1 | #ifndef LAMBDABUILDER_SEEN
|
---|
2 | #define LAMBDABUILDER_SEEN
|
---|
3 |
|
---|
4 | #include <math.h>
|
---|
5 | #include "ndatablock.h"
|
---|
6 | #include "tvector.h"
|
---|
7 | #include "alm.h"
|
---|
8 |
|
---|
9 | /*!
|
---|
10 | generate Legendre polynomials : use in two steps :
|
---|
11 |
|
---|
12 | a) instanciate Legendre(\f$x\f$, \f$lmax\f$) ; \f$x\f$ is the value for wich Legendre polynomials will be required (usually equal to \f$\cos \theta\f$) and \f$lmax\f$ is the MAXIMUM value of the order of polynomials wich will be required in the following code (all polynomials, from \f$l=0 to lmax\f$, are computed once for all by an iterative formula).
|
---|
13 |
|
---|
14 | b) get the value of Legendre polynomial for a particular value of \f$l\f$ by calling the method getPl.
|
---|
15 | */
|
---|
16 | class Legendre {
|
---|
17 |
|
---|
18 | public :
|
---|
19 | Legendre();
|
---|
20 | Legendre(r_8 x, int_4 lmax);
|
---|
21 | inline r_8 getPl(int_4 l)
|
---|
22 | {
|
---|
23 | if (l>lmax_)
|
---|
24 | {
|
---|
25 | throw (" illegal call of Legendre::getPl with index greater than lmax, which Legendre Class was instanciated with : instanciate Legendre with a greater lmax... ");
|
---|
26 | }
|
---|
27 | return Pl_(l);
|
---|
28 | }
|
---|
29 |
|
---|
30 | private :
|
---|
31 | /*! compute all \f$P_l(x,l_{max})\f$ for \f$l=1,l_{max}\f$ */
|
---|
32 | void array_init(int_4 lmax);
|
---|
33 |
|
---|
34 | r_8 x_;
|
---|
35 | int_4 lmax_;
|
---|
36 | TVector<r_8> Pl_;
|
---|
37 | };
|
---|
38 |
|
---|
39 |
|
---|
40 |
|
---|
41 | /*!
|
---|
42 | This class generate the coefficients :
|
---|
43 | \f[
|
---|
44 | \lambda_l^m=\sqrt{\frac{2l+1}{4\pi}\frac{(l-m)!}{(l+m)!}}
|
---|
45 | P_l^m(\cos{\theta})
|
---|
46 | \f]
|
---|
47 | where \f$P_l^m\f$ are the associated Legendre polynomials. The above coefficients contain the theta-dependance of spheric harmonics :
|
---|
48 | \f[
|
---|
49 | Y_{lm}(\cos{\theta})=\lambda_l^m(\cos{\theta}) e^{im\phi}.
|
---|
50 | \f]
|
---|
51 |
|
---|
52 | Each object has a fixed theta (radians), and maximum l and m to be calculated
|
---|
53 | (lmax and mmax).
|
---|
54 | use the class in two steps :
|
---|
55 | a) instanciate LambdaLMBuilder(\f$\theta\f$, \f$lmax\f$, \f$mmax\f$) ; \f$lmax\f$ and \f$mmax\f$ are MAXIMUM values for which \f$\lambda_l^m\f$ will be required in the following code (all coefficients, from \f$l=0 to lmax\f$, are computed once for all by an iterative formula).
|
---|
56 | b) get the values of coefficients for particular values of \f$l\f$ and \f$m\f$ by calling the method lamlm.
