)\frac{\cos{\theta}}{\sin^2{\theta}}P^m_{l-1}(\cos{\theta})
 | 
|---|
| 184 | \f]
 | 
|---|
| 185 | and
 | 
|---|
| 186 | \f[G^-_{lm}(\cos{\theta})=\frac{m}{\sin^2{\theta}}\left(\left(l-1\right)\cos{\theta}P^m_l(\cos{\theta})-\left(l+m\right)P^m_{l-1}(\cos{\theta})\right)
 | 
|---|
| 187 | \f]
 | 
|---|
| 188 |  \f$P_l^m\f$ are the associated Legendre polynomials.
 | 
|---|
| 189 | 
 | 
|---|
| 190 | The coefficients express the theta-dependance of the \f$W_{lm}(\cos{\theta})\f$ and \f$X_{lm}(\cos{\theta})\f$ functions :
 | 
|---|
| 191 | \f[W_{lm}(\cos{\theta}) = \sqrt{\frac{(l+2)!}{2(l-2)!}}_w\lambda_l^m(\cos{\theta})e^{im\phi}
 | 
|---|
| 192 | \f]
 | 
|---|
| 193 | \f[X_{lm}(\cos{\theta}) = -i\sqrt{\frac{(l+2)!}{2(l-2)!}}_x\lambda_l^m(\cos{\theta})e^{im\phi}
 | 
|---|
| 194 | \f]
 | 
|---|
| 195 |  where \f$W_{lm}(\cos{\theta})\f$ and \f$X_{lm}(\cos{\theta})\f$ are defined as :
 | 
|---|
| 196 | 
 | 
|---|
| 197 | \f[
 | 
|---|
| 198 | W_{lm}(\cos{\theta})=-\frac{1}{2}\sqrt{\frac{(l+2)!}{(l-2)!}}\left(
 | 
|---|
| 199 | _{+2}Y_l^m(\cos{\theta})+_{-2}Y_l^m(\cos{\theta})\right)
 | 
|---|
| 200 | \f]
 | 
|---|
| 201 | \f[X_{lm}(\cos{\theta})=-\frac{i}{2}\sqrt{\frac{(l+2)!}{(l-2)!}}\left(
 | 
|---|
| 202 | _{+2}Y_l^m(\cos{\theta})-_{-2}Y_l^m(\cos{\theta})\right)
 | 
|---|
| 203 | \f]
 | 
|---|
| 204 | 
 | 
|---|
| 205 | */
 | 
|---|
| 206 | 
 | 
|---|
| 207 | 
 | 
|---|
| 208 | LambdaWXBuilder::LambdaWXBuilder(r_8 theta, int_4 lmax, int_4 mmax) : LambdaLMBuilder(theta, lmax, mmax)
 | 
|---|
| 209 |   {
 | 
|---|
| 210 |     array_init();
 | 
|---|
| 211 |   }
 | 
|---|
| 212 | 
 | 
|---|
| 213 | 
 | 
|---|
| 214 | void LambdaWXBuilder::array_init()
 | 
|---|
| 215 |    {
 | 
|---|
| 216 |      if (lam_fact_.Size() < 1 || normal_l_ == NULL)
 | 
|---|
| 217 |        {
 | 
|---|
| 218 |          //      lam_fact_ = new  TriangularMatrix<r_8>;
 | 
|---|
| 219 |          normal_l_ = new TVector<r_8>;
 | 
|---|
| 220 |          updateArrayLamNorm();
 | 
|---|
| 221 |        }
 | 
|---|
| 222 |      else
 | 
|---|
| 223 |        if ( lmax_ > lam_fact_.rowNumber()-1  || lmax_ >  (*normal_l_).NElts()-1 )
 | 
|---|
| 224 |          {
 | 
|---|
| 225 |            updateArrayLamNorm();
 | 
|---|
| 226 |          }
 | 
|---|
| 227 | 
 | 
|---|
| 228 |      r_8 one_on_s2  = 1. / (sth_*sth_) ;    // 1/sin^2
 | 
|---|
