| 1 | #ifndef LAMBDABUILDER_SEEN
 | 
|---|
| 2 | #define LAMBDABUILDER_SEEN
 | 
|---|
| 3 | 
 | 
|---|
| 4 | #include <math.h>
 | 
|---|
| 5 | #include "ndatablock.h"
 | 
|---|
| 6 | #include "tvector.h" 
 | 
|---|
| 7 | #include "alm.h"
 | 
|---|
| 8 | 
 | 
|---|
| 9 | /*! 
 | 
|---|
| 10 | generate Legendre polynomials : use in two steps : 
 | 
|---|
| 11 | 
 | 
|---|
| 12 | a) instanciate Legendre(\f$x\f$, \f$lmax\f$) ; \f$x\f$ is the value for wich Legendre polynomials will be required (usually equal to \f$\cos \theta\f$) and \f$lmax\f$ is the MAXIMUM value of the order of polynomials wich will be required in the following code (all polynomials, from \f$l=0 to lmax\f$, are computed once for all by an iterative formula).
 | 
|---|
| 13 | 
 | 
|---|
| 14 | b) get the value of Legendre polynomial for a particular value of \f$l\f$ by calling the method getPl.
 | 
|---|
| 15 | */
 | 
|---|
| 16 | class Legendre {
 | 
|---|
| 17 | 
 | 
|---|
| 18 |  public :
 | 
|---|
| 19 | Legendre();
 | 
|---|
| 20 | Legendre(r_8 x, int_4 lmax);
 | 
|---|
| 21 |  inline r_8 getPl(int_4 l) 
 | 
|---|
| 22 | {
 | 
|---|
| 23 |   if (l>lmax_) 
 | 
|---|
| 24 |     {
 | 
|---|
| 25 |       throw (" illegal call of Legendre::getPl with index greater than lmax, which Legendre Class was instanciated with : instanciate Legendre with a greater lmax... ");
 | 
|---|
| 26 |     }
 | 
|---|
| 27 | return Pl_(l);
 | 
|---|
| 28 | }
 | 
|---|
| 29 | 
 | 
|---|
| 30 |  private : 
 | 
|---|
| 31 |    /*! compute all \f$P_l(x,l_{max})\f$ for \f$l=1,l_{max}\f$ */
 | 
|---|
| 32 |   void array_init(int_4 lmax);
 | 
|---|
| 33 | 
 | 
|---|
| 34 |   r_8 x_;
 | 
|---|
| 35 |   int_4 lmax_;
 | 
|---|
| 36 |   TVector<r_8> Pl_;
 | 
|---|
| 37 | };
 | 
|---|
| 38 | 
 | 
|---|
| 39 | 
 | 
|---|
| 40 | 
 | 
|---|
| 41 | /*! 
 | 
|---|
| 42 | This class generate the coefficients :
 | 
|---|
| 43 | \f[
 | 
|---|
| 44 |             \lambda_l^m=\sqrt{\frac{2l+1}{4\pi}\frac{(l-m)!}{(l+m)!}}
 | 
|---|
| 45 |             P_l^m(\cos{\theta})
 | 
|---|
| 46 | \f]
 | 
|---|
| 47 | where \f$P_l^m\f$ are the associated Legendre polynomials.  The above coefficients contain the theta-dependance of spheric harmonics : 
 | 
|---|
| 48 | \f[
 | 
|---|
| 49 |             Y_{lm}(\cos{\theta})=\lambda_l^m(\cos{\theta}) e^{im\phi}.
 | 
|---|
| 50 | \f]
 | 
|---|
| 51 | 
 | 
|---|
| 52 | Each object has a fixed theta (radians), and maximum l and m to be calculated
 | 
|---|
| 53 | (lmax and mmax).
 | 
|---|
| 54 |  use the class in two steps : 
 | 
|---|
| 55 | a) instanciate  LambdaLMBuilder(\f$\theta\f$, \f$lmax\f$, \f$mmax\f$) ;  \f$lmax\f$ and \f$mmax\f$ are  MAXIMUM values for which \f$\lambda_l^m\f$ will be required in the following code (all coefficients, from \f$l=0 to lmax\f$, are computed once for all by an iterative formula).
 | 
|---|
| 56 | b) get the values of coefficients for  particular values of \f$l\f$ and \f$m\f$ by calling the method lamlm.
