[729] | 1 | #ifndef LAMBDABUILDER_SEEN
|
---|
| 2 | #define LAMBDABUILDER_SEEN
|
---|
| 3 |
|
---|
| 4 | #include <math.h>
|
---|
| 5 | #include "ndatablock.h"
|
---|
| 6 | #include "tvector.h"
|
---|
| 7 | #include "alm.h"
|
---|
| 8 |
|
---|
| 9 | /*!
|
---|
| 10 | generate Legendre polynomials : use in two steps :
|
---|
| 11 |
|
---|
| 12 | a) instanciate Legendre(\f$x\f$, \f$lmax\f$) ; \f$x\f$ is the value for wich Legendre polynomials will be required (usually equal to \f$\cos \theta\f$) and \f$lmax\f$ is the MAXIMUM value of the order of polynomials wich will be required in the following code (all polynomials, from \f$l=0 to lmax\f$, are computed once for all by an iterative formula).
|
---|
| 13 |
|
---|
| 14 | b) get the value of Legendre polynomial for a particular value of \f$l\f$ by calling the method getPl.
|
---|
| 15 | */
|
---|
| 16 | class Legendre {
|
---|
| 17 |
|
---|
| 18 | public :
|
---|
| 19 | Legendre();
|
---|
| 20 | Legendre(r_8 x, int_4 lmax);
|
---|
| 21 | inline r_8 getPl(int_4 l)
|
---|
| 22 | {
|
---|
| 23 | if (l>lmax_)
|
---|
| 24 | {
|
---|
| 25 | throw (" illegal call of Legendre::getPl with index greater than lmax, which Legendre Class was instanciated with : instanciate Legendre with a greater lmax... ");
|
---|
| 26 | }
|
---|
| 27 | return Pl_(l);
|
---|
| 28 | }
|
---|
| 29 |
|
---|
| 30 | private :
|
---|
| 31 | /*! compute all \f$P_l(x,l_{max})\f$ for \f$l=1,l_{max}\f$ */
|
---|
| 32 | void array_init(int_4 lmax);
|
---|
| 33 |
|
---|
| 34 | r_8 x_;
|
---|
| 35 | int_4 lmax_;
|
---|
| 36 | TVector<r_8> Pl_;
|
---|
| 37 | };
|
---|
| 38 |
|
---|
| 39 |
|
---|
| 40 |
|
---|
| 41 | /*!
|
---|
| 42 | This class generate the coefficients :
|
---|
| 43 | \f[
|
---|
| 44 | \lambda_l^m=\sqrt{\frac{2l+1}{4\pi}\frac{(l-m)!}{(l+m)!}}
|
---|
| 45 | P_l^m(\cos{\theta})
|
---|
| 46 | \f]
|
---|
| 47 | where \f$P_l^m\f$ are the associated Legendre polynomials. The above coefficients contain the theta-dependance of spheric harmonics :
|
---|
| 48 | \f[
|
---|
| 49 | Y_{lm}(\cos{\theta})=\lambda_l^m(\cos{\theta}) e^{im\phi}.
|
---|
| 50 | \f]
|
---|
| 51 |
|
---|
| 52 | Each object has a fixed theta (radians), and maximum l and m to be calculated
|
---|
| 53 | (lmax and mmax).
|
---|
| 54 | use the class in two steps :
|
---|
| 55 | a) instanciate LambdaLMBuilder(\f$\theta\f$, \f$lmax\f$, \f$mmax\f$) ; \f$lmax\f$ and \f$mmax\f$ are MAXIMUM values for which \f$\lambda_l^m\f$ will be required in the following code (all coefficients, from \f$l=0 to lmax\f$, are computed once for all by an iterative formula).
|
---|
| 56 | b) get the values of coefficients for particular values of \f$l\f$ and \f$m\f$ by calling the method lamlm.
