[228] | 1 | //
|
---|
| 2 | #include "spheregorski.h"
|
---|
| 3 | #include "strutil.h"
|
---|
| 4 | extern "C" {
|
---|
| 5 | #include <stdio.h>
|
---|
| 6 | #include <stdlib.h>
|
---|
| 7 | #include <unistd.h>
|
---|
| 8 | }
|
---|
| 9 |
|
---|
| 10 | extern "C" {
|
---|
| 11 | //void ang2pix_ring_(int&,double&,double&,int&);
|
---|
| 12 | //void pix2ang_ring_(int&, int&, double&, double&);
|
---|
| 13 | //void ang2pix_nest_(int&,double&,double&,int&);
|
---|
| 14 | //void pix2ang_nest_(int&, int&, double&, double&);
|
---|
| 15 | //void nest2ring_(int&, int&, int&);
|
---|
| 16 | //void ring2nest_(int&, int&, int&);
|
---|
| 17 | void anafast_(int&, int&, int&,double&,float*,float*,float*,float*,
|
---|
| 18 | float*,float*,float*);
|
---|
| 19 | void synfast_(int&, int&, int&,int&, float&,float*,float*,float*,
|
---|
| 20 | double*, double*,double*,double*,double*,float*);
|
---|
| 21 | void input_map_(char*,float*,int&);
|
---|
| 22 | void ecrire_fits_(int&,int&,int&,float*,char*,char*,int&,float&,float&);
|
---|
| 23 |
|
---|
| 24 | }
|
---|
| 25 | //*******************************************************************
|
---|
| 26 | //++
|
---|
| 27 | // Class SphereGorski
|
---|
| 28 | //
|
---|
| 29 | // include spheregorski.h strutil.h
|
---|
| 30 | //
|
---|
| 31 | // Pixelisation Gorski
|
---|
| 32 | //
|
---|
| 33 | //
|
---|
| 34 | //| -----------------------------------------------------------------------
|
---|
| 35 | //| version 0.8.2 Aug97 TAC Eric Hivon, Kris Gorski
|
---|
| 36 | //| -----------------------------------------------------------------------
|
---|
| 37 | //
|
---|
| 38 | // the sphere is split in 12 diamond-faces containing nside**2 pixels each
|
---|
| 39 | //
|
---|
| 40 | // the numbering of the pixels (in the nested scheme) is similar to
|
---|
| 41 | // quad-cube
|
---|
| 42 | // In each face the first pixel is in the lowest corner of the diamond
|
---|
| 43 | //
|
---|
| 44 | // the faces are (x,y) coordinate on each face
|
---|
| 45 | //| . . . . <--- North Pole
|
---|
| 46 | //| / \ / \ / \ / \ ^ ^
|
---|
| 47 | //| . 0 . 1 . 2 . 3 . <--- z = 2/3 \ /
|
---|
| 48 | //| \ / \ / \ / \ / y \ / x
|
---|
| 49 | //| 4 . 5 . 6 . 7 . 4 <--- equator \ /
|
---|
| 50 | //| / \ / \ / \ / \ \/
|
---|
| 51 | //| . 8 . 9 .10 .11 . <--- z = -2/3 (0,0) : lowest corner
|
---|
| 52 | //| \ / \ / \ / \ /
|
---|
| 53 | //| . . . . <--- South Pole
|
---|
| 54 | //|
|
---|
| 55 | // phi:0 2Pi
|
---|
| 56 | //
|
---|
| 57 | // in the ring scheme pixels are numbered along the parallels
|
---|
| 58 | // the first parallel is the one closest to the north pole and so on
|
---|
| 59 | // on each parallel, pixels are numbered starting from the one closest
|
---|
| 60 | // to phi = 0
|
---|
| 61 | //
|
---|
| 62 | // nside DOIT OBLIGATOIREMENT ETRE UNE PUISSANCE DE 2 (<= 8192)
|
---|
| 63 | //--
|
---|
| 64 | //++
|
---|
| 65 | //
|
---|
| 66 | // Links Parents
|
---|
| 67 | //
|
---|
| 68 | // SphericalMap
|
---|
| 69 | //--
|
---|
| 70 | //++
|
---|
| 71 | //
|
---|
| 72 | // Links Descendants
|
---|
| 73 | //
|
---|
| 74 | //
|
---|
| 75 | //--
|
---|
| 76 |
|
---|
| 77 | /* --Methode-- */
|
---|
| 78 | //++
|
---|
| 79 | // Titre Constructeurs
|
---|
| 80 | //--
|
---|
| 81 | //++
|
---|
| 82 |
|
---|
| 83 | SphereGorski::SphereGorski()
|
---|
| 84 |
|
---|
| 85 | //--
|
---|
| 86 | {
|
---|
| 87 | InitNul();
|
---|
| 88 | }
|
---|
| 89 |
|
---|
| 90 | /* --Methode-- */
|
---|
| 91 | //++
|
---|
| 92 | SphereGorski::SphereGorski(char* flnm)
|
---|
| 93 |
|
---|
| 94 | // Constructeur : charge une image à partir d'un fichier
|
---|
| 95 | //--
|
---|
| 96 | {
|
---|
| 97 | InitNul();
|
---|
| 98 | PInPersist s(flnm);
|
---|
| 99 | Read(s);
|
---|
| 100 | }
|
---|
| 101 |
|
---|
| 102 | //++
|
---|
| 103 | SphereGorski::SphereGorski(int_4 m)
|
---|
| 104 |
|
---|
| 105 | // Constructeur : m est la variable nside de l'algorithme de Gorski
|
---|
| 106 | // le nombre total de pixels sera Npix = 12*nside**2
|
---|
| 107 | // m DOIT OBLIGATOIREMENT ETRE UNE PUISSANCE DE 2 (<= 8192)
|
---|
| 108 | //--
|
---|
| 109 | {
|
---|
| 110 | //printf(" initialisation par defaut SphereGorski \n");
|
---|
| 111 | if (m<=0 || m> 8192) {
|
---|
| 112 | cout << "SphereGorski : m hors bornes [0,8192], m= " << m << endl;
|
---|
| 113 | exit(1);
|
---|
| 114 | }
|
---|
| 115 | // verifier que m est une puissance de deux
|
---|
| 116 | int_4 x=m;
|
---|
| 117 | while (x%2==0) x/=2;
|
---|
| 118 | if (x!=1) {
|
---|
| 119 | cout << "SphereGorski : m doit etre une puissance de deux, m= " << m << endl;
|
---|
| 120 | exit(1);
|
---|
| 121 | }
|
---|
| 122 |
|
---|
| 123 | InitNul();
|
---|
| 124 | Pixelize(m);
|
---|
| 125 | if (pix2x_==NULL) {
|
---|
| 126 | pix2x_=new int[1024];
|
---|
| 127 | pix2y_=new int[1024];
|
---|
| 128 | mk_pix2xy(pix2x_,pix2y_);
|
---|
| 129 | }
|
---|
| 130 | if (x2pix_==NULL) {
|
---|
| 131 | x2pix_=new int[128];
|
---|
| 132 | y2pix_=new int[128];
|
---|
| 133 | mk_xy2pix(x2pix_,y2pix_);
|
---|
| 134 | }
|
---|
| 135 | }
|
---|
| 136 |
|
---|
| 137 |
|
---|
| 138 |
|
---|
| 139 |
|
---|
| 140 |
|
---|
| 141 |
|
---|
| 142 | //++
|
---|
| 143 | // Titre Destructeur
|
---|
| 144 | //--
|
---|
| 145 | //++
|
---|
| 146 | SphereGorski::~SphereGorski()
|
---|
| 147 |
|
---|
| 148 | //--
|
---|
| 149 | {
|
---|
| 150 | Clear();
|
---|
| 151 | }
|
---|
| 152 |
|
---|
| 153 | //++
|
---|
| 154 | // Titre Méthodes
|
---|
| 155 | //--
|
---|
| 156 |
|
---|
| 157 |
|
---|
| 158 |
|
---|
| 159 |
|
---|
| 160 | void SphereGorski::Pixelize( int_4 m)
|
---|
| 161 |
|
---|
| 162 | // prépare la pixelisation Gorski (m a la même signification
|
---|
| 163 | // que pour le constructeur)
|
---|
| 164 | //
|
---|
| 165 | //
|
---|
| 166 | //--
|
---|
| 167 | {
|
---|
| 168 |
|
---|
| 169 | // On memorise les arguments d'appel
|
---|
| 170 | nSide_ = m;
|
---|
| 171 |
|
---|
| 172 |
|
---|
| 173 | // Nombre total de pixels sur la sphere entiere
|
---|
| 174 | nPix_=12*nSide_*nSide_;
|
---|
| 175 |
|
---|
| 176 | // pour le moment les tableaux qui suivent seront ranges dans l'ordre
|
---|