|
---|
57 | */
|
---|
58 | class LambdaLMBuilder {
|
---|
59 |
|
---|
60 | public:
|
---|
61 |
|
---|
62 | LambdaLMBuilder() {}
|
---|
63 | LambdaLMBuilder(r_8 theta,int_4 lmax, int_4 mmax);
|
---|
64 | ~LambdaLMBuilder() {};
|
---|
65 |
|
---|
66 | /*! return the value of the coefficient \f$ \lambda_l^m \f$ */
|
---|
67 | inline double lamlm(int l, int m) const { return lambda_(l,m); }
|
---|
68 |
|
---|
69 | private:
|
---|
70 | /*! compute a static array of coefficients independant from theta (common to all instances of the LambdaBuilder Class */
|
---|
71 | void updateArrayRecurrence(int_4 lmax);
|
---|
72 |
|
---|
73 | void array_init(int lmax, int mmax);
|
---|
74 |
|
---|
75 |
|
---|
76 | static TriangularMatrix<r_8>* a_recurrence_;
|
---|
77 | TriangularMatrix<r_8> lambda_;
|
---|
78 |
|
---|
79 | protected :
|
---|
80 |
|
---|
81 | /*! compute static arrays of coefficients independant from theta (common to all instances of the derived classes */
|
---|
82 | void updateArrayLamNorm();
|
---|
83 |
|
---|
84 | static TriangularMatrix<r_8>* lam_fact_;
|
---|
85 | static TVector<r_8>* normal_l_;
|
---|
86 | int_4 lmax_;
|
---|
87 | int_4 mmax_;
|
---|
88 | r_8 cth_;
|
---|
89 | r_8 sth_;
|
---|
90 |
|
---|
91 | };
|
---|
92 |
|
---|
93 |
|
---|
94 |
|
---|
95 | /*!
|
---|
96 |
|
---|
97 | This class generates the coefficients :
|
---|
98 | \f[
|
---|
99 | _{w}\lambda_l^m=-2\sqrt{\frac{2(l-2)!}{(l+2)!}\frac{(2l+1)}{4\pi}\frac{(l-m)!}{(l+m)!}} G^+_{lm}
|
---|
100 | \f]
|
---|
101 | \f[
|
---|
102 | _{x}\lambda_l^m=-2\sqrt{\frac{2(l-2)!}{(l+2)!}\frac{(2l+1)}{4\pi}\frac{(l-m)!}{(l+m)!}}G^-_{lm}
|
---|
103 | \f]
|
---|
104 | where
|
---|
105 | \f[G^+_{lm}(\cos{\theta})=-\left( \frac{l-m^2}{\sin^2{\theta}}+\frac{1}{2}l\left(l-1\right)\right)P_l^m(\cos{\theta})+\left(l+m\right)\frac{\cos{\theta}}{\sin^2{\theta}}P^m_{l-1}(\cos{\theta})
|
---|
106 | \f]
|
---|
107 | and
|
---|
108 | \f[G^-_{lm}(\cos{\theta})=\frac{m}{\sin^2{\theta}}\left(\left(l-1\right)\cos{\theta}P^m_l(\cos{\theta})-\left(l+m\right)P^m_{l-1}(\cos{\theta})\right)
|
---|
109 | \f]
|
---|
110 | \f$P_l^m\f$ are the associated Legendre polynomials.
|
---|
111 |
|
---|
112 | The coefficients express the theta-dependance of the \f$W_{lm}(\cos{\theta})\f$ and \f$X_{lm}(\cos{\theta})\f$ functions :
|
---|
113 | \f[W_{lm}(\cos{\theta}) = \sqrt{\frac{(l+2)!}{2(l-2)!}}_w\lambda_l^m(\cos{\theta})e^{im\phi}
|
---|
114 | \f]
|
---|
115 | \f[X_{lm}(\cos{\theta}) = -i\sqrt{\frac{(l+2)!}{2(l-2)!}}_x\lambda_l^m(\cos{\theta})e^{im\phi}
|
---|
116 | \f]
|
---|
117 | where \f$W_{lm}(\cos{\theta})\f$ and \f$X_{lm}(\cos{\theta})\f$ are defined as :
|
---|
118 |
|
---|
119 | \f[
|
---|
120 | W_{lm}(\cos{\theta})=-\frac{1}{2}\sqrt{\frac{(l+2)!}{(l-2)!}}\left(
|
---|