|
---|
| 57 | */
|
---|
| 58 | class LambdaLMBuilder {
|
---|
| 59 |
|
---|
| 60 | public:
|
---|
| 61 |
|
---|
| 62 | LambdaLMBuilder() {}
|
---|
| 63 | LambdaLMBuilder(r_8 theta,int_4 lmax, int_4 mmax);
|
---|
| 64 | ~LambdaLMBuilder() {};
|
---|
| 65 |
|
---|
| 66 | /*! return the value of the coefficient \f$ \lambda_l^m \f$ */
|
---|
| 67 | inline double lamlm(int l, int m) const { return lambda_(l,m); }
|
---|
| 68 |
|
---|
| 69 | private:
|
---|
| 70 | /*! compute a static array of coefficients independant from theta (common to all instances of the LambdaBuilder Class */
|
---|
| 71 | void updateArrayRecurrence(int_4 lmax);
|
---|
| 72 |
|
---|
| 73 | void array_init(int lmax, int mmax);
|
---|
| 74 |
|
---|
| 75 |
|
---|
| 76 | static TriangularMatrix<r_8>* a_recurrence_;
|
---|
| 77 | TriangularMatrix<r_8> lambda_;
|
---|
| 78 |
|
---|
| 79 | protected :
|
---|
| 80 |
|
---|
| 81 | /*! compute static arrays of coefficients independant from theta (common to all instances of the derived classes */
|
---|
| 82 | void updateArrayLamNorm();
|
---|
| 83 |
|
---|
| 84 | static TriangularMatrix<r_8>* lam_fact_;
|
---|
| 85 | static TVector<r_8>* normal_l_;
|
---|
| 86 | int_4 lmax_;
|
---|
| 87 | int_4 mmax_;
|
---|
| 88 | r_8 cth_;
|
---|
| 89 | r_8 sth_;
|
---|
| 90 |
|
---|
| 91 | };
|
---|
| 92 |
|
---|
| 93 |
|
---|
| 94 |
|
---|
| 95 | /*!
|
---|
| 96 |
|
---|
| 97 | This class generates the coefficients :
|
---|
| 98 | \f[
|
---|
| 99 | _{w}\lambda_l^m=-2\sqrt{\frac{2(l-2)!}{(l+2)!}\frac{(2l+1)}{4\pi}\frac{(l-m)!}{(l+m)!}} G^+_{lm}
|
---|
| 100 | \f]
|
---|
| 101 | \f[
|
---|
| 102 | _{x}\lambda_l^m=-2\sqrt{\frac{2(l-2)!}{(l+2)!}\frac{(2l+1)}{4\pi}\frac{(l-m)!}{(l+m)!}}G^-_{lm}
|
---|
| 103 | \f]
|
---|
| 104 | where
|
---|
| 105 | \f[G^+_{lm}(\cos{\theta})=-\left( \frac{l-m^2}{\sin^2{\theta}}+\frac{1}{2}l\left(l-1\right)\right)P_l^m(\cos{\theta})+\left(l+m\right)\frac{\cos{\theta}}{\sin^2{\theta}}P^m_{l-1}(\cos{\theta})
|
---|
| 106 | \f]
|
---|
| 107 | and
|
---|
| 108 | \f[G^-_{lm}(\cos{\theta})=\frac{m}{\sin^2{\theta}}\left(\left(l-1\right)\cos{\theta}P^m_l(\cos{\theta})-\left(l+m\right)P^m_{l-1}(\cos{\theta})\right)
|
---|
| 109 | \f]
|
---|
| 110 | \f$P_l^m\f$ are the associated Legendre polynomials.
|
---|
| 111 |
|
---|
| 112 | The coefficients express the theta-dependance of the \f$W_{lm}(\cos{\theta})\f$ and \f$X_{lm}(\cos{\theta})\f$ functions :
|
---|
| 113 | \f[W_{lm}(\cos{\theta}) = \sqrt{\frac{(l+2)!}{2(l-2)!}}_w\lambda_l^m(\cos{\theta})e^{im\phi}
|
---|
| 114 | \f]
|
---|
| 115 | \f[X_{lm}(\cos{\theta}) = -i\sqrt{\frac{(l+2)!}{2(l-2)!}}_x\lambda_l^m(\cos{\theta})e^{im\phi}
|
---|
| 116 | \f]
|
---|
| 117 | where \f$W_{lm}(\cos{\theta})\f$ and \f$X_{lm}(\cos{\theta})\f$ are defined as :
|
---|
| 118 |
|
---|
| 119 | \f[
|
---|
| 120 | W_{lm}(\cos{\theta})=-\frac{1}{2}\sqrt{\frac{(l+2)!}{(l-2)!}}\left(
|
---|
| 121 | _{+2}Y_l^m(\cos{\theta})+_{-2}Y_l^m(\cos{\theta})\right)