| 177 | // de l'indexation GORSKY "RING"
|
---|
| 178 | // on pourra ulterieurement changer de strategie et tirer profit
|
---|
| 179 | // de la dualite d'indexation GORSKY (RING er NEST) : tout dependra
|
---|
| 180 | // de pourquoi c'est faire
|
---|
| 181 |
|
---|
| 182 | // Creation et initialisation du vecteur des contenus des pixels
|
---|
| 183 | mPix_ = new r_8[nPix_];
|
---|
| 184 | for(int i=0; i<nPix_; i++) mPix_[i] = 0.;
|
---|
| 185 |
|
---|
| 186 | // solid angle per pixel
|
---|
| 187 | omeg_=4*Pi/nPix_;
|
---|
| 188 | }
|
---|
| 189 |
|
---|
| 190 | void SphereGorski::InitNul()
|
---|
| 191 | //
|
---|
| 192 | // initialise à zéro les variables de classe
|
---|
| 193 | {
|
---|
| 194 | nlmax_=0;
|
---|
| 195 | nmmax_=0;
|
---|
| 196 | iseed_=0;
|
---|
| 197 | fwhm_=0.;
|
---|
| 198 | quadrupole_=0.;
|
---|
| 199 | sym_cut_deg_=0.;
|
---|
| 200 | for (int k=0; k<128;k++) powFile_[k]=' ';
|
---|
| 201 | nSide_=0;
|
---|
| 202 | nPix_ =0;
|
---|
| 203 | mPix_ = NULL;
|
---|
| 204 | pix2x_=NULL;
|
---|
| 205 | pix2y_=NULL;
|
---|
| 206 | x2pix_=NULL;
|
---|
| 207 | y2pix_=NULL;
|
---|
| 208 | pix2xy_=NULL;
|
---|
| 209 | }
|
---|
| 210 | /* --Methode-- */
|
---|
| 211 | void SphereGorski::Clear()
|
---|
| 212 |
|
---|
| 213 | {
|
---|
| 214 | if (mPix_) delete[] mPix_;
|
---|
| 215 | if (pix2x_) delete[] pix2x_;
|
---|
| 216 | if (pix2y_) delete[] pix2y_;
|
---|
| 217 | if (x2pix_) delete[] x2pix_;
|
---|
| 218 | if (y2pix_) delete[] y2pix_;
|
---|
| 219 | if (pix2xy_) delete pix2xy_;
|
---|
| 220 | }
|
---|
| 221 | //++
|
---|
| 222 | void SphereGorski::WriteSelf(POutPersist& s) const
|
---|
| 223 |
|
---|
| 224 | // créer un fichier image
|
---|
| 225 | //--
|
---|
| 226 | {
|
---|
| 227 | char strg[256];
|
---|
| 228 | if (mInfo_) sprintf(strg, "SphereGorski: NSlices=%6d NPix=%9d HasInfo",
|
---|
| 229 | (int_4)nSide_, (int_4)nPix_);
|
---|
| 230 | else
|
---|
| 231 | sprintf(strg, "SphereGorski: nSide=%6d nPix=%9d ",
|
---|
| 232 | (int_4)nSide_, (int_4)nPix_);
|
---|
| 233 | s.PutLine(strg);
|
---|
| 234 | if (mInfo_) mInfo_->Write(s);
|
---|
| 235 | s.PutI4(nlmax_);
|
---|
| 236 | s.PutI4(nmmax_);
|
---|
| 237 | s.PutI4(iseed_);
|
---|
| 238 | s.PutI4(nSide_);
|
---|
| 239 | s.PutI4(nPix_);
|
---|
| 240 | s.PutR4(fwhm_);
|
---|
| 241 | s.PutR4(quadrupole_);
|
---|
| 242 | s.PutR4(sym_cut_deg_);
|
---|
| 243 | s.PutR8(omeg_);
|
---|
| 244 | s.PutR8s(mPix_, nPix_);
|
---|
| 245 | s.PutLine(powFile_);
|
---|
| 246 | return;
|
---|
| 247 | }
|
---|
| 248 |
|
---|
| 249 | /* --Methode-- */
|
---|
| 250 | //++
|
---|
| 251 | void SphereGorski::ReadSelf(PInPersist& s)
|
---|
| 252 |
|
---|
| 253 | // relit un fichier d'image
|
---|
| 254 | //--
|
---|
| 255 | {
|
---|
| 256 | Clear();
|
---|
| 257 | char strg[256];
|
---|
| 258 | s.GetLine(strg, 255);
|
---|
| 259 | // Pour savoir s'il y avait un DVList Info associe
|
---|
| 260 | bool hadinfo = false;
|
---|
| 261 | if (strncmp(strg+strlen(strg)-7, "HasInfo", 7) == 0) hadinfo = true;
|
---|
| 262 | if (hadinfo) { // Lecture eventuelle du DVList Info
|
---|
| 263 | if (mInfo_ == NULL) mInfo_ = new DVList;
|
---|
| 264 | mInfo_->Read(s);
|
---|
| 265 | }
|
---|
| 266 | s.GetI4(nlmax_);
|
---|
| 267 | s.GetI4(nmmax_);
|
---|
| 268 | s.GetI4(iseed_);
|
---|
| 269 | s.GetI4(nSide_);
|
---|
| 270 | s.GetI4(nPix_);
|
---|
| 271 | s.GetR4(fwhm_);
|
---|
| 272 | s.GetR4(quadrupole_);
|
---|
| 273 | s.GetR4(sym_cut_deg_);
|
---|
| 274 | mPix_=new r_8[nPix_];
|
---|
| 275 | s.GetR8(omeg_);
|
---|
| 276 | s.GetR8s(mPix_, nPix_);
|
---|
| 277 | s.GetLine(powFile_, 127);
|
---|
| 278 |
|
---|
| 279 | return;
|
---|
| 280 | }
|
---|
| 281 |
|
---|
| 282 |
|
---|
| 283 | /* --Methode-- */
|
---|
| 284 | //++
|
---|
| 285 | void SphereGorski::ReadFits(char flnm[])
|
---|
| 286 |
|
---|
| 287 | // remplit la sphere a partir d'un fichier FITS
|
---|
| 288 | //--
|
---|
| 289 | {
|
---|
| 290 | strip(flnm,'B',' ');
|
---|
| 291 | if (access(flnm,F_OK) != 0) {perror(flnm); exit(1);}
|
---|
| 292 | if(!nPix_) {
|
---|
| 293 | cout << " ReadFits : SphereGorski non pixelisee " << endl;
|
---|
| 294 | exit(1);
|
---|
| 295 | }
|
---|
| 296 | int npixtot=nPix_;
|
---|
| 297 |
|
---|
| 298 | // quand map et mPix_ auront le meme type, map ne sera plus necessaire
|
---|
| 299 |
|
---|
| 300 | float* map=new float[12*nSide_*nSide_];
|
---|
| 301 | input_map_(flnm,map,npixtot);
|
---|
| 302 | // Remplissage de la sphère
|
---|
| 303 |
|
---|
| 304 | for(int j=0; j<nPix_; j++ ) mPix_[j]=(r_8)map[j];
|
---|
| 305 | delete [] map;
|
---|
| 306 |
|
---|
| 307 |
|
---|
| 308 | }
|
---|
| 309 |
|
---|
| 310 | /* --Methode-- */
|
---|
| 311 | //++
|
---|
| 312 | void SphereGorski::WriteFits(char flnm[])
|
---|
| 313 |
|
---|
| 314 | // ecrit la sphere sur un fichier FITS
|
---|
| 315 |
|
---|
| 316 | //--
|
---|
| 317 | {
|
---|
| 318 | strip(flnm,'B',' ');
|
---|
| 319 | if (access(flnm,F_OK) == 0) {
|
---|
| 320 | cout << " SphereGorski::WriteFits : le fichier existe deja" << endl;
|
---|
| 321 | exit(1);
|
---|
| 322 | }
|
---|
| 323 | //else cout << "un fichier sera cree " << endl;
|
---|
| 324 | if(!nPix_) {
|
---|
| 325 | cout << " WriteFits : SphereGorski non pixelisee " << endl;
|
---|
| 326 | exit(1);
|
---|
| 327 | }
|
---|
| 328 |
|
---|
| 329 |
|
---|
| 330 | char infile[128];
|
---|
| 331 | for (int k=0; k< 128; k++) infile[k]=powFile_[k];
|
---|
| 332 |
|
---|
| 333 | // quand map et mPix_ auront le meme type, map ne sera plus necessaire
|
---|
| 334 |
|
---|
| 335 | float* map=new float[12*nSide_*nSide_];
|
---|
| 336 |
|
---|
| 337 | for(int j=0; j<nPix_; j++ ) map[j]=(float)mPix_[j];
|
---|
| 338 | int nlmax=nlmax_;
|
---|
| 339 | int nsmax=nSide_;
|
---|
| 340 | int nmmax=nmmax_;
|
---|
| 341 | int iseed=iseed_;
|
---|
| 342 | float fwhm=fwhm_;
|
---|
| 343 | float quadrupole=quadrupole_;
|
---|
| 344 | ecrire_fits_(nlmax,nsmax,nmmax,map,infile,flnm,iseed,fwhm,quadrupole);
|
---|
| 345 | delete [] map;
|
---|
| 346 |
|
---|
| 347 | }
|
---|
| 348 |
|
---|
| 349 | /* --Methode-- */
|
---|
| 350 | //++
|
---|
| 351 | int_4 SphereGorski::NbPixels() const
|
---|
| 352 |
|
---|
