1 | #include "sopnamsp.h"
|
---|
2 | #include "lambdaBuilder.h"
|
---|
3 | #include "nbconst.h"
|
---|
4 |
|
---|
5 |
|
---|
6 | /*!
|
---|
7 | \class SOPHYA::Legendre
|
---|
8 | \ingroup Samba
|
---|
9 |
|
---|
10 | Generate Legendre polynomials. The class usage can be summarized in two steps as follows:
|
---|
11 |
|
---|
12 | a) instanciate Legendre(\f$x\f$, \f$lmax\f$) ; \f$x\f$ is the value for wich Legendre
|
---|
13 | polynomials will be required (usually equal to \f$\cos \theta\f$) and \f$lmax\f$ is
|
---|
14 | the MAXIMUM value of the order of polynomials wich will be required.
|
---|
15 | (All polynomials, from \f$l=0 to lmax\f$, are computed once for all by an recursive formula).
|
---|
16 |
|
---|
17 | b) get the value of Legendre polynomial for a particular value of \f$l\f$ by calling the
|
---|
18 | method getPl.
|
---|
19 |
|
---|
20 | */
|
---|
21 |
|
---|
22 | /*! Constructor, with specification of \b lmax and the \b x value for the polynomials */
|
---|
23 | Legendre::Legendre(r_8 x, int_4 lmax)
|
---|
24 | {
|
---|
25 | if (fabs(x) > 1. ) {
|
---|
26 | throw RangeCheckError("Legendre::Legendre(x,lmax) invalid x argument, fabs(x) > 1 !" );
|
---|
27 | }
|
---|
28 | x_ = x;
|
---|
29 | array_init(lmax);
|
---|
30 | }
|
---|
31 |
|
---|
32 | /*! Private method which computes all \f$P_l(x,l_{max})\f$ for \f$l=1,l_{max}\f$ */
|
---|
33 | void Legendre::array_init(int_4 lmax)
|
---|
34 | {
|
---|
35 | lmax_ = lmax;
|
---|
36 | Pl_.ReSize(lmax_+1);
|
---|
37 | Pl_(0)=1.;
|
---|
38 | if (lmax>0) Pl_(1)=x_;
|
---|
39 | for (int k=2; k<Pl_.NElts(); k++) {
|
---|
40 | Pl_(k) = ( (2.*k-1)*x_*Pl_(k-1)-(k-1)*Pl_(k-2) )/k;
|
---|
41 | }
|
---|
42 | }
|
---|
43 |
|
---|
44 | TriangularMatrix<r_8> LambdaLMBuilder::a_recurrence_ = TriangularMatrix<r_8>();
|
---|
45 | TriangularMatrix<r_8> LambdaLMBuilder::lam_fact_ = TriangularMatrix<r_8>();
|
---|
46 | TVector<r_8>* LambdaLMBuilder::normal_l_ = NULL;
|
---|
47 |
|
---|
48 |
|
---|
49 |
|
---|
50 | /*! \class SOPHYA::LambdaLMBuilder
|
---|
51 |
|
---|
52 |
|
---|
53 | This class generate the coefficients :
|
---|
54 | \f[
|
---|
55 | \lambda_l^m=\sqrt{\frac{2l+1}{4\pi}\frac{(l-m)!}{(l+m)!}}
|
---|
56 | P_l^m(\cos{\theta})
|
---|
57 | \f]
|
---|
58 | where \f$P_l^m\f$ are the associated Legendre polynomials. The above coefficients contain the theta-dependance of spheric harmonics :
|
---|
59 | \f[
|
---|
60 | Y_{lm}(\cos{\theta})=\lambda_l^m(\cos{\theta}) e^{im\phi}.
|
---|
61 | \f]
|
---|
62 |
|
---|
63 | Each object has a fixed theta (radians), and maximum l and m to be calculated
|
---|
64 | (lmax and mmax).
|
---|
65 | use the class in two steps :
|
---|
66 | a) instanciate LambdaLMBuilder(\f$\theta\f$, \f$lmax\f$, \f$mmax\f$) ; \f$lmax\f$ and \f$mmax\f$ are MAXIMUM values for which \f$\lambda_l^m\f$ will be required in the following code (all coefficients, from \f$l=0 to lmax\f$, are computed once for all by an iterative formula).