121 | _{+2}Y_l^m(\cos{\theta})+_{-2}Y_l^m(\cos{\theta})\right)
|
---|
122 | \f]
|
---|
123 | \f[X_{lm}(\cos{\theta})=-\frac{i}{2}\sqrt{\frac{(l+2)!}{(l-2)!}}\left(
|
---|
124 | _{+2}Y_l^m(\cos{\theta})-_{-2}Y_l^m(\cos{\theta})\right)
|
---|
125 | \f]
|
---|
126 |
|
---|
127 | */
|
---|
128 | class LambdaWXBuilder : public LambdaLMBuilder
|
---|
129 | {
|
---|
130 | public:
|
---|
131 |
|
---|
132 |
|
---|
133 | LambdaWXBuilder() {}
|
---|
134 |
|
---|
135 | LambdaWXBuilder(r_8 theta, int_4 lmax, int_4 mmax);
|
---|
136 |
|
---|
137 | /*! return the value of the coefficients \f$ _{w}\lambda_l^m\f$ and \f$_{x}\lambda_l^m\f$ */
|
---|
138 | inline void lam_wx(int l, int m, r_8& w, r_8& x) const
|
---|
139 | {
|
---|
140 | w=lamWlm_(l,m);
|
---|
141 | x=lamXlm_(l,m);
|
---|
142 | }
|
---|
143 |
|
---|
144 | private:
|
---|
145 |
|
---|
146 | void array_init();
|
---|
147 |
|
---|
148 |
|
---|
149 | TriangularMatrix<r_8> lamWlm_;
|
---|
150 | TriangularMatrix<r_8> lamXlm_;
|
---|
151 |
|
---|
152 |
|
---|
153 | };
|
---|
154 |
|
---|
155 | /*!
|
---|
156 |
|
---|
157 | This class generates the coefficients
|
---|
158 | \f[
|
---|
159 | _{\pm}\lambda_l^m=2\sqrt{\frac{(l-2)!}{(l+2)!}\frac{(2l+1)}{4\pi}\frac{(l-m)!}{(l+m)!}}\left( G^+_{lm} \mp G^-_{lm}\right)
|
---|
160 | \f]
|
---|
161 | where
|
---|
162 | \f[G^+_{lm}(\cos{\theta})=-\left( \frac{l-m^2}{\sin^2{\theta}}+\frac{1}{2}l\left(l-1\right)\right)P_l^m(\cos{\theta})+\left(l+m\right)\frac{\cos{\theta}}{\sin^2{\theta}}P^m_{l-1}(\cos{\theta})
|
---|
163 | \f]
|
---|
164 | and
|
---|
165 | \f[G^-_{lm}(\cos{\theta})=\frac{m}{\sin^2{\theta}}\left(\left(l-1\right)\cos{\theta}P^m_l(\cos{\theta})-\left(l+m\right)P^m_{l-1}(\cos{\theta})\right)
|
---|
166 | \f]
|
---|
167 | and \f$P_l^m\f$ are the associated Legendre polynomials.
|
---|
168 | The coefficients express the theta-dependance of the spin-2 spherical harmonics :
|
---|
169 | \f[_{\pm2}Y_l^m(\cos{\theta})=_\pm\lambda_l^m(\cos{\theta})e^{im\phi}
|
---|
170 | \f]
|
---|
171 | */
|
---|
172 | class LambdaPMBuilder : public LambdaLMBuilder
|
---|
173 | {
|
---|
174 | public:
|
---|
175 |
|
---|
176 | LambdaPMBuilder() {}
|
---|
177 |
|
---|
178 | LambdaPMBuilder(r_8 theta, int_4 lmax, int_4 mmax);
|
---|
179 | /*! return the value of the coefficients \f$ _{+}\lambda_l^m\f$ and \f$_{-}\lambda_l^m\f$ */
|
---|
180 | inline void lam_pm(int l, int m, r_8& lambda_plus, r_8& lambda_moins) const
|
---|
181 | {
|
---|
182 | lambda_plus = lamPlm_(l,m);
|
---|
183 | lambda_moins = lamMlm_(l,m);
|
---|
184 | }
|
---|
185 |
|
---|
186 | private:
|
---|
187 | void array_init();
|
---|
188 |
|
---|
189 | TriangularMatrix<r_8> lamPlm_;
|
---|
190 | TriangularMatrix<r_8> lamMlm_;
|
---|
191 |
|
---|
192 |
|
---|
193 |
|
---|
194 | };
|
---|
195 |
|
---|
196 | #endif
|
---|