| 353 | // Retourne le nombre de pixels du découpage
|
---|
| 354 | //--
|
---|
| 355 | {
|
---|
| 356 | return(nPix_);
|
---|
| 357 | }
|
---|
| 358 |
|
---|
| 359 | //++
|
---|
| 360 | int_4 SphereGorski::NbThetaSlices() const
|
---|
| 361 |
|
---|
| 362 | // Retourne le nombre de tranches en theta sur la sphere
|
---|
| 363 | //--
|
---|
| 364 | {return int_4(4*nSide_-1);}
|
---|
| 365 |
|
---|
| 366 |
|
---|
| 367 | //++
|
---|
| 368 | void SphereGorski::GetThetaSlice(int_4 index, r_4& theta, Vector& phi, Vector& value) const
|
---|
| 369 |
|
---|
| 370 | // Retourne, pour la tranche en theta d'indice 'index' le theta
|
---|
| 371 | // correspondant, un vecteur (Peida) contenant les phi des pixels de
|
---|
| 372 | // la tranche, un vecteur (Peida) contenant les valeurs de pixel
|
---|
| 373 | // correspondantes
|
---|
| 374 | //--
|
---|
| 375 | {
|
---|
| 376 |
|
---|
| 377 | cout << "entree GetThetaSlice, couche no " << index << endl;
|
---|
| 378 | if (index<0 || index > NbThetaSlices()) {
|
---|
| 379 | // THROW(out_of_range("SphereGorski::PIxVal Pixel index out of range"));
|
---|
| 380 | cout << " SphereGorski::GetThetaSlice : exceptions a mettre en place" <<endl;
|
---|
| 381 | THROW(rangeCheckErr);
|
---|
| 382 | }
|
---|
| 383 | int_4 iring=0;
|
---|
| 384 | int lring=0;
|
---|
| 385 | if (index<nSide_-1) {
|
---|
| 386 | iring=2*index*(index+1);
|
---|
| 387 | lring=4*(index+1);
|
---|
| 388 | }else
|
---|
| 389 | if (index<3*nSide_) {
|
---|
| 390 | iring=2*nSide_*(2*index-nSide_+1);
|
---|
| 391 | lring=4*nSide_;
|
---|
| 392 | }else
|
---|
| 393 | {
|
---|
| 394 | int nc=4*nSide_-1-index;
|
---|
| 395 | iring=nPix_-2*nc*(nc+1);
|
---|
| 396 | lring=4*nc;
|
---|
| 397 | }
|
---|
| 398 | phi.Realloc(lring);
|
---|
| 399 | value.Realloc(lring);
|
---|
| 400 | float T=0.;
|
---|
| 401 | float F=0.;
|
---|
| 402 | for (int kk=0; kk<lring;kk++) {
|
---|
| 403 | PixThetaPhi(kk+iring,T,F);
|
---|
| 404 | phi(kk)=F;
|
---|
| 405 | value(kk)=PixVal(kk+iring);
|
---|
| 406 | }
|
---|
| 407 | theta=T;
|
---|
| 408 |
|
---|
| 409 | }
|
---|
| 410 |
|
---|
| 411 |
|
---|
| 412 |
|
---|
| 413 | /* --Methode-- */
|
---|
| 414 | //++
|
---|
| 415 | r_8& SphereGorski::PixVal(int_4 k)
|
---|
| 416 |
|
---|
| 417 | // Retourne la valeur du contenu du pixel d'indice "RING" k
|
---|
| 418 | //--
|
---|
| 419 | {
|
---|
| 420 | if ( (k<0) || (k >= nPix_) ) {
|
---|
| 421 | // THROW(out_of_range("SphereGorski::PIxVal Pixel index out of range"));
|
---|
| 422 | cout << " SphereGorski::PIxVal : exceptions a mettre en place" <<endl;
|
---|
| 423 | THROW(rangeCheckErr);
|
---|
| 424 | }
|
---|
| 425 | return(mPix_[k]);
|
---|
| 426 | }
|
---|
| 427 |
|
---|
| 428 | /* --Methode-- */
|
---|
| 429 | //++
|
---|
| 430 | r_8 const& SphereGorski::PixVal(int_4 k) const
|
---|
| 431 |
|
---|
| 432 | // Retourne la valeur du contenu du pixel d'indice "RING" k
|
---|
| 433 | //--
|
---|
| 434 | {
|
---|
| 435 | if ( (k<0) || (k >= nPix_) ) {
|
---|
| 436 | //THROW(out_of_range("SphereGorski::PIxVal Pixel index out of range"));
|
---|
| 437 | cout << " SphereGorski::PIxVal : exceptions a mettre en place" <<endl;
|
---|
| 438 | THROW(rangeCheckErr);
|
---|
| 439 | }
|
---|
| 440 | return(mPix_[k]);
|
---|
| 441 | }
|
---|
| 442 |
|
---|
| 443 |
|
---|
| 444 | //++
|
---|
| 445 | r_8& SphereGorski::PixValNest(int_4 k)
|
---|
| 446 |
|
---|
| 447 | // Retourne la valeur du contenu du pixel d'indice "NESTED" k
|
---|
| 448 | //--
|
---|
| 449 | {
|
---|
| 450 | if ( (k<0) || (k >= nPix_) ) {
|
---|
| 451 | //THROW(out_of_range("SphereGorski::PIxValNest Pixel index out of range"));
|
---|
| 452 | cout << " SphereGorski::PIxValNest : exceptions a mettre en place" <<endl;
|
---|
| 453 | THROW(rangeCheckErr);
|
---|
| 454 | }
|
---|
| 455 | return mPix_[nest2ring(nSide_,k)];
|
---|
| 456 | }
|
---|
| 457 | //++
|
---|
| 458 |
|
---|
| 459 | r_8 const& SphereGorski::PixValNest(int_4 k) const
|
---|
| 460 |
|
---|
| 461 | // Retourne la valeur du contenu du pixel d'indice "NESTED" k
|
---|
| 462 | //--
|
---|
| 463 | {
|
---|
| 464 | if ( (k<0) || (k >= nPix_) ) {
|
---|
| 465 | //THROW(out_of_range("SphereGorski::PIxValNest Pixel index out of range"));
|
---|
| 466 | cout << " SphereGorski::PIxValNest : exceptions a mettre en place" <<endl;
|
---|
| 467 | THROW(rangeCheckErr);
|
---|
| 468 | }
|
---|
| 469 | int_4 pix=nest2ring(nSide_,k);
|
---|
| 470 | return mPix_[pix];
|
---|
| 471 | }
|
---|
| 472 |
|
---|
| 473 |
|
---|
| 474 |
|
---|
| 475 | /* --Methode-- */
|
---|
| 476 | //++
|
---|
| 477 | int_4 SphereGorski::PixIndexSph(r_4 theta, r_4 phi) const
|
---|
| 478 |
|
---|
| 479 | // Retourne l'indice "RING" du pixel vers lequel pointe une direction
|
---|
| 480 | // définie par ses coordonnées sphériques
|
---|
| 481 | //--
|
---|
| 482 | {
|
---|
| 483 | return ang2pix_ring(nSide_, double(theta), double(phi));
|
---|
| 484 | }
|
---|
| 485 |
|
---|
| 486 | //++
|
---|
| 487 | int_4 SphereGorski::PixIndexSphNest(r_4 theta, r_4 phi) const
|
---|
| 488 |
|
---|
| 489 | // Retourne l'indice NESTED" du pixel vers lequel pointe une direction
|
---|
| 490 | // définie par ses coordonnées sphériques
|
---|
| 491 | //--
|
---|
| 492 | {
|
---|
| 493 | return ang2pix_nest(nSide_, double(theta), double(phi));
|
---|
| 494 | }
|
---|
| 495 |
|
---|
| 496 |
|
---|
| 497 | /* --Methode-- */
|
---|
| 498 | //++
|
---|
| 499 | void SphereGorski::PixThetaPhi(int_4 k, r_4& teta, r_4& phi) const
|
---|
| 500 |
|
---|
| 501 | // Retourne les coordonnées (teta,phi) du milieu du pixel d'indice "RING" k
|
---|
| 502 | //--
|
---|
| 503 | {
|
---|
| 504 | double t;
|
---|
| 505 | double p;
|
---|
| 506 | pix2ang_ring(nSide_,k, t, p);
|
---|
| 507 | teta=(r_4)t;
|
---|
| 508 | phi=(r_4)p;
|
---|
| 509 | }
|
---|
| 510 |
|
---|
| 511 | //++
|
---|
| 512 | r_8 SphereGorski::PixSolAngle(int_4 dummy) const
|
---|
| 513 | // Pixel Solid angle (steradians)
|
---|
| 514 | // All the pixels have the same solid angle. The dummy argument is
|
---|
| 515 | // for compatibility with eventual pixelizations which would not
|
---|
| 516 | // fulfil this requirement.