|
---|
67 | b) get the values of coefficients for particular values of \f$l\f$ and \f$m\f$ by calling the method lamlm.
|
---|
68 | */
|
---|
69 |
|
---|
70 |
|
---|
71 | LambdaLMBuilder::LambdaLMBuilder(r_8 theta,int_4 lmax, int_4 mmax)
|
---|
72 | {
|
---|
73 | cth_=cos(theta);
|
---|
74 | sth_=sin(theta);
|
---|
75 | array_init(lmax, mmax);
|
---|
76 | }
|
---|
77 | LambdaLMBuilder::LambdaLMBuilder(r_8 costet, r_8 sintet,int_4 lmax, int_4 mmax)
|
---|
78 | {
|
---|
79 | cth_=costet;
|
---|
80 | sth_=sintet;
|
---|
81 | array_init(lmax, mmax);
|
---|
82 | }
|
---|
83 | void LambdaLMBuilder::array_init(int lmax, int mmax)
|
---|
84 | {
|
---|
85 | updateArrayRecurrence(lmax);
|
---|
86 |
|
---|
87 | lmax_=lmax;
|
---|
88 | mmax_=mmax;
|
---|
89 | r_8 bignorm2 = 1.e268; // = 1e-20*1.d288
|
---|
90 |
|
---|
91 | lambda_.ReSizeRow(lmax_+1);
|
---|
92 |
|
---|
93 | r_8 lam_mm = 1. / sqrt(4.*Pi) *bignorm2;
|
---|
94 |
|
---|
95 | for (int m=0; m<=mmax_;m++)
|
---|
96 | {
|
---|
97 |
|
---|
98 |
|
---|
99 | lambda_(m,m)= lam_mm / bignorm2;
|
---|
100 |
|
---|
101 | r_8 lam_0=0.;
|
---|
102 | r_8 lam_1=1. /bignorm2 ;
|
---|
103 | // r_8 a_rec = LWK->a_recurr(m,m);
|
---|
104 | r_8 a_rec = a_recurrence_(m,m);
|
---|
105 | r_8 b_rec = 0.;
|
---|
106 | for (int l=m+1; l<=lmax_; l++)
|
---|
107 | {
|
---|
108 | r_8 lam_2 = (cth_*lam_1-b_rec*lam_0)*a_rec;
|
---|
109 | lambda_(l,m) = lam_2*lam_mm;
|
---|
110 | b_rec=1./a_rec;
|
---|
111 | // a_rec= LWK->a_recurr(l,m);
|
---|
112 | a_rec= a_recurrence_(l,m);
|
---|
113 | lam_0 = lam_1;
|
---|
114 | lam_1 = lam_2;
|
---|
115 | }
|
---|
116 |
|
---|
117 | lam_mm = -lam_mm*sth_* sqrt( (2.*m+3.)/ (2.*m+2.) );
|
---|
118 |
|
---|
119 | }
|
---|
120 | }
|
---|
121 |
|
---|
122 | /*!
|
---|
123 | \brief : Specialized/optimized static function for fast spherical harmonic transform.
|
---|
124 | Computes bm(m) = Sum_l>=m [ lambda(l,m) * alm(l,m) ]
|
---|
125 | See SphericalTransformServer<T>::GenerateFromAlm(map, pixsize, alm)
|
---|
126 | */
|
---|
127 | void LambdaLMBuilder::ComputeBmFrAlm(r_8 theta,int_4 lmax, int_4 mmax,
|
---|
128 | const Alm<r_8>& alm, Bm< complex<r_8> >& bm)
|
---|
129 | {
|
---|
130 | updateArrayRecurrence(lmax);
|
---|
131 | r_8 cth = cos(theta);
|
---|
132 | r_8 sth = sin(theta);
|
---|
133 |
|
---|
134 | r_8 bignorm2 = 1.e268; // = 1e-20*1.d288
|
---|
135 |
|
---|
136 | r_8 lam_mm = 1. / sqrt(4.*Pi) *bignorm2;
|
---|
137 | register r_8 lam_0, lam_1, lam_2;
|
---|
138 |
|
---|
139 | int_4 l, m, k;
|
---|
140 |
|
---|
141 | for (m=0; m<=mmax;m++) {
|
---|
142 | const complex<r_8>* almp = alm.columnData(m);
|
---|
143 | complex<r_8>* bmp = &(bm(m));
|
---|
144 | r_8* arecp = a_recurrence_.columnData(m);
|
---|
145 | *bmp = (lam_mm / bignorm2)*almp[0]; almp++;
|
---|
146 |
|
---|
147 | lam_0=0.;
|
---|
148 | lam_1=1. /bignorm2 ;
|
---|
149 |
|
---|
150 | // for (l=m+1; l<=lmax; l++) {
|
---|
151 | for (k=0; k<lmax-m; k++) {
|
---|
152 | lam_2 = (cth*lam_1-lam_0)*arecp[k];
|
---|
153 | lam_0 = lam_1/arecp[k];
|
---|
154 | lam_1 = lam_2;
|
---|
155 |
|
---|
156 | *bmp += (lam_2*lam_mm)*almp[k];
|
---|
157 | }
|
---|
158 | lam_mm = -lam_mm*sth* sqrt( (2.*m+3.)/ (2.*m+2.) );
|
---|
159 | }
|
---|
160 | }
|
---|
161 |
|
---|
162 | /*!
