#include "spheregorski.h" #include "strutil.h" #include #include "piocmplx.h" extern "C" { #include #include #include } extern "C" { void anafast_(int&,int&,int&,double&,float*,float*,float*,float*,float*,float*,float*); void synfast_(int&,int&,int&,int&,float&,float*,float*,float*,double*,double*,double*,double*,double*,float*); } //******************************************************************* // Class PIXELS_XY // Construction des tableaux necessaires a la traduction des indices RING en // indices NESTED (ou l'inverse) //******************************************************************* PIXELS_XY::PIXELS_XY() { cout << " appel du constructeur PIXELS_XY " < SphereGorski::SphereGorski() //-- { cout<<" appel du constructeur SphereGorski ()" < SphereGorski::SphereGorski(int m) // Constructeur : m est la variable nside de l'algorithme de Gorski // le nombre total de pixels sera Npix = 12*nside**2 // m DOIT OBLIGATOIREMENT ETRE UNE PUISSANCE DE 2 (<= 8192) //-- { cout<<" appel du constructeur SphereGorski (m)" < 8192) { cout << "SphereGorski : m hors bornes [0,8192], m= " << m << endl; exit(1); } // verifier que m est une puissance de deux int x= m; while(x%2 == 0) x/=2; if(x != 1) { cout<<"SphereGorski: m doit etre une puissance de deux, m= "< SphereGorski::SphereGorski(const SphereGorski& s) { cout << " constructeur de recopie " << endl; if(s.mInfo_) mInfo_= new DVList(*s.mInfo_); nSide_= s.nSide_; nPix_ = s.nPix_; omeg_ = s.omeg_; pixels_= s.pixels_; nlmax_= s.nlmax_; nmmax_= s.nmmax_; iseed_= s.iseed_; fwhm_ = s.fwhm_; quadrupole_ = s.quadrupole_; sym_cut_deg_= s.sym_cut_deg_; strcpy(powFile_,s.powFile_); } //++ // Titre Destructeur //-- //++ template SphereGorski::~SphereGorski() //-- { InitNul(); } //++ // Titre Méthodes //-- //++ template void SphereGorski::Resize(int m) // m est la variable nside de l'algorithme de Gorski // le nombre total de pixels sera Npix = 12*nside**2 // m DOIT OBLIGATOIREMENT ETRE UNE PUISSANCE DE 2 (<= 8192) //-- { if (m<=0 || m> 8192) { cout << "SphereGorski : m hors bornes [0,8192], m= " << m << endl; exit(1); } // verifier que m est une puissance de deux int x= m; while (x%2==0) x/=2; if(x != 1) { cout<<"SphereGorski: m doit etre une puissance de deux, m= "< void SphereGorski::Pixelize( int m) // prépare la pixelisation Gorski (m a la même signification // que pour le constructeur) // // //-- { // On memorise les arguments d'appel nSide_= m; // Nombre total de pixels sur la sphere entiere nPix_= 12*nSide_*nSide_; // pour le moment les tableaux qui suivent seront ranges dans l'ordre // de l'indexation GORSKY "RING" // on pourra ulterieurement changer de strategie et tirer profit // de la dualite d'indexation GORSKY (RING et NEST) : tout dependra // de pourquoi c'est faire // Creation et initialisation du vecteur des contenus des pixels pixels_.ReSize(nPix_); pixels_.Reset(); // solid angle per pixel omeg_= 4.0*Pi/nPix_; } template void SphereGorski::InitNul() // // initialise à zéro les variables de classe { nSide_= 0; nPix_ = 0; omeg_ = 0.; pixels_.Reset(); nlmax_= 0; nmmax_= 0; iseed_= 0; fwhm_ = 0.; quadrupole_ = 0.; sym_cut_deg_= 0.; for(int k = 0; k < 128; k++) powFile_[k]=' '; } /* --Methode-- */ //++ template int SphereGorski::NbPixels() const // Retourne le nombre de pixels du découpage //-- { return(nPix_); } //++ template int SphereGorski::NbThetaSlices() const // Retourne le nombre de tranches en theta sur la sphere //-- { return int(4*nSide_-1); } //++ template void SphereGorski::GetThetaSlice(int index,double& theta,TVector& phi,TVector& value) const // Retourne, pour la tranche en theta d'indice 'index' le theta // correspondant, un vecteur (Peida) contenant les phi des pixels de // la tranche, un vecteur (Peida) contenant les valeurs de pixel // correspondantes //-- { cout << "entree GetThetaSlice, couche no " << index << endl; if (index<0 || index > NbThetaSlices()) { // THROW(out_of_range("SphereGorski::PIxVal Pixel index out of range")); cout << " SphereGorski::GetThetaSlice : exceptions a mettre en place" < T& SphereGorski::PixVal(int k) // Retourne la valeur du contenu du pixel d'indice "RING" k //-- { if((k < 0) || (k >= nPix_)) { // THROW(out_of_range("SphereGorski::PIxVal Pixel index out of range")); cout << " SphereGorski::PIxVal : exceptions a mettre en place" < T const& SphereGorski::PixVal(int k) const // Retourne la valeur du contenu du pixel d'indice "RING" k //-- { if((k < 0) || (k >= nPix_)) { //THROW(out_of_range("SphereGorski::PIxVal Pixel index out of range")); cout << " SphereGorski::PIxVal : exceptions a mettre en place" < T& SphereGorski::PixValNest(int k) // Retourne la valeur du contenu du pixel d'indice "NESTED" k //-- { if((k < 0) || (k >= nPix_)) { //THROW(out_of_range("SphereGorski::PIxValNest Pixel index out of range")); cout<<" SphereGorski::PIxValNest : exceptions a mettre en place" < T const& SphereGorski::PixValNest(int k) const // Retourne la valeur du contenu du pixel d'indice "NESTED" k //-- { if((k < 0) || (k >= nPix_)) { //THROW(out_of_range("SphereGorski::PIxValNest Pixel index out of range")); cout<<" SphereGorski::PIxValNest : exceptions a mettre en place" < int SphereGorski::PixIndexSph(double theta,double phi) const // Retourne l'indice "RING" du pixel vers lequel pointe une direction // définie par ses coordonnées sphériques //-- { return ang2pix_ring(nSide_,theta,phi); } //++ template int SphereGorski::PixIndexSphNest(double theta,double phi) const // Retourne l'indice NESTED" du pixel vers lequel pointe une direction // définie par ses coordonnées sphériques //-- { return ang2pix_nest(nSide_,theta,phi); } /* --Methode-- */ //++ template void SphereGorski::PixThetaPhi(int k,double& theta,double& phi) const // Retourne les coordonnées (theta,phi) du milieu du pixel d'indice "RING" k //-- { pix2ang_ring(nSide_,k,theta,phi); } //++ template double SphereGorski::PixSolAngle(int dummy) const // Pixel Solid angle (steradians) // All the pixels have the same solid angle. The dummy argument is // for compatibility with eventual pixelizations which would not // fulfil this requirement. //-- { return omeg_; } //++ template void SphereGorski::PixThetaPhiNest(int k,double& theta,double& phi) const // Retourne les coordonnées (theta,phi) du milieu du pixel d'indice // NESTED k //-- { pix2ang_nest(nSide_,k,theta,phi); } //++ template int SphereGorski::NestToRing(int k) const // conversion d'index NESTD en un index RING // //-- { return nest2ring(nSide_,k); } //++ template int SphereGorski::RingToNest(int k) const // // conversion d'index RING en un index NESTED // //-- { return ring2nest(nSide_,k); } /* //++ template void SphereGorski::anharm(int nlmax, float sym_c,float* powspec) // // analyse en harmoniques spheriques des valeurs des pixels de la // sphere : appel du module anafast (Gorski-Hivon) // // "nlmax" : multipole maximum, nlmax <= 2*nsmax (cf. Nyquist) // // "sym c" : coupure symetrique autour de l'equateur (degres) // // "powspec" : tableau resultat (a reserver avant l'appel) de C(l) // (spectre de puissance) // //-- // // Pb a resoudre : dans cette classe les valeurs de pixel sont "double" // dans anafast le tableau correspondant est "float" // pour l'instant on duplique les tableaux, il faudra decider quelque chose // { if (nlmax > 2*nSide_) { cout << " anharm : nlmax= " << nlmax << " doit etre <= 2*nsmax (cf. Nyquist), soit :" << 2*nSide_ << endl; exit(1); } else { nlmax_=nlmax; nmmax_=nlmax_; } sym_cut_deg_=sym_c; float* map=new float[nPix_]; for (int k=0; k void SphereGorski::synharm(int nlmax, int iseed,float fwhm, float* powspec) // // synthese des valeurs des pixels de la sphere par l'intermediaire // des coefficients en harmoniques spheriques reconstitues apartir d'un // spectre en puissance : appel du module synfast (Gorski-Hivon) // // powspec est un tableau (a fournir) de C(l) (spectre de puissance) // Ce tableau doit contenir les valeur de C(l) par ordre // SEQUENTIEL de l (de l=0 a l=nlmax). IL SERA MODIFIE PAR L'ALGORITHME // // nlmax : multipole maximum (nlmax <= 2*nsmax (cf. Nyquist) // iseed : initialisation generation aleatoire (negatif, suggere : -1) // fwhm : largeur totale a mi-hauteur (minutes d'arc, >=0, ex: 5) //-- // Pb a resoudre : dans cette classe les valeurs de pixel sont "double" // dans anafast le tableau correspondant est "float" // pour l'instant on duplique les tableaux, il faudra decider quelque chose { if (nlmax > 2*nSide_) { cout << " sphereGorski::synharm: nlmax= " << nlmax << " doit etre <= 2*nsmax (cf. Nyquist), soit : " << 2*nSide_ << endl; exit(1); } else { nlmax_=nlmax; nmmax_=nlmax_; quadrupole_=powspec[2]; } if (powspec==NULL) { cout << "sphereGorski::synharm : un tableau de C_l doit etre alloue avant appel" << endl; exit(1); } iseed_=iseed; fwhm_ =fwhm; float* map=new float[nPix_]; int nsmax=nSide_; int nmmax=nmmax_; float* alm_T=new float[2*(nlmax+1)*(nmmax+1)]; // tableaux de travail double* b_north=new double[2*(2*nmmax+1)]; double* b_south=new double[2*(2*nmmax+1)]; double* bw=new double[2*4*nsmax]; double* data=new double[2*4*nsmax]; double* work=new double[2*4*nsmax]; float* lread=new float[nlmax+1]; synfast_(nsmax,nlmax,nmmax,iseed,fwhm, map,alm_T, powspec, b_north,b_south,bw,data,work,lread); for (int k=0; k int SphereGorski::nest2ring(int nside, int ipnest) const { /* ==================================================== subroutine nest2ring(nside, ipnest, ipring) ==================================================== c conversion from NESTED to RING pixel number ==================================================== */ // tranlated from FORTRAN (Gorski) to C, by B. Revenu, revised Guy Le Meur // (16/12/98) const PIXELS_XY& PXY= PIXELS_XY::instance(); int npix, npface, face_num, ncap, n_before; int ipf, ip_low, ip_trunc, ip_med, ip_hi; int ix, iy, jrt, jr, nr, jpt, jp, kshift, nl4; int ns_max=8192; int jrll[12]={2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4}; int jpll[12]={1, 3, 5, 7, 0, 2, 4, 6, 1, 3, 5, 7}; if( nside<1 || nside>ns_max ) { cout << "nside out of range" << endl; exit(0); } npix = 12 * nside* nside; if( ipnest<0 || ipnest>npix-1 ) { cout << "ipnest out of range" << endl; exit(0); } ncap = 2* nside*( nside-1);// ! number of points in the North Polar cap nl4 = 4* nside; //c finds the face, and the number in the face npface = nside* nside; //cccccc ip = ipnest - 1 ! in {0,npix-1} face_num = ipnest/npface;// ! face number in {0,11} ipf =ipnest%npface;// ! pixel number in the face {0,npface-1} //c finds the x,y on the face (starting from the lowest corner) //c from the pixel number ip_low=ipf%1024; // ! content of the last 10 bits ip_trunc = ipf/1024; // ! truncation of the last 10 bits ip_med=ip_trunc%1024; // ! content of the next 10 bits ip_hi = ip_trunc/1024;// ! content of the high weight 10 bits ix = 1024*PXY.pix2x_(ip_hi)+32*PXY.pix2x_(ip_med)+PXY.pix2x_(ip_low); iy = 1024*PXY.pix2y_(ip_hi)+32*PXY.pix2y_(ip_med)+PXY.pix2y_(ip_low); //c transforms this in (horizontal, vertical) coordinates jrt = ix + iy;// ! 