|
---|
| 517 | //--
|
---|
| 518 | {
|
---|
| 519 | return omeg_;
|
---|
| 520 | }
|
---|
| 521 |
|
---|
| 522 |
|
---|
| 523 | //++
|
---|
| 524 | void SphereGorski::PixThetaPhiNest(int_4 k, float& teta, float& phi) const
|
---|
| 525 |
|
---|
| 526 | // Retourne les coordonnées (teta,phi) du milieu du pixel d'indice
|
---|
| 527 | // NESTED k
|
---|
| 528 | //--
|
---|
| 529 | {
|
---|
| 530 | double t;
|
---|
| 531 | double p;
|
---|
| 532 | pix2ang_nest(nSide_, k, t, p);
|
---|
| 533 | teta=(r_4)t;
|
---|
| 534 | phi=(r_4)p;
|
---|
| 535 | }
|
---|
| 536 |
|
---|
| 537 | //++
|
---|
| 538 | int_4 SphereGorski::NestToRing(int_4 k)
|
---|
| 539 |
|
---|
| 540 | // conversion d'index NESTD en un index RING
|
---|
| 541 | //
|
---|
| 542 | //--
|
---|
| 543 | {
|
---|
| 544 | return nest2ring(nSide_,k);
|
---|
| 545 | }
|
---|
| 546 | //++
|
---|
| 547 | int_4 SphereGorski::RingToNest(int_4 k)
|
---|
| 548 | //
|
---|
| 549 | // conversion d'index RING en un index NESTED
|
---|
| 550 | //
|
---|
| 551 | //--
|
---|
| 552 | {
|
---|
| 553 | return ring2nest(nSide_,k);
|
---|
| 554 | }
|
---|
| 555 | //++
|
---|
| 556 | void SphereGorski::anharm(int nlmax, float sym_c,float* powspec)
|
---|
| 557 | //
|
---|
| 558 | // analyse en harmoniques spheriques des valeurs des pixels de la
|
---|
| 559 | // sphere : appel du module anafast (Gorski-Hivon)
|
---|
| 560 | //
|
---|
| 561 | // "nlmax" : multipole maximum, nlmax <= 2*nsmax (cf. Nyquist)
|
---|
| 562 | //
|
---|
| 563 | // "sym c" : coupure symetrique autour de l'equateur (degres)
|
---|
| 564 | //
|
---|
| 565 | // "powspec" : tableau resultat (a reserver avant l'appel) de C(l)
|
---|
| 566 | // (spectre de puissance)
|
---|
| 567 | //
|
---|
| 568 | //--
|
---|
| 569 | //
|
---|
| 570 | // Pb a resoudre : dans cette classe les valeurs de pixel sont "double"
|
---|
| 571 | // dans anafast le tableau correspondant est "float"
|
---|
| 572 | // pour l'instant on duplique les tableaux, il faudra decider quelque chose
|
---|
| 573 | //
|
---|
| 574 | {
|
---|
| 575 | if (nlmax > 2*nSide_) {
|
---|
| 576 | cout << " anharm : nlmax= " << nlmax <<
|
---|
| 577 | " doit etre <= 2*nsmax (cf. Nyquist), soit :" << 2*nSide_ << endl;
|
---|
| 578 | exit(1);
|
---|
| 579 | }
|
---|
| 580 | else {
|
---|
| 581 | nlmax_=nlmax;
|
---|
| 582 | nmmax_=nlmax_;
|
---|
| 583 | }
|
---|
| 584 | sym_cut_deg_=sym_c;
|
---|
| 585 | float* map=new float[nPix_];
|
---|
| 586 | for (int k=0; k<nPix_; k++) map[k]=(float)mPix_[k];
|
---|
| 587 | int nsmax=nSide_;
|
---|
| 588 | int nmmax=nmmax_;
|
---|
| 589 | double sc=(double)sym_cut_deg_;
|
---|
| 590 | float* alm_T=new float[2*(nlmax+1)*(nmmax+1)];
|
---|
| 591 | if (powspec==NULL) {
|
---|
| 592 |
|
---|
| 593 | cout <<
|
---|
| 594 | " anharm : un tableau de C_l doit etre alloue avant appel " << endl;
|
---|
| 595 | exit(1);
|
---|
| 596 | }
|
---|
| 597 | float* phas_n=new float[2*(nmmax+1)];
|
---|
| 598 | float* phas_s=new float[2*(nmmax+1)];
|
---|
| 599 | float* dataw =new float[16*nsmax];
|
---|
| 600 | float* work =new float[16*nsmax];
|
---|
| 601 |
|
---|
| 602 | anafast_(nsmax,nlmax,nmmax,sc,map,alm_T, powspec,phas_n,phas_s,dataw,work);
|
---|
| 603 | quadrupole_=powspec[2];
|
---|
| 604 | delete [] map;
|
---|
| 605 | delete [] alm_T;
|
---|
| 606 | delete [] phas_n;
|
---|
| 607 | delete [] phas_s;
|
---|
| 608 | delete [] dataw;
|
---|
| 609 | delete [] work;
|
---|
| 610 |
|
---|
| 611 | }
|
---|
| 612 |
|
---|
| 613 |
|
---|
| 614 | //++
|
---|
| 615 | void SphereGorski::synharm(int nlmax, int iseed,float fwhm, float* powspec)
|
---|
| 616 | //
|
---|
| 617 | // synthese des valeurs des pixels de la sphere par l'intermediaire
|
---|
| 618 | // des coefficients en harmoniques spheriques reconstitues apartir d'un
|
---|
| 619 | // spectre en puissance : appel du module synfast (Gorski-Hivon)
|
---|
| 620 | //
|
---|
| 621 | // powspec est un tableau (a fournir) de C(l) (spectre de puissance)
|
---|
| 622 | // Ce tableau doit contenir les valeur de C(l) par ordre
|
---|
| 623 | // SEQUENTIEL de l (de l=0 a l=nlmax). IL SERA MODIFIE PAR L'ALGORITHME
|
---|
| 624 | //
|
---|
| 625 | // nlmax : multipole maximum (nlmax <= 2*nsmax (cf. Nyquist)
|
---|
| 626 | // iseed : initialisation generation aleatoire (negatif, suggere : -1)
|
---|
| 627 | // fwhm : largeur totale a mi-hauteur (minutes d'arc, >=0, ex: 5)
|
---|
| 628 | //--
|
---|
| 629 | // Pb a resoudre : dans cette classe les valeurs de pixel sont "double"
|
---|
| 630 | // dans anafast le tableau correspondant est "float"
|
---|
| 631 | // pour l'instant on duplique les tableaux, il faudra decider quelque chose
|
---|
| 632 |
|
---|
| 633 | {
|
---|
| 634 | if (nlmax > 2*nSide_) {
|
---|
| 635 | cout << " sphereGorski::synharm: nlmax= " << nlmax <<
|
---|
| 636 | " doit etre <= 2*nsmax (cf. Nyquist), soit : " << 2*nSide_ << endl;
|
---|
| 637 | exit(1);
|
---|
| 638 | }
|
---|
| 639 | else {
|
---|
| 640 | nlmax_=nlmax;
|
---|
| 641 | nmmax_=nlmax_;
|
---|
| 642 | quadrupole_=powspec[2];
|
---|
| 643 | }
|
---|
| 644 | if (powspec==NULL) {
|
---|
| 645 |
|
---|
| 646 | cout <<
|
---|
| 647 | "sphereGorski::synharm : un tableau de C_l doit etre alloue avant appel"
|
---|
| 648 | << endl;
|
---|
| 649 | exit(1);
|
---|
| 650 | }
|
---|
| 651 | iseed_=iseed;
|
---|
| 652 | fwhm_ =fwhm;
|
---|
| 653 | float* map=new float[nPix_];
|
---|
| 654 | int nsmax=nSide_;
|
---|
| 655 | int nmmax=nmmax_;
|
---|
| 656 | float* alm_T=new float[2*(nlmax+1)*(nmmax+1)];
|
---|
| 657 |
|
---|
| 658 |
|
---|
| 659 | // tableaux de travail
|
---|
| 660 | double* b_north=new double[2*(2*nmmax+1)];
|
---|
| 661 | double* b_south=new double[2*(2*nmmax+1)];
|
---|
| 662 | double* bw=new double[2*4*nsmax];
|
---|
| 663 | double* data=new double[2*4*nsmax];
|
---|
| 664 | double* work=new double[2*4*nsmax];
|
---|
| 665 | float* lread=new float[nlmax+1];
|
---|
| 666 | synfast_(nsmax,nlmax,nmmax,iseed,fwhm, map,alm_T, powspec,
|
---|
| 667 | b_north,b_south,bw,data,work,lread);
|
---|
| 668 | for (int k=0; k<nPix_; k++) mPix_[k]=(double)map[k];
|
---|
| 669 | delete [] map;
|
---|
| 670 | delete [] alm_T;
|
---|
| 671 | delete [] b_north;
|
---|
| 672 | delete [] b_south;
|
---|
| 673 | delete [] bw;
|
---|
| 674 | delete [] data;
|
---|
| 675 | delete [] work;
|
---|
| 676 | delete [] lread;
|
---|
| 677 |
|
---|
| 678 | }
|
---|
| 679 |
|
---|
| 680 | int SphereGorski::nest2ring(int nside, int ipnest) const {
|
---|
| 681 | /*
|
---|
| 682 | c=======================================================================
|
---|
| 683 | subroutine nest2ring(nside, ipnest, ipring)
|
---|
| 684 | c=======================================================================
|
---|
| 685 | c conversion from NESTED to RING pixel number
|
---|
| 686 | c=======================================================================
|
---|
| 687 | */
|
---|
| 688 | // tranlated from FORTRAN (Gorski) to C, by B. Revenu, revised Guy Le Meur
|
---|
| 689 | // (16/12/98)
|
---|
| 690 |
|
---|
| 691 | int npix, npface, face_num, ncap, n_before;
|
---|
| 692 | int ipf, ip_low, ip_trunc, ip_med, ip_hi;
|
---|
| 693 | int ix, iy, jrt, jr, nr, jpt, jp, kshift, nl4;
|
---|
| 694 | int ns_max=8192;
|
---|
| 695 | int jrll[12]={2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4};
|
---|
| 696 | int jpll[12]={1, 3, 5, 7, 0, 2, 4, 6, 1, 3, 5, 7};
|
---|
| 697 |