|
---|
163 | \brief : Specialized/optimized static function for fast spherical harmonic transform.
|
---|
164 | */
|
---|
165 | void LambdaLMBuilder::ComputeBmFrAlm(r_8 theta,int_4 lmax, int_4 mmax,
|
---|
166 | const Alm<r_4>& alm, Bm< complex<r_4> >& bm)
|
---|
167 | {
|
---|
168 | Alm<r_8> alm8(alm.Lmax());
|
---|
169 | for(sa_size_t k=0; k<alm8.Size(); k++)
|
---|
170 | alm8(k) = complex<r_8>((r_8)alm(k).real() , (r_8)alm(k).imag());
|
---|
171 | Bm< complex<r_8> > bm8(bm.Mmax());
|
---|
172 | ComputeBmFrAlm(theta, lmax, mmax, alm8, bm8);
|
---|
173 | for(sa_size_t kk=-bm.Mmax(); kk<=bm.Mmax(); kk++)
|
---|
174 | bm(kk)= complex<r_4>((r_4)bm8(kk).real() , (r_4)bm8(kk).imag());
|
---|
175 | return;
|
---|
176 | }
|
---|
177 |
|
---|
178 |
|
---|
179 | /*!
|
---|
180 | \brief : Specialized/optimized static function for fast spherical harmonic transform.
|
---|
181 | Computes alm(l,m) = Sum_l>=m [ lambda(l,m) * phase(l,m) ]
|
---|
182 | See SphericalTransformServer<T>::carteVersAlm(SphericalMap<T>& map, nlmax, ctcut, alm)
|
---|
183 | */
|
---|
184 | void LambdaLMBuilder::ComputeAlmFrPhase(r_8 theta,int_4 lmax, int_4 mmax,
|
---|
185 | TVector< complex<r_8> >& phase, Alm<r_8> & alm)
|
---|
186 | {
|
---|
187 | updateArrayRecurrence(lmax);
|
---|
188 | r_8 cth = cos(theta);
|
---|
189 | r_8 sth = sin(theta);
|
---|
190 |
|
---|
191 | r_8 bignorm2 = 1.e268; // = 1e-20*1.d288
|
---|
192 |
|
---|
193 | r_8 lam_mm = 1. / sqrt(4.*Pi) *bignorm2;
|
---|
194 | register r_8 lam_0, lam_1, lam_2;
|
---|
195 |
|
---|
196 | int_4 l, m, k;
|
---|
197 |
|
---|
198 | for (m=0; m<=mmax;m++) {
|
---|
199 | complex<r_8>* almp = alm.columnData(m);
|
---|
200 | complex<r_8> phi = phase(m);
|
---|
201 |
|
---|
202 | *almp += (lam_mm / bignorm2)*phi; almp++;
|
---|
203 |
|
---|
204 | lam_0=0.;
|
---|
205 | lam_1=1. /bignorm2 ;
|
---|
206 |
|
---|
207 | r_8* arecp = a_recurrence_.columnData(m);
|
---|
208 | // for (l=m+1; l<=lmax; l++) {
|
---|
209 | for (k=0; k<lmax-m; k++) {
|
---|
210 | lam_2 = (cth*lam_1-lam_0)*arecp[k];
|
---|
211 | lam_0 = lam_1/arecp[k];
|
---|
212 | lam_1 = lam_2;
|
---|
213 |
|
---|
214 | almp[k] += (lam_2*lam_mm) * phi;
|
---|
215 | }
|
---|
216 | lam_mm = -lam_mm*sth* sqrt( (2.*m+3.)/ (2.*m+2.) );
|
---|
217 | }
|
---|
218 | }
|
---|
219 |
|
---|
220 | /*!