 | 
|---|
| 57 | */
 | 
|---|
| 58 |  class LambdaLMBuilder {
 | 
|---|
| 59 | 
 | 
|---|
| 60 |  public:
 | 
|---|
| 61 | 
 | 
|---|
| 62 | LambdaLMBuilder() {}
 | 
|---|
| 63 | LambdaLMBuilder(r_8 theta,int_4 lmax, int_4 mmax);
 | 
|---|
| 64 |  ~LambdaLMBuilder() {};
 | 
|---|
| 65 | 
 | 
|---|
| 66 |  /*! return the value of the coefficient \f$  \lambda_l^m \f$ */
 | 
|---|
| 67 | inline double lamlm(int l, int m) const { return lambda_(l,m); }
 | 
|---|
| 68 | 
 | 
|---|
| 69 |  private:
 | 
|---|
| 70 | /*! compute a static array of coefficients independant from theta (common to all instances of the LambdaBuilder Class */
 | 
|---|
| 71 |  void updateArrayRecurrence(int_4 lmax);
 | 
|---|
| 72 | 
 | 
|---|
| 73 |  void array_init(int lmax, int mmax);
 | 
|---|
| 74 | 
 | 
|---|
| 75 | 
 | 
|---|
| 76 |  static TriangularMatrix<r_8>* a_recurrence_;
 | 
|---|
| 77 |  TriangularMatrix<r_8> lambda_;
 | 
|---|
| 78 | 
 | 
|---|
| 79 |  protected :
 | 
|---|
| 80 | 
 | 
|---|
| 81 | /*! compute  static arrays of coefficients independant from theta (common to all instances of the derived  classes */
 | 
|---|
| 82 |  void updateArrayLamNorm();
 | 
|---|
| 83 | 
 | 
|---|
| 84 |  static  TriangularMatrix<r_8>* lam_fact_;
 | 
|---|
| 85 |  static  TVector<r_8>*  normal_l_;
 | 
|---|
| 86 |  int_4 lmax_;
 | 
|---|
| 87 |  int_4 mmax_;
 | 
|---|
| 88 |  r_8 cth_;
 | 
|---|
| 89 |  r_8 sth_;
 | 
|---|
| 90 |  
 | 
|---|
| 91 |  };
 | 
|---|
| 92 | 
 | 
|---|
| 93 | 
 | 
|---|
| 94 | 
 | 
|---|
| 95 | /*! 
 | 
|---|
| 96 | 
 | 
|---|
| 97 | This class generates the coefficients :
 | 
|---|
| 98 | \f[
 | 
|---|
| 99 |             _{w}\lambda_l^m=-2\sqrt{\frac{2(l-2)!}{(l+2)!}\frac{(2l+1)}{4\pi}\frac{(l-m)!}{(l+m)!}} G^+_{lm}
 | 
|---|
| 100 | \f]
 | 
|---|
| 101 | \f[
 | 
|---|
| 102 |             _{x}\lambda_l^m=-2\sqrt{\frac{2(l-2)!}{(l+2)!}\frac{(2l+1)}{4\pi}\frac{(l-m)!}{(l+m)!}}G^-_{lm}
 | 
|---|
| 103 | \f]
 | 
|---|
| 104 | where
 | 
|---|
| 105 | \f[G^+_{lm}(\cos{\theta})=-\left( \frac{l-m^2}{\sin^2{\theta}}+\frac{1}{2}l\left(l-1\right)\right)P_l^m(\cos{\theta})+\left(l+m\right)\frac{\cos{\theta}}{\sin^2{\theta}}P^m_{l-1}(\cos{\theta})
 | 
|---|
| 106 | \f]
 | 
|---|
| 107 | and
 | 
|---|
| 108 | \f[G^-_{lm}(\cos{\theta})=\frac{m}{\sin^2{\theta}}\left(\left(l-1\right)\cos{\theta}P^m_l(\cos{\theta})-\left(l+m\right)P^m_{l-1}(\cos{\theta})\right)
 | 
|---|
| 109 | \f]
 | 
|---|
| 110 |  \f$P_l^m\f$ are the associated Legendre polynomials.
 | 
|---|
| 111 | 
 | 
|---|
| 112 | The coefficients express the theta-dependance of the \f$W_{lm}(\cos{\theta})\f$ and \f$X_{lm}(\cos{\theta})\f$ functions :
 | 
|---|
| 113 | \f[W_{lm}(\cos{\theta}) = \sqrt{\frac{(l+2)!}{2(l-2)!}}_w\lambda_l^m(\cos{\theta})e^{im\phi}
 | 
|---|
| 114 | \f]
 | 
|---|
| 115 | \f[X_{lm}(\cos{\theta}) = -i\sqrt{\frac{(l+2)!}{2(l-2)!}}_x\lambda_l^m(\cos{\theta})e^{im\phi}
 | 
|---|
| 116 | \f]
 | 
|---|
| 117 |  where \f$W_{lm}(\cos{\theta})\f$ and \f$X_{lm}(\cos{\theta})\f$ are defined as :
 | 
|---|
| 118 | 
 | 
|---|
| 119 | \f[
 | 
|---|
| 120 | W_{lm}(\cos{\theta})=-\frac{1}{2}\sqrt{\frac{(l+2)!}{(l-2)!}}\left(
 | 
|---|
| 121 | _{+2}Y_l^m(\cos{\theta})+_{-2}Y_l^m(\cos{\theta})\right)