|
---|
| 698 | if( nside<1 || nside>ns_max ) {
|
---|
| 699 | cout << "nside out of range" << endl;
|
---|
| 700 | exit(0);
|
---|
| 701 | }
|
---|
| 702 | npix = 12 * nside* nside;
|
---|
| 703 | if( ipnest<0 || ipnest>npix-1 ) {
|
---|
| 704 | cout << "ipnest out of range" << endl;
|
---|
| 705 | exit(0);
|
---|
| 706 | }
|
---|
| 707 |
|
---|
| 708 |
|
---|
| 709 | ncap = 2* nside*( nside-1);// ! number of points in the North Polar cap
|
---|
| 710 | nl4 = 4* nside;
|
---|
| 711 |
|
---|
| 712 | //c finds the face, and the number in the face
|
---|
| 713 | npface = nside* nside;
|
---|
| 714 | //cccccc ip = ipnest - 1 ! in {0,npix-1}
|
---|
| 715 |
|
---|
| 716 | face_num = ipnest/npface;// ! face number in {0,11}
|
---|
| 717 | ipf =ipnest%npface;// ! pixel number in the face {0,npface-1}
|
---|
| 718 | //c finds the x,y on the face (starting from the lowest corner)
|
---|
| 719 | //c from the pixel number
|
---|
| 720 | ip_low=ipf%1024; // ! content of the last 10 bits
|
---|
| 721 | ip_trunc = ipf/1024; // ! truncation of the last 10 bits
|
---|
| 722 | ip_med=ip_trunc%1024; // ! content of the next 10 bits
|
---|
| 723 | ip_hi = ip_trunc/1024;// ! content of the high weight 10 bits
|
---|
| 724 |
|
---|
| 725 | ix = 1024*pix2x_[ip_hi] + 32*pix2x_[ip_med] + pix2x_[ip_low];
|
---|
| 726 | iy = 1024*pix2y_[ip_hi] + 32*pix2y_[ip_med] + pix2y_[ip_low];
|
---|
| 727 |
|
---|
| 728 | //c transforms this in (horizontal, vertical) coordinates
|
---|
| 729 | jrt = ix + iy;// ! 'vertical' in {0,2*(nside-1)}
|
---|
| 730 | jpt = ix - iy;// ! 'horizontal' in {-nside+1,nside-1}
|
---|
| 731 |
|
---|
| 732 | //c computes the z coordinate on the sphere
|
---|
| 733 | // jr = jrll[face_num+1]*nside - jrt - 1;// ! ring number in {1,4*nside-1}
|
---|
| 734 | jr = jrll[face_num]*nside - jrt - 1;
|
---|
| 735 | nr = nside;// ! equatorial region (the most frequent)
|
---|
| 736 | n_before = ncap + nl4 * (jr - nside);
|
---|
| 737 | kshift=(jr - nside)%2;
|
---|
| 738 | if( jr<nside ) {//then ! north pole region
|
---|
| 739 | nr = jr;
|
---|
| 740 | n_before = 2 * nr * (nr - 1);
|
---|
| 741 | kshift = 0;
|
---|
| 742 | }
|
---|
| 743 | else if( jr>3*nside ) {//then ! south pole region
|
---|
| 744 | nr = nl4 - jr;
|
---|
| 745 | n_before = npix - 2 * (nr + 1) * nr;
|
---|
| 746 | kshift = 0;
|
---|
| 747 | }
|
---|
| 748 |
|
---|
| 749 | //c computes the phi coordinate on the sphere, in [0,2Pi]
|
---|
| 750 | jp = (jpll[face_num]*nr + jpt + 1 + kshift)/2;// ! 'phi' number in the ring in {1,4*nr}
|
---|
| 751 |
|
---|
| 752 | if( jp>nl4 ) jp = jp - nl4;
|
---|
| 753 | if( jp<1 ) jp = jp + nl4;
|
---|
| 754 |
|
---|
| 755 | int aux=n_before + jp - 1;
|
---|
| 756 | return (n_before + jp - 1);// ! in {0, npix-1}
|
---|
| 757 |
|
---|
| 758 | }
|
---|
| 759 |
|
---|
| 760 | void SphereGorski::mk_pix2xy(int *pix2x,int *pix2y) {
|
---|
| 761 | /*
|
---|
| 762 | c=======================================================================
|
---|
| 763 | subroutine mk_pix2xy
|
---|
| 764 | c=======================================================================
|
---|
| 765 | c constructs the array giving x and y in the face from pixel number
|
---|
| 766 | c for the nested (quad-cube like) ordering of pixels
|
---|
| 767 | c
|
---|
| 768 | c the bits corresponding to x and y are interleaved in the pixel number
|
---|
| 769 | c one breaks up the pixel number by even and odd bits
|
---|
| 770 | c=======================================================================
|
---|
| 771 | */
|
---|
| 772 | // tranlated from FORTRAN (Gorski) to C, by B. Revenu, revised Guy Le Meur
|
---|
| 773 | // (16/12/98)
|
---|
| 774 |
|
---|
| 775 | int kpix, jpix, IX, IY, IP, ID;
|
---|
| 776 | for (int i=0;i<1023;i++ ) pix2x[i]=0;
|
---|
| 777 |
|
---|
| 778 | for( kpix=0;kpix<1024;kpix++ ) {
|
---|
| 779 | jpix = kpix;
|
---|
| 780 | IX = 0;
|
---|
| 781 | IY = 0;
|
---|
| 782 | IP = 1 ;// ! bit position (in x and y)
|
---|
| 783 | while( jpix!=0 ){// ! go through all the bits
|
---|
| 784 | ID=jpix%2;// ! bit value (in kpix), goes in ix
|
---|
| 785 | jpix = jpix/2;
|
---|
| 786 | IX = ID*IP+IX;
|
---|
| 787 |
|
---|
| 788 | ID=jpix%2;// ! bit value (in kpix), goes in iy
|
---|
| 789 | jpix = jpix/2;
|
---|
| 790 | IY = ID*IP+IY;
|
---|
| 791 |
|
---|
| 792 | IP = 2*IP;// ! next bit (in x and y)
|
---|
| 793 | }
|
---|
| 794 |
|
---|
| 795 | pix2x[kpix] = IX;// ! in 0,31
|
---|
| 796 | pix2y[kpix] = IY;// ! in 0,31
|
---|
| 797 | }
|
---|
| 798 | }
|
---|
| 799 |
|
---|
| 800 | int SphereGorski::ring2nest(int nside, int ipring) const {
|
---|
| 801 | /*
|
---|
| 802 | c=======================================================================
|
---|
| 803 | subroutine ring2nest(nside, ipring, ipnest)
|
---|
| 804 | c=======================================================================
|
---|
| 805 | c conversion from RING to NESTED pixel number
|
---|
| 806 | c=======================================================================
|
---|
| 807 | */
|
---|
| 808 | // tranlated from FORTRAN (Gorski) to C, by B. Revenu, revised Guy Le Meur
|
---|
| 809 | // (16/12/98)
|
---|
| 810 |
|
---|
| 811 | double fihip, hip;
|
---|
| 812 | int npix, nl2, nl4, ncap, ip, iphi, ipt, ipring1;
|
---|
| 813 | int kshift, face_num, nr;
|
---|
| 814 | int irn, ire, irm, irs, irt, ifm , ifp;
|
---|
| 815 | int ix, iy, ix_low, ix_hi, iy_low, iy_hi, ipf;
|
---|
| 816 | int ns_max(8192);
|
---|
| 817 |
|
---|
| 818 | // coordinate of the lowest corner of each face
|
---|
| 819 | int jrll[12]={2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4};// ! in unit of nside
|
---|
| 820 | int jpll[12]={1, 3, 5, 7, 0, 2, 4, 6, 1, 3, 5, 7};//! in unit of nside/2
|
---|
| 821 |
|
---|
| 822 | if( nside<1 || nside>ns_max ) {
|
---|
| 823 | cout << "nside out of range" << endl;
|
---|
| 824 | exit(0);
|
---|
| 825 | }
|
---|
| 826 | npix = 12 * nside*nside;
|
---|
| 827 | if( ipring<0 || ipring>npix-1 ) {
|
---|
| 828 | cout << "ipring out of range" << endl;
|
---|
| 829 | exit(0);
|
---|
| 830 | }
|
---|
| 831 |
|
---|
| 832 | nl2 = 2*nside;
|
---|
| 833 | nl4 = 4*nside;
|
---|
| 834 | npix = 12*nside*nside;// ! total number of points
|
---|
| 835 | ncap = 2*nside*(nside-1);// ! points in each polar cap, =0 for nside =1
|
---|
| 836 | ipring1 = ipring + 1;
|
---|
| 837 |
|
---|
| 838 | //c finds the ring number, the position of the ring and the face number
|
---|
| 839 | if( ipring1<=ncap ) {//then
|
---|
| 840 |
|
---|
| 841 | hip = ipring1/2.;
|
---|
| 842 | fihip = (int)floor ( hip );
|
---|
| 843 | irn = (int)floor( sqrt( hip - sqrt(fihip) ) ) + 1;// ! counted from North pole
|
---|
| 844 | iphi = ipring1 - 2*irn*(irn - 1);
|
---|
| 845 |
|
---|
| 846 | kshift = 0;
|
---|
| 847 | nr = irn ;// ! 1/4 of the number of points on the current ring
|
---|
| 848 | face_num = (iphi-1) / irn;// ! in {0,3}
|
---|
| 849 | }
|
---|
| 850 | else if( ipring1<=nl2*(5*nside+1) ) {//then
|
---|
| 851 |
|
---|
| 852 | ip = ipring1 - ncap - 1;
|
---|
| 853 | irn = (int)floor( ip / nl4 ) + nside;// ! counted from North pole
|
---|
| 854 | iphi = (int)fmod(ip,nl4) + 1;
|
---|
| 855 |
|
---|
| 856 | kshift = (int)fmod(irn+nside,2);// ! 1 if irn+nside is odd, 0 otherwise
|
---|
| 857 | nr = nside;
|
---|
| 858 | ire = irn - nside + 1;// ! in {1, 2*nside +1}
|
---|
| 859 | irm = nl2 + 2 - ire;
|
---|
| 860 | ifm = (iphi - ire/2 + nside -1) / nside;// ! face boundary