|
---|
221 | \brief : Specialized/optimized static function for fast spherical harmonic transform.
|
---|
222 | Computes alm(l,m) = Sum_l>=m [ lambda(l,m) * phase(l,m) ]
|
---|
223 | See SphericalTransformServer<T>::carteVersAlm(SphericalMap<T>& map, nlmax, ctcut, alm)
|
---|
224 | */
|
---|
225 | void LambdaLMBuilder::ComputeAlmFrPhase(r_8 theta,int_4 lmax, int_4 mmax,
|
---|
226 | TVector< complex<r_4> >& phase, Alm<r_4> & alm)
|
---|
227 | {
|
---|
228 | updateArrayRecurrence(lmax);
|
---|
229 | r_8 cth = cos(theta);
|
---|
230 | r_8 sth = sin(theta);
|
---|
231 |
|
---|
232 | r_8 bignorm2 = 1.e268; // = 1e-20*1.d288
|
---|
233 |
|
---|
234 | r_8 lam_mm = 1. / sqrt(4.*Pi) *bignorm2;
|
---|
235 | register r_8 lam_0, lam_1, lam_2;
|
---|
236 |
|
---|
237 | int_4 l, m, k;
|
---|
238 |
|
---|
239 | for (m=0; m<=mmax;m++) {
|
---|
240 | complex<r_4>* almp = alm.columnData(m);
|
---|
241 | complex<r_4> phi = phase(m);
|
---|
242 |
|
---|
243 | *almp += ((r_4)(lam_mm / bignorm2))*phi; almp++;
|
---|
244 |
|
---|
245 | lam_0=0.;
|
---|
246 | lam_1=1. /bignorm2 ;
|
---|
247 |
|
---|
248 | r_8* arecp = a_recurrence_.columnData(m);
|
---|
249 | // for (l=m+1; l<=lmax; l++) {
|
---|
250 | for (k=0; k<lmax-m; k++) {
|
---|
251 | lam_2 = (cth*lam_1-lam_0)*arecp[k];
|
---|
252 | lam_0 = lam_1/arecp[k];
|
---|
253 | lam_1 = lam_2;
|
---|
254 |
|
---|
255 | almp[k] += ((r_4)(lam_2*lam_mm)) * phi;
|
---|
256 | }
|
---|
257 | lam_mm = -lam_mm*sth* sqrt( (2.*m+3.)/ (2.*m+2.) );
|
---|
258 | }
|
---|
259 |
|
---|
260 | }
|
---|
261 |
|
---|
262 |
|
---|
263 |
|
---|
264 | /*! \fn void SOPHYA::LambdaLMBuilder::updateArrayRecurrence(int_4 lmax)
|
---|
265 |
|
---|
266 | compute a static array of coefficients independant from theta (common to all instances of the LambdaBuilder Class
|
---|
267 | */
|
---|
268 |
|
---|
269 | void LambdaLMBuilder::updateArrayRecurrence(int_4 lmax)
|
---|
270 | {
|
---|
271 | if ( (a_recurrence_.Size() > 0) && (lmax < a_recurrence_.rowNumber()) )
|
---|
272 | return; // Pas besoin de recalculer le tableau de recurrence
|
---|
273 | if (a_recurrence_.Size() > 0) {
|
---|
274 | cout << " WARNING : The classes LambdaXXBuilder will be more efficient "
|
---|
275 | << "if instanciated with parameter lmax = maximum value of l index "
|
---|
276 | << "which will be needed in the whole application (arrays not "