| 229 |      r_8 c_on_s2    = cth_*one_on_s2;
 | 
|---|
| 230 |      lamWlm_.ReSizeRow(lmax_+1);
 | 
|---|
| 231 |      lamXlm_.ReSizeRow(lmax_+1);
 | 
|---|
| 232 | 
 | 
|---|
| 233 |      // calcul des lambda
 | 
|---|
| 234 |      for(int m = 0;m<= mmax_; m++)
 | 
|---|
| 235 |        {
 | 
|---|
| 236 |          for (int l=m; l<=lmax_; l++)
 | 
|---|
| 237 |            {
 | 
|---|
| 238 |              lamWlm_(l,m) =  0.;
 | 
|---|
| 239 |              lamXlm_(l,m) =  0.;                
 | 
|---|
| 240 |            }
 | 
|---|
| 241 |        }
 | 
|---|
| 242 |      for(int l = 2;l<= lmax_; l++)
 | 
|---|
| 243 |        {
 | 
|---|
| 244 |          r_8 normal_l =  (*normal_l_)(l);       
 | 
|---|
| 245 |          for (int m=0; m<=l; m++)
 | 
|---|
| 246 |         {
 | 
|---|
| 247 |           r_8 lam_lm1m = LambdaLMBuilder::lamlm(l-1,m);
 | 
|---|
| 248 |           r_8 lam_lm = LambdaLMBuilder::lamlm(l,m);
 | 
|---|
| 249 |           r_8 lam_fact_l_m = lam_fact_(l,m);
 | 
|---|
| 250 |           r_8  a_w =  2. * (l - m*m) * one_on_s2 + l*(l-1.);
 | 
|---|
| 251 |           r_8  b_w =  c_on_s2 * lam_fact_l_m;
 | 
|---|
| 252 |           r_8  a_x =  2. * cth_ * (l-1.);
 | 
|---|
| 253 |           lamWlm_(l,m) =   normal_l * ( a_w * lam_lm - b_w * lam_lm1m );
 | 
|---|
| 254 |           lamXlm_(l,m) = - normal_l * m* one_on_s2* ( a_x * lam_lm - lam_fact_l_m * lam_lm1m );
 | 
|---|
| 255 |         }
 | 
|---|
| 256 |        }
 | 
|---|
| 257 | 
 | 
|---|
| 258 |    }
 | 
|---|
| 259 | 
 | 
|---|
| 260 | /*!   \class SOPHYA::LambdaPMBuilder
 | 
|---|
| 261 | 
 | 
|---|
| 262 | This class generates the coefficients
 | 
|---|
| 263 | \f[
 | 
|---|
| 264 |             _{\pm}\lambda_l^m=2\sqrt{\frac{(l-2)!}{(l+2)!}\frac{(2l+1)}{4\pi}\frac{(l-m)!}{(l+m)!}}\left( G^+_{lm} \mp G^-_{lm}\right)
 | 
|---|
| 265 | \f]
 | 
|---|
| 266 | where
 | 
|---|
| 267 | \f[G^+_{lm}(\cos{\theta})=-\left( \frac{l-m^2}{\sin^2{\theta}}+\frac{1}{2}l\left(l-1\right)\right)P_l^m(\cos{\theta})+\left(l+m\right)\frac{\cos{\theta}}{\sin^2{\theta}}P^m_{l-1}(\cos{\theta})
 | 
|---|
| 268 | \f]
 | 
|---|
| 269 | and
 | 
|---|
| 270 | \f[G^-_{lm}(\cos{\theta})=\frac{m}{\sin^2{\theta}}\left(\left(l-1\right)\cos{\theta}P^m_l(\cos{\theta})-\left(l+m\right)P^m_{l-1}(\cos{\theta})\right)
 | 
|---|
| 271 | \f]
 | 
|---|
| 272 | and \f$P_l^m\f$ are the associated Legendre polynomials.