|
---|
| 861 | ifp = (iphi - irm/2 + nside -1) / nside;
|
---|
| 862 | if( ifp==ifm ) {//then ! faces 4 to 7
|
---|
| 863 | face_num = (int)fmod(ifp,4) + 4;
|
---|
| 864 | }
|
---|
| 865 | else if( ifp + 1==ifm ) {//then ! (half-)faces 0 to 3
|
---|
| 866 | face_num = ifp;
|
---|
| 867 | }
|
---|
| 868 | else if( ifp - 1==ifm ) {//then ! (half-)faces 8 to 11
|
---|
| 869 | face_num = ifp + 7;
|
---|
| 870 | }
|
---|
| 871 | }
|
---|
| 872 | else {
|
---|
| 873 |
|
---|
| 874 | ip = npix - ipring1 + 1;
|
---|
| 875 | hip = ip/2.;
|
---|
| 876 | fihip = floor ( hip );
|
---|
| 877 | irs = (int)floor( sqrt( hip - sqrt(fihip) ) ) + 1;// ! counted from South pole
|
---|
| 878 | iphi = 4*irs + 1 - (ip - 2*irs*(irs-1));
|
---|
| 879 |
|
---|
| 880 | kshift = 0;
|
---|
| 881 | nr = irs;
|
---|
| 882 | irn = nl4 - irs;
|
---|
| 883 | face_num = (iphi-1) / irs + 8;// ! in {8,11}
|
---|
| 884 | }
|
---|
| 885 |
|
---|
| 886 | //c finds the (x,y) on the face
|
---|
| 887 | irt = irn - jrll[face_num]*nside + 1;// ! in {-nside+1,0}
|
---|
| 888 | ipt = 2*iphi - jpll[face_num]*nr - kshift - 1;// ! in {-nside+1,nside-1}
|
---|
| 889 |
|
---|
| 890 |
|
---|
| 891 | if( ipt>=nl2 ) ipt = ipt - 8*nside;// ! for the face #4
|
---|
| 892 |
|
---|
| 893 | ix = (ipt - irt ) / 2;
|
---|
| 894 | iy = -(ipt + irt ) / 2;
|
---|
| 895 |
|
---|
| 896 | ix_low = (int)fmod(ix,128);
|
---|
| 897 | ix_hi = ix/128;
|
---|
| 898 | iy_low = (int)fmod(iy,128);
|
---|
| 899 | iy_hi = iy/128;
|
---|
| 900 | ipf = (x2pix_[ix_hi]+y2pix_[iy_hi]) * (128 * 128)
|
---|
| 901 | + (x2pix_[ix_low]+y2pix_[iy_low]);
|
---|
| 902 |
|
---|
| 903 | return (ipf + face_num* nside *nside);// ! in {0, 12*nside**2 - 1}
|
---|
| 904 | }
|
---|
| 905 |
|
---|
| 906 | void SphereGorski::mk_xy2pix(int *x2pix, int *y2pix) {
|
---|
| 907 | /*
|
---|
| 908 | c=======================================================================
|
---|
| 909 | subroutine mk_xy2pix
|
---|
| 910 | c=======================================================================
|
---|
| 911 | c sets the array giving the number of the pixel lying in (x,y)
|
---|
| 912 | c x and y are in {1,128}
|
---|
| 913 | c the pixel number is in {0,128**2-1}
|
---|
| 914 | c
|
---|
| 915 | c if i-1 = sum_p=0 b_p * 2^p
|
---|
| 916 | c then ix = sum_p=0 b_p * 4^p
|
---|
| 917 | c iy = 2*ix
|
---|
| 918 | c ix + iy in {0, 128**2 -1}
|
---|
| 919 | c=======================================================================
|
---|
| 920 | */
|
---|
| 921 | // tranlated from FORTRAN (Gorski) to C, by B. Revenu, revised Guy Le Meur
|
---|
| 922 | // (16/12/98)
|
---|
| 923 |
|
---|
| 924 | int K,IP,I,J,ID;
|
---|
| 925 |
|
---|
| 926 | for( int i(0);i<127;i++ ) x2pix[i]=0;
|
---|
| 927 | for( I=1;I<=128;I++ ) {
|
---|
| 928 | J = I-1;// !pixel numbers
|
---|
| 929 | K = 0;//
|
---|
| 930 | IP = 1;//
|
---|
| 931 | truc : if( J==0 ) {
|
---|
| 932 | x2pix[I-1] = K;
|
---|
| 933 | y2pix[I-1] = 2*K;
|
---|
| 934 | }
|
---|
| 935 | else {
|
---|
| 936 | ID = (int)fmod(J,2);
|
---|
| 937 | J = J/2;
|
---|
| 938 | K = IP*ID+K;
|
---|
| 939 | IP = IP*4;
|
---|
| 940 | goto truc;
|
---|
| 941 | }
|
---|
| 942 | }
|
---|
| 943 | //c endif
|
---|
| 944 |
|
---|
| 945 | }
|
---|
| 946 |
|
---|
| 947 | int SphereGorski::ang2pix_ring(int nside, double theta, double phi) const {
|
---|
| 948 | /*
|
---|
| 949 | c=======================================================================
|
---|
| 950 | c gives the pixel number ipix (RING)
|
---|
| 951 | c corresponding to angles theta and phi
|
---|
| 952 | c=======================================================================
|
---|
| 953 | */
|
---|
| 954 | // tranlated from FORTRAN (Gorski) to C, by B. Revenu, revised Guy Le Meur
|
---|
| 955 | // (16/12/98)
|
---|
| 956 |
|
---|
| 957 | int nl2, nl4, ncap, npix, jp, jm, ipix1;
|
---|
| 958 | double z, za, tt, tp, tmp;
|
---|
| 959 | int ir, ip, kshift;
|
---|
| 960 |
|
---|
| 961 | double piover2(Pi/2.);
|
---|
| 962 | double twopi(2.*Pi);
|
---|
| 963 | double z0(2./3.);
|
---|
| 964 | int ns_max(8192);
|
---|
| 965 |
|
---|
| 966 | if( nside<1 || nside>ns_max ) {
|
---|
| 967 | cout << "nside out of range" << endl;
|
---|
| 968 | exit(0);
|
---|
| 969 | }
|
---|
| 970 |
|
---|
| 971 | if( theta<0. || theta>Pi) {
|
---|
| 972 | cout << "theta out of range" << endl;
|
---|
| 973 | exit(0);
|
---|
| 974 | }
|
---|
| 975 |
|
---|
| 976 | z = cos(theta);
|
---|
| 977 | za = fabs(z);
|
---|
| 978 | if( phi >= twopi) phi = phi - twopi;
|
---|
| 979 | if (phi < 0.) phi = phi + twopi;
|
---|
| 980 | tt = phi / piover2;// ! in [0,4)
|
---|
| 981 |
|
---|
| 982 | nl2 = 2*nside;
|
---|
| 983 | nl4 = 4*nside;
|
---|
| 984 | ncap = nl2*(nside-1);// ! number of pixels in the north polar cap
|
---|
| 985 | npix = 12*nside*nside;
|
---|
| 986 |
|
---|
| 987 | if( za <= z0 ) {
|
---|
| 988 |
|
---|
| 989 | jp = (int)floor(nside*(0.5 + tt - z*0.75));// ! index of ascending edge line
|
---|
| 990 | jm = (int)floor(nside*(0.5 + tt + z*0.75));// ! index of descending edge line
|
---|
| 991 |
|
---|
| 992 | ir = nside + 1 + jp - jm;// ! in {1,2n+1} (ring number counted from z=2/3)
|
---|
| 993 | kshift = 0;
|
---|
| 994 | if (fmod(ir,2)==0.) kshift = 1;// ! kshift=1 if ir even, 0 otherwise
|
---|
| 995 |
|
---|
| 996 | ip = (int)floor( ( jp+jm - nside + kshift + 1 ) / 2 ) + 1;// ! in {1,4n}
|
---|
| 997 | if( ip>nl4 ) ip = ip - nl4;
|
---|
| 998 |
|
---|
| 999 | ipix1 = ncap + nl4*(ir-1) + ip ;
|
---|
| 1000 | }
|
---|
| 1001 | else {
|
---|
| 1002 |
|
---|
| 1003 | tp = tt - floor(tt);// !MOD(tt,1.d0)
|
---|
| 1004 | tmp = sqrt( 3.*(1. - za) );
|
---|
| 1005 |
|
---|
| 1006 | jp = (int)floor( nside * tp * tmp );// ! increasing edge line index
|
---|
| 1007 | jm = (int)floor( nside * (1. - tp) * tmp );// ! decreasing edge line index
|
---|
| 1008 |
|
---|
| 1009 | ir = jp + jm + 1;// ! ring number counted from the closest pole
|
---|
| 1010 | ip = (int)floor( tt * ir ) + 1;// ! in {1,4*ir}
|
---|
| 1011 | if( ip>4*ir ) ip = ip - 4*ir;
|
---|
| 1012 |
|
---|
| 1013 | ipix1 = 2*ir*(ir-1) + ip;
|
---|
| 1014 | if( z<=0. ) {
|
---|
| 1015 | ipix1 = npix - 2*ir*(ir+1) + ip;
|
---|
| 1016 | }
|
---|
| 1017 | }
|
---|
| 1018 | return (ipix1 - 1);// ! in {0, npix-1}
|
---|
| 1019 |
|
---|
| 1020 | }
|
---|
| 1021 |
|
---|
| 1022 | int SphereGorski::ang2pix_nest(int nside, double theta, double phi) const {
|
---|
| 1023 | /*
|
---|
| 1024 | c=======================================================================
|
---|
| 1025 | subroutine ang2pix_nest(nside, theta, phi, ipix)
|
---|
| 1026 | c=======================================================================
|
---|
| 1027 | c gives the pixel number ipix (NESTED)
|
---|
| 1028 | c corresponding to angles theta and phi
|
---|
| 1029 | c
|
---|
| 1030 | c the computation is made to the highest resolution available (nside=8192)
|
---|
| 1031 | c and then degraded to that required (by integer division)
|
---|
| 1032 | c this doesn't cost more, and it makes sure
|
---|
| 1033 | c that the treatement of round-off will be consistent
|
---|
| 1034 | c for every resolution
|
---|
| 1035 | c=======================================================================
|
---|
| 1036 | */
|
---|
| 1037 | // tranlated from FORTRAN (Gorski) to C, by B. Revenu, revised Guy Le Meur
|
---|
| 1038 | // (16/12/98)
|
---|
| 1039 |
|
---|