|
---|
277 | << "recomputed) " << endl;
|
---|
278 | cout << " lmax= " << lmax << " previous instanciation with lmax= "
|
---|
279 | << a_recurrence_.rowNumber()-1 << endl;
|
---|
280 | }
|
---|
281 |
|
---|
282 | a_recurrence_.ReSizeRow(lmax+1);
|
---|
283 | for (int m=0; m<=lmax;m++)
|
---|
284 | {
|
---|
285 | a_recurrence_(m,m) = sqrt( 2.*m +3.);
|
---|
286 | for (int l=m+1; l<=lmax; l++)
|
---|
287 | {
|
---|
288 | r_8 fl2 = (l+1.)*(l+1.);
|
---|
289 | a_recurrence_(l,m)=sqrt( (4.*fl2-1.)/(fl2-m*m) );
|
---|
290 | }
|
---|
291 | }
|
---|
292 | }
|
---|
293 |
|
---|
294 | /*! \fn void SOPHYA::LambdaLMBuilder::updateArrayLamNorm()
|
---|
295 |
|
---|
296 | compute static arrays of coefficients independant from theta (common to all instances of the derived classes
|
---|
297 | */
|
---|
298 | void LambdaLMBuilder::updateArrayLamNorm()
|
---|
299 | {
|
---|
300 | lam_fact_.ReSizeRow(lmax_+1);
|
---|
301 | for(int m = 0;m<= lmax_; m++)
|
---|
302 | {
|
---|
303 | for (int l=m; l<=lmax_; l++)
|
---|
304 | {
|
---|
305 | lam_fact_(l,m) =2.*(r_8)sqrt( (2.*l+1)*(l+m)*(l-m)/(2.*l-1) );
|
---|
306 | }
|
---|
307 | }
|
---|
308 | (*normal_l_).ReSize(lmax_+1);
|
---|
309 | (*normal_l_)(0)=0.;
|
---|
310 | (*normal_l_)(1)=0.;
|
---|
311 | for (int l=2; l< (*normal_l_).NElts(); l++)
|
---|
312 | {
|
---|
313 | (*normal_l_)(l) =(r_8)sqrt( 2./( (l+2)*(l+1)*l*(l-1) ) );
|
---|
314 | }
|
---|
315 | }
|
---|
316 |
|
---|
317 |
|
---|
318 | /*! \class SOPHYA::LambdaWXBuilder
|
---|
319 |
|
---|
320 | This class generates the coefficients :
|
---|
321 | \f[
|
---|
322 | _{w}\lambda_l^m=-2\sqrt{\frac{2(l-2)!}{(l+2)!}\frac{(2l+1)}{4\pi}\frac{(l-m)!}{(l+m)!}} G^+_{lm}
|
---|
323 | \f]
|
---|
324 | \f[
|
---|
325 | _{x}\lambda_l^m=-2\sqrt{\frac{2(l-2)!}{(l+2)!}\frac{(2l+1)}{4\pi}\frac{(l-m)!}{(l+m)!}}G^-_{lm}
|
---|
326 | \f]
|
---|
327 | where
|
---|
328 | \f[G^+_{lm}(\cos{\theta})=-\left( \frac{l-m^2}{\sin^2{\theta}}+\frac{1}{2}l\left(l-1\right)\right)P_l^m(\cos{\theta})+\left(l+m\right)\frac{\cos{\theta}}{\sin^2{\theta}}P^m_{l-1}(\cos{\theta})
|
---|
329 | \f]
|
---|
330 | and
|
---|
331 | \f[G^-_{lm}(\cos{\theta})=\frac{m}{\sin^2{\theta}}\left(\left(l-1\right)\cos{\theta}P^m_l(\cos{\theta})-\left(l+m\right)P^m_{l-1}(\cos{\theta})\right)
|
---|
332 | \f]
|
---|
333 | \f$P_l^m\f$ are the associated Legendre polynomials.