 | 
|---|
| 122 | \f]
 | 
|---|
| 123 | \f[X_{lm}(\cos{\theta})=-\frac{i}{2}\sqrt{\frac{(l+2)!}{(l-2)!}}\left(
 | 
|---|
| 124 | _{+2}Y_l^m(\cos{\theta})-_{-2}Y_l^m(\cos{\theta})\right)
 | 
|---|
| 125 | \f]
 | 
|---|
| 126 | 
 | 
|---|
| 127 | */
 | 
|---|
| 128 | class LambdaWXBuilder : public LambdaLMBuilder
 | 
|---|
| 129 | {
 | 
|---|
| 130 |  public:
 | 
|---|
| 131 | 
 | 
|---|
| 132 | 
 | 
|---|
| 133 | LambdaWXBuilder() {}
 | 
|---|
| 134 | 
 | 
|---|
| 135 | LambdaWXBuilder(r_8 theta, int_4 lmax, int_4 mmax);
 | 
|---|
| 136 |  
 | 
|---|
| 137 |  /*! return the value of the coefficients \f$ _{w}\lambda_l^m\f$ and \f$_{x}\lambda_l^m\f$ */
 | 
|---|
| 138 | inline void lam_wx(int l, int m, r_8& w, r_8& x) const
 | 
|---|
| 139 |    {
 | 
|---|
| 140 |      w=lamWlm_(l,m);
 | 
|---|
| 141 |      x=lamXlm_(l,m);
 | 
|---|
| 142 |    }
 | 
|---|
| 143 | 
 | 
|---|
| 144 |  private:
 | 
|---|
| 145 | 
 | 
|---|
| 146 |  void array_init();
 | 
|---|
| 147 | 
 | 
|---|
| 148 | 
 | 
|---|
| 149 |   TriangularMatrix<r_8> lamWlm_;
 | 
|---|
| 150 |   TriangularMatrix<r_8> lamXlm_;
 | 
|---|
| 151 |   
 | 
|---|
| 152 | 
 | 
|---|
| 153 | };
 | 
|---|
| 154 | 
 | 
|---|
| 155 | /*! 
 | 
|---|
| 156 | 
 | 
|---|
| 157 | This class generates the coefficients
 | 
|---|
| 158 | \f[
 | 
|---|
| 159 |             _{\pm}\lambda_l^m=2\sqrt{\frac{(l-2)!}{(l+2)!}\frac{(2l+1)}{4\pi}\frac{(l-m)!}{(l+m)!}}\left( G^+_{lm} \mp G^-_{lm}\right)
 | 
|---|
| 160 | \f]
 | 
|---|
| 161 | where
 | 
|---|
| 162 | \f[G^+_{lm}(\cos{\theta})=-\left( \frac{l-m^2}{\sin^2{\theta}}+\frac{1}{2}l\left(l-1\right)\right)P_l^m(\cos{\theta})+\left(l+m\right)\frac{\cos{\theta}}{\sin^2{\theta}}P^m_{l-1}(\cos{\theta})
 | 
|---|
| 163 | \f]
 | 
|---|
| 164 | and
 | 
|---|
| 165 | \f[G^-_{lm}(\cos{\theta})=\frac{m}{\sin^2{\theta}}\left(\left(l-1\right)\cos{\theta}P^m_l(\cos{\theta})-\left(l+m\right)P^m_{l-1}(\cos{\theta})\right)
 | 
|---|
| 166 | \f]
 | 
|---|
| 167 | and \f$P_l^m\f$ are the associated Legendre polynomials.
 | 
|---|
| 168 | The coefficients express the theta-dependance of the  spin-2 spherical harmonics :
 | 
|---|
| 169 | \f[_{\pm2}Y_l^m(\cos{\theta})=_\pm\lambda_l^m(\cos{\theta})e^{im\phi}
 | 
|---|
| 170 | \f]
 | 
|---|
| 171 | */
 | 
|---|
| 172 | class LambdaPMBuilder : public LambdaLMBuilder
 | 
|---|
| 173 | {
 | 
|---|
| 174 |  public:
 | 
|---|
| 175 | 
 | 
|---|
| 176 | LambdaPMBuilder() {}
 | 
|---|
| 177 | 
 | 
|---|
| 178 |  LambdaPMBuilder(r_8 theta, int_4 lmax, int_4 mmax);
 | 
|---|
| 179 |  /*! return the value of the coefficients \f$ _{+}\lambda_l^m\f$ and \f$_{-}\lambda_l^m\f$ */
 | 
|---|
| 180 | inline void lam_pm(int l, int m, r_8& lambda_plus, r_8& lambda_moins) const
 | 
|---|
| 181 |    {
 | 
|---|
| 182 |       lambda_plus = lamPlm_(l,m);
 | 
|---|
| 183 |      lambda_moins = lamMlm_(l,m);
 | 
|---|
| 184 |    }
 | 
|---|
| 185 | 
 | 
|---|
| 186 |  private:
 | 
|---|
| 187 |  void array_init();
 | 
|---|
| 188 | 
 | 
|---|
| 189 |   TriangularMatrix<r_8> lamPlm_;
 | 
|---|
| 190 |   TriangularMatrix<r_8> lamMlm_;
 | 
|---|
| 191 | 
 | 
|---|
| 192 | 
 | 
|---|
| 193 | 
 | 
|---|
| 194 | };
 | 
|---|
| 195 | 
 | 
|---|
| 196 | #endif
 | 
|---|