| 1040 | double z, za, z0, tt, tp, tmp;
|
---|
| 1041 | int face_num,jp,jm;
|
---|
| 1042 | int ifp, ifm;
|
---|
| 1043 | int ix, iy, ix_low, ix_hi, iy_low, iy_hi, ipf, ntt;
|
---|
| 1044 | double piover2(Pi/2.), twopi(2.*Pi);
|
---|
| 1045 | int ns_max(8192);
|
---|
| 1046 |
|
---|
| 1047 | if( nside<1 || nside>ns_max ) {
|
---|
| 1048 | cout << "nside out of range" << endl;
|
---|
| 1049 | exit(0);
|
---|
| 1050 | }
|
---|
| 1051 | if( theta<0 || theta>Pi ) {
|
---|
| 1052 | cout << "theta out of range" << endl;
|
---|
| 1053 | exit(0);
|
---|
| 1054 | }
|
---|
| 1055 | z = cos(theta);
|
---|
| 1056 | za = fabs(z);
|
---|
| 1057 | z0 = 2./3.;
|
---|
| 1058 | if( phi>=twopi ) phi = phi - twopi;
|
---|
| 1059 | if( phi<0. ) phi = phi + twopi;
|
---|
| 1060 | tt = phi / piover2;// ! in [0,4[
|
---|
| 1061 | if( za<=z0 ) { // then ! equatorial region
|
---|
| 1062 |
|
---|
| 1063 | //(the index of edge lines increase when the longitude=phi goes up)
|
---|
| 1064 | jp = (int)floor(ns_max*(0.5 + tt - z*0.75));// ! ascending edge line index
|
---|
| 1065 | jm = (int)floor(ns_max*(0.5 + tt + z*0.75));// ! descending edge line index
|
---|
| 1066 |
|
---|
| 1067 | //c finds the face
|
---|
| 1068 | ifp = jp / ns_max;// ! in {0,4}
|
---|
| 1069 | ifm = jm / ns_max;
|
---|
| 1070 | if( ifp==ifm ) face_num = (int)fmod(ifp,4) + 4; //then ! faces 4 to 7
|
---|
| 1071 | else if( ifp<ifm ) face_num = (int)fmod(ifp,4); // (half-)faces 0 to 3
|
---|
| 1072 | else face_num = (int)fmod(ifm,4) + 8;//! (half-)faces 8 to 11
|
---|
| 1073 |
|
---|
| 1074 | ix = (int)fmod(jm, ns_max);
|
---|
| 1075 | iy = ns_max - (int)fmod(jp, ns_max) - 1;
|
---|
| 1076 | }
|
---|
| 1077 | else { //! polar region, za > 2/3
|
---|
| 1078 |
|
---|
| 1079 | ntt = (int)floor(tt);
|
---|
| 1080 | if( ntt>=4 ) ntt = 3;
|
---|
| 1081 | tp = tt - ntt;
|
---|
| 1082 | tmp = sqrt( 3.*(1. - za) );// ! in ]0,1]
|
---|
| 1083 |
|
---|
| 1084 | //(the index of edge lines increase when distance from the closest pole goes up)
|
---|
| 1085 | jp = (int)floor( ns_max * tp * tmp );// ! line going toward the pole as phi increases
|
---|
| 1086 | jm = (int)floor( ns_max * (1. - tp) * tmp );// ! that one goes away of the closest pole
|
---|
| 1087 | jp = (int)min(ns_max-1, jp);// ! for points too close to the boundary
|
---|
| 1088 | jm = (int)min(ns_max-1, jm);
|
---|
| 1089 |
|
---|
| 1090 | // finds the face and pixel's (x,y)
|
---|
| 1091 | if( z>=0 ) {
|
---|
| 1092 | face_num = ntt;// ! in {0,3}
|
---|
| 1093 | ix = ns_max - jm - 1;
|
---|
| 1094 | iy = ns_max - jp - 1;
|
---|
| 1095 | }
|
---|
| 1096 | else {
|
---|
| 1097 | face_num = ntt + 8;// ! in {8,11}
|
---|
| 1098 | ix = jp;
|
---|
| 1099 | iy = jm;
|
---|
| 1100 | }
|
---|
| 1101 | }
|
---|
| 1102 |
|
---|
| 1103 | ix_low = (int)fmod(ix,128);
|
---|
| 1104 | ix_hi = ix/128;
|
---|
| 1105 | iy_low = (int)fmod(iy,128);
|
---|
| 1106 | iy_hi = iy/128;
|
---|
| 1107 | ipf = (x2pix_[ix_hi]+y2pix_[iy_hi]) * (128 * 128)+ (x2pix_[ix_low]+y2pix_[iy_low]);
|
---|
| 1108 | ipf = ipf / pow(ns_max/nside,2);// ! in {0, nside**2 - 1}
|
---|
| 1109 | return ( ipf + face_num*pow(nside,2));// ! in {0, 12*nside**2 - 1}
|
---|
| 1110 | }
|
---|
| 1111 |
|
---|
| 1112 |
|
---|
| 1113 | void SphereGorski::pix2ang_ring(int nside, int ipix, double& theta, double& phi) const {
|
---|
| 1114 | /*
|
---|
| 1115 | c=======================================================================
|
---|
| 1116 | c gives theta and phi corresponding to pixel ipix (RING)
|
---|
| 1117 | c for a parameter nside
|
---|
| 1118 | c=======================================================================
|
---|
| 1119 | */
|
---|
| 1120 | // tranlated from FORTRAN (Gorski) to C, by B. Revenu, revised Guy Le Meur
|
---|
| 1121 | // (16/12/98)
|
---|
| 1122 |
|
---|
| 1123 | int nl2, nl4, npix, ncap, iring, iphi, ip, ipix1;
|
---|
| 1124 | double fact1, fact2, fodd, hip, fihip;
|
---|
| 1125 |
|
---|
| 1126 | int ns_max(8192);
|
---|
| 1127 |
|
---|
| 1128 | if( nside<1 || nside>ns_max ) {
|
---|
| 1129 | cout << "nside out of range" << endl;
|
---|
| 1130 | exit(0);
|
---|
| 1131 | }
|
---|
| 1132 | npix = 12*nside*nside; // ! total number of points
|
---|
| 1133 | if( ipix<0 || ipix>npix-1 ) {
|
---|
| 1134 | cout << "ipix out of range" << endl;
|
---|
| 1135 | exit(0);
|
---|
| 1136 | }
|
---|
| 1137 |
|
---|
| 1138 | ipix1 = ipix + 1; // in {1, npix}
|
---|
| 1139 | nl2 = 2*nside;
|
---|
| 1140 | nl4 = 4*nside;
|
---|
| 1141 | ncap = 2*nside*(nside-1);// ! points in each polar cap, =0 for nside =1
|
---|
| 1142 | fact1 = 1.5*nside;
|
---|
| 1143 | fact2 = 3.0*nside*nside;
|
---|
| 1144 |
|
---|
| 1145 | if( ipix1 <= ncap ) { //! North Polar cap -------------
|
---|
| 1146 |
|
---|
| 1147 | hip = ipix1/2.;
|
---|
| 1148 | fihip = floor(hip);
|
---|
| 1149 | iring = (int)floor( sqrt( hip - sqrt(fihip) ) ) + 1;// ! counted from North pole
|
---|
| 1150 | iphi = ipix1 - 2*iring*(iring - 1);
|
---|
| 1151 |
|
---|
| 1152 | theta = acos( 1. - iring*iring / fact2 );
|
---|
| 1153 | phi = (1.*iphi - 0.5) * Pi/(2.*iring);
|
---|
| 1154 | // cout << theta << " " << phi << endl;
|
---|
| 1155 | }
|
---|
| 1156 | else if( ipix1 <= nl2*(5*nside+1) ) {//then ! Equatorial region ------
|
---|
| 1157 |
|
---|
| 1158 | ip = ipix1 - ncap - 1;
|
---|
| 1159 | iring = (int)floor( ip / nl4 ) + nside;// ! counted from North pole
|
---|
| 1160 | iphi = (int)fmod(ip,nl4) + 1;
|
---|
| 1161 |
|
---|
| 1162 | fodd = 0.5 * (1 + fmod((double)(iring+nside),2));// ! 1 if iring+nside is odd, 1/2 otherwise
|
---|
| 1163 | theta = acos( (nl2 - iring) / fact1 );
|
---|
| 1164 | phi = (1.*iphi - fodd) * Pi /(2.*nside);
|
---|
| 1165 | }
|
---|
| 1166 | else {//! South Polar cap -----------------------------------
|
---|
| 1167 |
|
---|
| 1168 | ip = npix - ipix1 + 1;
|
---|
| 1169 | hip = ip/2.;
|
---|
| 1170 | fihip = 1.*hip;
|
---|
| 1171 | iring = (int)floor( sqrt( hip - sqrt(fihip) ) ) + 1;// ! counted from South pole
|
---|
| 1172 | iphi = (int)(4.*iring + 1 - (ip - 2.*iring*(iring-1)));
|
---|
| 1173 |
|
---|
| 1174 | theta = acos( -1. + iring*iring / fact2 );
|
---|
| 1175 | phi = (1.*iphi - 0.5) * Pi/(2.*iring);
|
---|
| 1176 | // cout << theta << " " << phi << endl;
|
---|
| 1177 | }
|
---|
| 1178 | }
|
---|
| 1179 |
|
---|
| 1180 | void SphereGorski::pix2ang_nest(int nside, int ipix, double& theta, double& phi) const {
|
---|
| 1181 | /*
|
---|
| 1182 | c=======================================================================
|
---|
| 1183 | subroutine pix2ang_nest(nside, ipix, theta, phi)
|
---|
| 1184 | c=======================================================================
|
---|
| 1185 | c gives theta and phi corresponding to pixel ipix (NESTED)
|
---|
| 1186 | c for a parameter nside
|
---|
| 1187 | c=======================================================================
|
---|
| 1188 | */
|
---|
| 1189 | // tranlated from FORTRAN (Gorski) to C, by B. Revenu, revised Guy Le Meur
|
---|
| 1190 | // (16/12/98)
|
---|
| 1191 |
|
---|
| 1192 | int npix, npface, face_num;
|
---|
| 1193 | int ipf, ip_low, ip_trunc, ip_med, ip_hi;
|
---|
| 1194 | int ix, iy, jrt, jr, nr, jpt, jp, kshift, nl4;
|
---|
| 1195 | double z, fn, fact1, fact2;
|
---|
| 1196 | double piover2(Pi/2.);
|
---|
| 1197 | int ns_max(8192);
|
---|
| 1198 |
|
---|
| 1199 |
|
---|
| 1200 | // ! coordinate of the lowest corner of each face
|