|
---|
334 |
|
---|
335 | The coefficients express the theta-dependance of the \f$W_{lm}(\cos{\theta})\f$ and \f$X_{lm}(\cos{\theta})\f$ functions :
|
---|
336 | \f[W_{lm}(\cos{\theta}) = \sqrt{\frac{(l+2)!}{2(l-2)!}}_w\lambda_l^m(\cos{\theta})e^{im\phi}
|
---|
337 | \f]
|
---|
338 | \f[X_{lm}(\cos{\theta}) = -i\sqrt{\frac{(l+2)!}{2(l-2)!}}_x\lambda_l^m(\cos{\theta})e^{im\phi}
|
---|
339 | \f]
|
---|
340 | where \f$W_{lm}(\cos{\theta})\f$ and \f$X_{lm}(\cos{\theta})\f$ are defined as :
|
---|
341 |
|
---|
342 | \f[
|
---|
343 | W_{lm}(\cos{\theta})=-\frac{1}{2}\sqrt{\frac{(l+2)!}{(l-2)!}}\left(
|
---|
344 | _{+2}Y_l^m(\cos{\theta})+_{-2}Y_l^m(\cos{\theta})\right)
|
---|
345 | \f]
|
---|
346 | \f[X_{lm}(\cos{\theta})=-\frac{i}{2}\sqrt{\frac{(l+2)!}{(l-2)!}}\left(
|
---|
347 | _{+2}Y_l^m(\cos{\theta})-_{-2}Y_l^m(\cos{\theta})\right)
|
---|
348 | \f]
|
---|
349 |
|
---|
350 | */
|
---|
351 |
|
---|
352 |
|
---|
353 | LambdaWXBuilder::LambdaWXBuilder(r_8 theta, int_4 lmax, int_4 mmax) : LambdaLMBuilder(theta, lmax, mmax)
|
---|
354 | {
|
---|
355 | array_init();
|
---|
356 | }
|
---|
357 |
|
---|
358 |
|
---|
359 | void LambdaWXBuilder::array_init()
|
---|
360 | {
|
---|
361 | if (lam_fact_.Size() < 1 || normal_l_ == NULL)
|
---|
362 | {
|
---|
363 | // lam_fact_ = new TriangularMatrix<r_8>;
|
---|
364 | normal_l_ = new TVector<r_8>;
|
---|
365 | updateArrayLamNorm();
|
---|
366 | }
|
---|
367 | else
|
---|
368 | if ( lmax_ > lam_fact_.rowNumber()-1 || lmax_ > (*normal_l_).NElts()-1 )
|
---|
369 | {
|
---|
370 | updateArrayLamNorm();
|
---|
371 | }
|
---|
372 |
|
---|
373 | r_8 one_on_s2 = 1. / (sth_*sth_) ; // 1/sin^2
|
---|
374 | r_8 c_on_s2 = cth_*one_on_s2;
|
---|
375 | lamWlm_.ReSizeRow(lmax_+1);
|
---|
376 | lamXlm_.ReSizeRow(lmax_+1);
|
---|
377 |
|
---|
378 | // calcul des lambda
|
---|
379 | for(int m = 0;m<= mmax_; m++)
|
---|
380 | {
|
---|
381 | for (int l=m; l<=lmax_; l++)
|
---|
382 | {
|
---|
383 | lamWlm_(l,m) = 0.;
|
---|
384 | lamXlm_(l,m) = 0.;
|
---|
385 | }
|
---|
386 | }
|
---|
387 | for(int l = 2;l<= lmax_; l++)
|
---|
388 | {
|
---|
389 | r_8 normal_l = (*normal_l_)(l);
|
---|
390 | for (int m=0; m<=l; m++)
|
---|
391 | {
|
---|
392 | r_8 lam_lm1m = LambdaLMBuilder::lamlm(l-1,m);
|
---|
393 | r_8 lam_lm = LambdaLMBuilder::lamlm(l,m);
|
---|
394 | r_8 lam_fact_l_m = lam_fact_(l,m);
|
---|
395 | r_8 a_w = 2. * (l - m*m) * one_on_s2 + l*(l-1.);
|
---|
396 | r_8 b_w = c_on_s2 * lam_fact_l_m;
|
---|
397 | r_8 a_x = 2. * cth_ * (l-1.);
|
---|
398 | lamWlm_(l,m) = normal_l * ( a_w * lam_lm - b_w * lam_lm1m );
|
---|
399 | lamXlm_(l,m) = - normal_l * m* one_on_s2* ( a_x * lam_lm - lam_fact_l_m * lam_lm1m );
|
---|
400 | }
|
---|
401 | }
|
---|
402 |
|
---|
403 | }
|
---|
404 |
|
---|
405 | /*! \class SOPHYA::LambdaPMBuilder
|
---|
406 |
|
---|
407 | This class generates the coefficients
|
---|
408 | \f[
|
---|
409 | _{\pm}\lambda_l^m=2\sqrt{\frac{(l-2)!}{(l+2)!}\frac{(2l+1)}{4\pi}\frac{(l-m)!}{(l+m)!}}\left( G^+_{lm} \mp G^-_{lm}\right)
|
---|
410 | \f]
|
---|
411 | where
|
---|
412 | \f[G^+_{lm}(\cos{\theta})=-\left( \frac{l-m^2}{\sin^2{\theta}}+\frac{1}{2}l\left(l-1\right)\right)P_l^m(\cos{\theta})+\left(l+m\right)\frac{\cos{\theta}}{\sin^2{\theta}}P^m_{l-1}(\cos{\theta})
|
---|
413 | \f]
|
---|
414 | and
|
---|
415 | \f[G^-_{lm}(\cos{\theta})=\frac{m}{\sin^2{\theta}}\left(\left(l-1\right)\cos{\theta}P^m_l(\cos{\theta})-\left(l+m\right)P^m_{l-1}(\cos{\theta})\right)
|
---|
416 | \f]
|
---|
417 | and \f$P_l^m\f$ are the associated Legendre polynomials.