|
---|
| 122 | \f]
|
---|
| 123 | \f[X_{lm}(\cos{\theta})=-\frac{i}{2}\sqrt{\frac{(l+2)!}{(l-2)!}}\left(
|
---|
| 124 | _{+2}Y_l^m(\cos{\theta})-_{-2}Y_l^m(\cos{\theta})\right)
|
---|
| 125 | \f]
|
---|
| 126 |
|
---|
| 127 | */
|
---|
| 128 | class LambdaWXBuilder : public LambdaLMBuilder
|
---|
| 129 | {
|
---|
| 130 | public:
|
---|
| 131 |
|
---|
| 132 |
|
---|
| 133 | LambdaWXBuilder() {}
|
---|
| 134 |
|
---|
| 135 | LambdaWXBuilder(r_8 theta, int_4 lmax, int_4 mmax);
|
---|
| 136 |
|
---|
| 137 | /*! return the value of the coefficients \f$ _{w}\lambda_l^m\f$ and \f$_{x}\lambda_l^m\f$ */
|
---|
| 138 | inline void lam_wx(int l, int m, r_8& w, r_8& x) const
|
---|
| 139 | {
|
---|
| 140 | w=lamWlm_(l,m);
|
---|
| 141 | x=lamXlm_(l,m);
|
---|
| 142 | }
|
---|
| 143 |
|
---|
| 144 | private:
|
---|
| 145 |
|
---|
| 146 | void array_init();
|
---|
| 147 |
|
---|
| 148 |
|
---|
| 149 | TriangularMatrix<r_8> lamWlm_;
|
---|
| 150 | TriangularMatrix<r_8> lamXlm_;
|
---|
| 151 |
|
---|
| 152 |
|
---|
| 153 | };
|
---|
| 154 |
|
---|
| 155 | /*!
|
---|
| 156 |
|
---|
| 157 | This class generates the coefficients
|
---|
| 158 | \f[
|
---|
| 159 | _{\pm}\lambda_l^m=2\sqrt{\frac{(l-2)!}{(l+2)!}\frac{(2l+1)}{4\pi}\frac{(l-m)!}{(l+m)!}}\left( G^+_{lm} \mp G^-_{lm}\right)
|
---|
| 160 | \f]
|
---|
| 161 | where
|
---|
| 162 | \f[G^+_{lm}(\cos{\theta})=-\left( \frac{l-m^2}{\sin^2{\theta}}+\frac{1}{2}l\left(l-1\right)\right)P_l^m(\cos{\theta})+\left(l+m\right)\frac{\cos{\theta}}{\sin^2{\theta}}P^m_{l-1}(\cos{\theta})
|
---|
| 163 | \f]
|
---|
| 164 | and
|
---|
| 165 | \f[G^-_{lm}(\cos{\theta})=\frac{m}{\sin^2{\theta}}\left(\left(l-1\right)\cos{\theta}P^m_l(\cos{\theta})-\left(l+m\right)P^m_{l-1}(\cos{\theta})\right)
|
---|
| 166 | \f]
|
---|
| 167 | and \f$P_l^m\f$ are the associated Legendre polynomials.
|
---|
| 168 | The coefficients express the theta-dependance of the spin-2 spherical harmonics :
|
---|
| 169 | \f[_{\pm2}Y_l^m(\cos{\theta})=_\pm\lambda_l^m(\cos{\theta})e^{im\phi}
|
---|
| 170 | \f]
|
---|
| 171 | */
|
---|
| 172 | class LambdaPMBuilder : public LambdaLMBuilder
|
---|
| 173 | {
|
---|
| 174 | public:
|
---|
| 175 |
|
---|
| 176 | LambdaPMBuilder() {}
|
---|
| 177 |
|
---|
| 178 | LambdaPMBuilder(r_8 theta, int_4 lmax, int_4 mmax);
|
---|
| 179 | /*! return the value of the coefficients \f$ _{+}\lambda_l^m\f$ and \f$_{-}\lambda_l^m\f$ */
|
---|
| 180 | inline void lam_pm(int l, int m, r_8& lambda_plus, r_8& lambda_moins) const
|
---|
| 181 | {
|
---|
| 182 | lambda_plus = lamPlm_(l,m);
|
---|
| 183 | lambda_moins = lamMlm_(l,m);
|
---|
| 184 | }
|
---|
| 185 |
|
---|
| 186 | private:
|
---|
| 187 | void array_init();
|
---|
| 188 |
|
---|
| 189 | TriangularMatrix<r_8> lamPlm_;
|
---|
| 190 | TriangularMatrix<r_8> lamMlm_;
|
---|
| 191 |
|
---|
| 192 |
|
---|
| 193 |
|
---|
| 194 | };
|
---|
| 195 |
|
---|
| 196 | #endif
|
---|