---|
| 1201 | int jrll[12]={2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4};//! in unit of nside
|
---|
| 1202 | int jpll[12]={1, 3, 5, 7, 0, 2, 4, 6, 1, 3, 5, 7};// ! in unit of nside/2
|
---|
| 1203 |
|
---|
| 1204 | if( nside<1 || nside>ns_max ) {
|
---|
| 1205 | cout << "nside out of range" << endl;
|
---|
| 1206 | exit(0);
|
---|
| 1207 | }
|
---|
| 1208 | npix = 12 * nside*nside;
|
---|
| 1209 | if( ipix<0 || ipix>npix-1 ) {
|
---|
| 1210 | cout << "ipix out of range" << endl;
|
---|
| 1211 | exit(0);
|
---|
| 1212 | }
|
---|
| 1213 |
|
---|
| 1214 | fn = 1.*nside;
|
---|
| 1215 | fact1 = 1./(3.*fn*fn);
|
---|
| 1216 | fact2 = 2./(3.*fn);
|
---|
| 1217 | nl4 = 4*nside;
|
---|
| 1218 |
|
---|
| 1219 | //c finds the face, and the number in the face
|
---|
| 1220 | npface = nside*nside;
|
---|
| 1221 |
|
---|
| 1222 | face_num = ipix/npface;// ! face number in {0,11}
|
---|
| 1223 | ipf = (int)fmod(ipix,npface);// ! pixel number in the face {0,npface-1}
|
---|
| 1224 |
|
---|
| 1225 | //c finds the x,y on the face (starting from the lowest corner)
|
---|
| 1226 | //c from the pixel number
|
---|
| 1227 | ip_low = (int)fmod(ipf,1024);// ! content of the last 10 bits
|
---|
| 1228 | ip_trunc = ipf/1024 ;// ! truncation of the last 10 bits
|
---|
| 1229 | ip_med = (int)fmod(ip_trunc,1024);// ! content of the next 10 bits
|
---|
| 1230 | ip_hi = ip_trunc/1024 ;//! content of the high weight 10 bits
|
---|
| 1231 |
|
---|
| 1232 | ix = 1024*pix2x_[ip_hi] + 32*pix2x_[ip_med] + pix2x_[ip_low];
|
---|
| 1233 | iy = 1024*pix2y_[ip_hi] + 32*pix2y_[ip_med] + pix2y_[ip_low];
|
---|
| 1234 |
|
---|
| 1235 | //c transforms this in (horizontal, vertical) coordinates
|
---|
| 1236 | jrt = ix + iy;// ! 'vertical' in {0,2*(nside-1)}
|
---|
| 1237 | jpt = ix - iy;// ! 'horizontal' in {-nside+1,nside-1}
|
---|
| 1238 |
|
---|
| 1239 | //c computes the z coordinate on the sphere
|
---|
| 1240 | // jr = jrll[face_num+1]*nside - jrt - 1;// ! ring number in {1,4*nside-1}
|
---|
| 1241 | jr = jrll[face_num]*nside - jrt - 1;
|
---|
| 1242 | nr = nside;// ! equatorial region (the most frequent)
|
---|
| 1243 | z = (2*nside-jr)*fact2;
|
---|
| 1244 | kshift = (int)fmod(jr - nside, 2);
|
---|
| 1245 | if( jr<nside ) { //then ! north pole region
|
---|
| 1246 | nr = jr;
|
---|
| 1247 | z = 1. - nr*nr*fact1;
|
---|
| 1248 | kshift = 0;
|
---|
| 1249 | }
|
---|
| 1250 | else {
|
---|
| 1251 | if( jr>3*nside ) {// then ! south pole region
|
---|
| 1252 | nr = nl4 - jr;
|
---|
| 1253 | z = - 1. + nr*nr*fact1;
|
---|
| 1254 | kshift = 0;
|
---|
| 1255 | }
|
---|
| 1256 | }
|
---|
| 1257 | theta = acos(z);
|
---|
| 1258 |
|
---|
| 1259 | //c computes the phi coordinate on the sphere, in [0,2Pi]
|
---|
| 1260 | // jp = (jpll[face_num+1]*nr + jpt + 1 + kshift)/2;// ! 'phi' number in the ring in {1,4*nr}
|
---|
| 1261 | jp = (jpll[face_num]*nr + jpt + 1 + kshift)/2;
|
---|
| 1262 | if( jp>nl4 ) jp = jp - nl4;
|
---|
| 1263 | if( jp<1 ) jp = jp + nl4;
|
---|
| 1264 |
|
---|
| 1265 | phi = (jp - (kshift+1)*0.5) * (piover2 / nr);
|
---|
| 1266 |
|
---|
| 1267 | }
|
---|
| 1268 |
|
---|
| 1269 |
|
---|
| 1270 | void SphereGorski::Pix2XY::pix2ang_nest(int nside, int ipix, double& theta, double& phi) const {
|
---|
| 1271 | /*
|
---|
| 1272 | c=======================================================================
|
---|
| 1273 | subroutine pix2ang_nest(nside, ipix, theta, phi)
|
---|
| 1274 | c=======================================================================
|
---|
| 1275 | c gives theta and phi corresponding to pixel ipix (NESTED)
|
---|
| 1276 | c for a parameter nside
|
---|
| 1277 | c=======================================================================
|
---|
| 1278 | */
|
---|
| 1279 | // tranlated from FORTRAN (Gorski) to C, by B. Revenu, revised Guy Le Meur
|
---|
| 1280 | // (16/12/98)
|
---|
| 1281 |
|
---|
| 1282 | int npix, npface, face_num;
|
---|
| 1283 | int ipf, ip_low, ip_trunc, ip_med, ip_hi;
|
---|
| 1284 | int ix, iy, jrt, jr, nr, jpt, jp, kshift, nl4;
|
---|
| 1285 | double z, fn, fact1, fact2;
|
---|
| 1286 | double piover2(Pi/2.);
|
---|
| 1287 | int ns_max(8192);
|
---|
| 1288 |
|
---|
| 1289 |
|
---|
| 1290 | // ! coordinate of the lowest corner of each face
|
---|
| 1291 | int jrll[12]={2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4};//! in unit of nside
|
---|
| 1292 | int jpll[12]={1, 3, 5, 7, 0, 2, 4, 6, 1, 3, 5, 7};// ! in unit of nside/2
|
---|
| 1293 |
|
---|
| 1294 | if( nside<1 || nside>ns_max ) {
|
---|
| 1295 | cout << "nside out of range" << endl;
|
---|
| 1296 | exit(0);
|
---|
| 1297 | }
|
---|
| 1298 | npix = 12 * nside*nside;
|
---|
| 1299 | if( ipix<0 || ipix>npix-1 ) {
|
---|
| 1300 | cout << "ipix out of range" << endl;
|
---|
| 1301 | exit(0);
|
---|
| 1302 | }
|
---|
| 1303 |
|
---|
| 1304 | fn = 1.*nside;
|
---|
| 1305 | fact1 = 1./(3.*fn*fn);
|
---|
| 1306 | fact2 = 2./(3.*fn);
|
---|
| 1307 | nl4 = 4*nside;
|
---|
| 1308 |
|
---|
| 1309 | //c finds the face, and the number in the face
|
---|
| 1310 | npface = nside*nside;
|
---|
| 1311 |
|
---|
| 1312 | face_num = ipix/npface;// ! face number in {0,11}
|
---|
| 1313 | ipf = (int)fmod(ipix,npface);// ! pixel number in the face {0,npface-1}
|
---|
| 1314 |
|
---|
| 1315 | //c finds the x,y on the face (starting from the lowest corner)
|
---|
| 1316 | //c from the pixel number
|
---|
| 1317 | ip_low = (int)fmod(ipf,1024);// ! content of the last 10 bits
|
---|
| 1318 | ip_trunc = ipf/1024 ;// ! truncation of the last 10 bits
|
---|
| 1319 | ip_med = (int)fmod(ip_trunc,1024);// ! content of the next 10 bits
|
---|
| 1320 | ip_hi = ip_trunc/1024 ;//! content of the high weight 10 bits
|
---|
| 1321 |
|
---|
| 1322 | ix = 1024*pix2x_[ip_hi] + 32*pix2x_[ip_med] + pix2x_[ip_low];
|
---|
| 1323 | iy = 1024*pix2y_[ip_hi] + 32*pix2y_[ip_med] + pix2y_[ip_low];
|
---|
| 1324 |
|
---|
| 1325 | //c transforms this in (horizontal, vertical) coordinates
|
---|
| 1326 | jrt = ix + iy;// ! 'vertical' in {0,2*(nside-1)}
|
---|
| 1327 | jpt = ix - iy;// ! 'horizontal' in {-nside+1,nside-1}
|
---|
| 1328 |
|
---|
| 1329 | //c computes the z coordinate on the sphere
|
---|
| 1330 | // jr = jrll[face_num+1]*nside - jrt - 1;// ! ring number in {1,4*nside-1}
|
---|
| 1331 | jr = jrll[face_num]*nside - jrt - 1;
|
---|
| 1332 | nr = nside;// ! equatorial region (the most frequent)
|
---|
| 1333 | z = (2*nside-jr)*fact2;
|
---|
| 1334 | kshift = (int)fmod(jr - nside, 2);
|
---|
| 1335 | if( jr<nside ) { //then ! north pole region
|
---|
| 1336 | nr = jr;
|
---|
| 1337 | z = 1. - nr*nr*fact1;
|
---|
| 1338 | kshift = 0;
|
---|
| 1339 | }
|
---|
| 1340 | else {
|
---|
| 1341 | if( jr>3*nside ) {// then ! south pole region
|
---|
| 1342 | nr = nl4 - jr;
|
---|
| 1343 | z = - 1. + nr*nr*fact1;
|
---|
| 1344 | kshift = 0;
|
---|
| 1345 | }
|
---|
| 1346 | }
|
---|
| 1347 | theta = acos(z);
|
---|
| 1348 |
|
---|
| 1349 | //c computes the phi coordinate on the sphere, in [0,2Pi]
|
---|
| 1350 | // jp = (jpll[face_num+1]*nr + jpt + 1 + kshift)/2;// ! 'phi' number in the ring in {1,4*nr}
|
---|
| 1351 | jp = (jpll[face_num]*nr + jpt + 1 + kshift)/2;
|
---|
| 1352 | if( jp>nl4 ) jp = jp - nl4;
|
---|
| 1353 | if( jp<1 ) jp = jp + nl4;
|
---|
| 1354 |
|
---|
| 1355 | phi = (jp - (kshift+1)*0.5) * (piover2 / nr);
|
---|
| 1356 |
|
---|
| 1357 | }
|
---|
| 1358 |
|
---|
| 1359 |
|
---|
| 1360 |
|
---|