|
---|
418 | The coefficients express the theta-dependance of the spin-2 spherical harmonics :
|
---|
419 | \f[_{\pm2}Y_l^m(\cos{\theta})=_\pm\lambda_l^m(\cos{\theta})e^{im\phi}
|
---|
420 | \f]
|
---|
421 | */
|
---|
422 |
|
---|
423 | LambdaPMBuilder::LambdaPMBuilder(r_8 theta, int_4 lmax, int_4 mmax) : LambdaLMBuilder(theta, lmax, mmax)
|
---|
424 | {
|
---|
425 | array_init();
|
---|
426 | }
|
---|
427 |
|
---|
428 |
|
---|
429 | void LambdaPMBuilder::array_init()
|
---|
430 | {
|
---|
431 | if (lam_fact_.Size() < 1 || normal_l_ == NULL)
|
---|
432 | {
|
---|
433 | // lam_fact_ = new TriangularMatrix<r_8>;
|
---|
434 | normal_l_ = new TVector<r_8>;
|
---|
435 | updateArrayLamNorm();
|
---|
436 | }
|
---|
437 | else
|
---|
438 | if ( lmax_ > lam_fact_.rowNumber()-1 || lmax_ > (*normal_l_).NElts()-1 )
|
---|
439 | {
|
---|
440 | updateArrayLamNorm();
|
---|
441 | }
|
---|
442 |
|
---|
443 | r_8 one_on_s2 = 1. / (sth_*sth_) ;
|
---|
444 | r_8 c_on_s2 = cth_*one_on_s2;
|
---|
445 | lamPlm_.ReSizeRow(lmax_+1);
|
---|
446 | lamMlm_.ReSizeRow(lmax_+1);
|
---|
447 |
|
---|
448 | // calcul des lambda
|
---|
449 | for(int m = 0;m<= mmax_; m++)
|
---|
450 | {
|
---|
451 | for (int l=m; l<=lmax_; l++)
|
---|
452 | {
|
---|
453 | lamPlm_(l,m) = 0.;
|
---|
454 | lamMlm_(l,m) = 0.;
|
---|
455 | }
|
---|
456 | }
|
---|
457 |
|
---|
458 | for(int l = 2;l<= lmax_; l++)
|
---|
459 | {
|
---|
460 | r_8 normal_l = (*normal_l_)(l);
|
---|
461 | for (int m=0; m<=l; m++)
|
---|
462 | {
|
---|
463 | r_8 lam_lm1m = LambdaLMBuilder::lamlm(l-1,m);
|
---|
464 | r_8 lam_lm = LambdaLMBuilder::lamlm(l,m);
|
---|
465 | r_8 lam_fact_l_m = lam_fact_(l,m);
|
---|
466 | r_8 a_w = 2. * (l - m*m) * one_on_s2 + l*(l-1.);
|
---|
467 | r_8 f_w = lam_fact_l_m/(sth_*sth_);
|
---|
468 | r_8 c_w = 2*m*(l-1.) * c_on_s2;
|
---|
469 |
|
---|
470 | lamPlm_(l,m) = normal_l * ( -(a_w+c_w) * lam_lm + f_w*( cth_ + m) * lam_lm1m )/Rac2;
|
---|
471 | lamMlm_(l,m) = normal_l * ( -(a_w-c_w) * lam_lm + f_w*( cth_ - m) * lam_lm1m )/Rac2;
|
---|
472 | }
|
---|
473 | }
|
---|
474 |
|
---|
475 | }
|
---|
476 |
|
---|
477 |
|
---|