 | 
|---|
| 273 | The coefficients express the theta-dependance of the  spin-2 spherical harmonics :
 | 
|---|
| 274 | \f[_{\pm2}Y_l^m(\cos{\theta})=_\pm\lambda_l^m(\cos{\theta})e^{im\phi}
 | 
|---|
| 275 | \f]
 | 
|---|
| 276 | */
 | 
|---|
| 277 | 
 | 
|---|
| 278 | LambdaPMBuilder::LambdaPMBuilder(r_8 theta, int_4 lmax, int_4 mmax) : LambdaLMBuilder(theta, lmax, mmax)
 | 
|---|
| 279 |   {
 | 
|---|
| 280 |     array_init();
 | 
|---|
| 281 |   }
 | 
|---|
| 282 | 
 | 
|---|
| 283 | 
 | 
|---|
| 284 | void LambdaPMBuilder::array_init()
 | 
|---|
| 285 |    {
 | 
|---|
| 286 |      if (lam_fact_.Size() < 1 || normal_l_ == NULL)
 | 
|---|
| 287 |        {
 | 
|---|
| 288 |          //      lam_fact_ = new  TriangularMatrix<r_8>;
 | 
|---|
| 289 |          normal_l_ = new TVector<r_8>;
 | 
|---|
| 290 |          updateArrayLamNorm();
 | 
|---|
| 291 |        }
 | 
|---|
| 292 |      else
 | 
|---|
| 293 |        if ( lmax_ > lam_fact_.rowNumber()-1  || lmax_ >  (*normal_l_).NElts()-1 )
 | 
|---|
| 294 |          {
 | 
|---|
| 295 |            updateArrayLamNorm();
 | 
|---|
| 296 |          }
 | 
|---|
| 297 | 
 | 
|---|
| 298 |      r_8 one_on_s2 = 1. / (sth_*sth_) ;
 | 
|---|
| 299 |      r_8 c_on_s2 = cth_*one_on_s2;
 | 
|---|
| 300 |      lamPlm_.ReSizeRow(lmax_+1);
 | 
|---|
| 301 |      lamMlm_.ReSizeRow(lmax_+1);
 | 
|---|
| 302 | 
 | 
|---|
| 303 |      // calcul des lambda
 | 
|---|
| 304 |      for(int m = 0;m<= mmax_; m++)
 | 
|---|
| 305 |        {
 | 
|---|
| 306 |          for (int l=m; l<=lmax_; l++)
 | 
|---|
| 307 |            {
 | 
|---|
| 308 |              lamPlm_(l,m) =  0.;
 | 
|---|
| 309 |              lamMlm_(l,m) =  0.;                
 | 
|---|
| 310 |            }
 | 
|---|
| 311 |        }
 | 
|---|
| 312 | 
 | 
|---|
| 313 |      for(int l = 2;l<= lmax_; l++)
 | 
|---|
| 314 |        {
 | 
|---|
| 315 |          r_8 normal_l =  (*normal_l_)(l);       
 | 
|---|
| 316 |          for (int m=0; m<=l; m++)
 | 
|---|
| 317 |            {
 | 
|---|
| 318 |              r_8 lam_lm1m = LambdaLMBuilder::lamlm(l-1,m);
 | 
|---|
| 319 |              r_8 lam_lm = LambdaLMBuilder::lamlm(l,m);
 | 
|---|
| 320 |              r_8 lam_fact_l_m = lam_fact_(l,m);
 | 
|---|
| 321 |              r_8  a_w =  2. * (l - m*m) * one_on_s2 + l*(l-1.);
 | 
|---|
| 322 |              r_8 f_w =  lam_fact_l_m/(sth_*sth_);
 | 
|---|
| 323 |              r_8  c_w =  2*m*(l-1.) * c_on_s2;
 | 
|---|
| 324 | 
 | 
|---|
| 325 |              lamPlm_(l,m)  = normal_l * ( -(a_w+c_w) * lam_lm + f_w*( cth_ + m) * lam_lm1m )/Rac2;
 | 
|---|
| 326 |              lamMlm_(l,m) = normal_l * ( -(a_w-c_w) * lam_lm + f_w*( cth_ - m) * lam_lm1m )/Rac2;
 | 
|---|
| 327 |            }
 | 
|---|
| 328 |        }
 | 
|---|
| 329 | 
 | 
|---|
| 330 |    }
 | 
|---|
| 331 | 
 | 
|---|
| 332 | 
 | 
|---|