'vertical' in {0,2*(nside-1)} jpt = ix - iy;// ! 'horizontal' in {-nside+1,nside-1} //c computes the z coordinate on the sphere // jr = jrll[face_num+1]*nside - jrt - 1;// ! ring number in {1,4*nside-1} jr = jrll[face_num]*nside - jrt - 1; nr = nside;// ! equatorial region (the most frequent) n_before = ncap + nl4 * (jr - nside); kshift=(jr - nside)%2; if( jr3*nside ) {//then ! south pole region nr = nl4 - jr; n_before = npix - 2 * (nr + 1) * nr; kshift = 0; } //c computes the phi coordinate on the sphere, in [0,2Pi] jp = (jpll[face_num]*nr + jpt + 1 + kshift)/2;// ! 'phi' number in the ring in {1,4*nr} if( jp>nl4 ) jp = jp - nl4; if( jp<1 ) jp = jp + nl4; int aux=n_before + jp - 1; return (n_before + jp - 1);// ! in {0, npix-1} } template int SphereGorski::ring2nest(int nside, int ipring) const { /* ================================================== subroutine ring2nest(nside, ipring, ipnest) ================================================== c conversion from RING to NESTED pixel number ================================================== */ // tranlated from FORTRAN (Gorski) to C, by B. Revenu, revised Guy Le Meur // (16/12/98) const PIXELS_XY& PXY= PIXELS_XY::instance(); double fihip, hip; int npix, nl2, nl4, ncap, ip, iphi, ipt, ipring1; int kshift, face_num, nr; int irn, ire, irm, irs, irt, ifm , ifp; int ix, iy, ix_low, ix_hi, iy_low, iy_hi, ipf; int ns_max(8192); // coordinate of the lowest corner of each face int jrll[12]={2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4};// ! in unit of nside int jpll[12]={1, 3, 5, 7, 0, 2, 4, 6, 1, 3, 5, 7};//! in unit of nside/2 if( nside<1 || nside>ns_max ) { cout << "nside out of range" << endl; exit(0); } npix = 12 * nside*nside; if( ipring<0 || ipring>npix-1 ) { cout << "ipring out of range" << endl; exit(0); } nl2 = 2*nside; nl4 = 4*nside; npix = 12*nside*nside;// ! total number of points ncap = 2*nside*(nside-1);// ! points in each polar cap, =0 for nside =1 ipring1 = ipring + 1; //c finds the ring number, the position of the ring and the face number if( ipring1<=ncap ) {//then hip = ipring1/2.; fihip = (int)floor ( hip ); irn = (int)floor( sqrt( hip - sqrt(fihip) ) ) + 1;// ! counted from North pole iphi = ipring1 - 2*irn*(irn - 1); kshift = 0; nr = irn ;// ! 1/4 of the number of points on the current ring face_num = (iphi-1) / irn;// ! in {0,3} } else if( ipring1<=nl2*(5*nside+1) ) {//then ip = ipring1 - ncap - 1; irn = (int)floor( ip / nl4 ) + nside;// ! counted from North pole iphi = (int)fmod(ip,nl4) + 1; kshift = (int)fmod(irn+nside,2);// ! 1 if irn+nside is odd, 0 otherwise nr = nside; ire = irn - nside + 1;// ! in {1, 2*nside +1} irm = nl2 + 2 - ire; ifm = (iphi - ire/2 + nside -1) / nside;// ! face boundary ifp = (iphi - irm/2 + nside -1) / nside; if( ifp==ifm ) {//then ! faces 4 to 7 face_num = (int)fmod(ifp,4) + 4; } else if( ifp + 1==ifm ) {//then ! (half-)faces 0 to 3 face_num = ifp; } else if( ifp - 1==ifm ) {//then ! (half-)faces 8 to 11 face_num = ifp + 7; } } else { ip = npix - ipring1 + 1; hip = ip/2.; fihip = floor ( hip ); irs = (int)floor( sqrt( hip - sqrt(fihip) ) ) + 1;// ! counted from South pole iphi = 4*irs + 1 - (ip - 2*irs*(irs-1)); kshift = 0; nr = irs; irn = nl4 - irs; face_num = (iphi-1) / irs + 8;// ! in {8,11} } //c finds the (x,y) on the face irt = irn - jrll[face_num]*nside + 1;// ! in {-nside+1,0} ipt = 2*iphi - jpll[face_num]*nr - kshift - 1;// ! in {-nside+1,nside-1} if( ipt>=nl2 ) ipt = ipt - 8*nside;// ! for the face #4 ix = (ipt - irt ) / 2; iy = -(ipt + irt ) / 2; ix_low = (int)fmod(ix,128); ix_hi = ix/128; iy_low = (int)fmod(iy,128); iy_hi = iy/128; ipf=(PXY.x2pix_(ix_hi)+PXY.y2pix_(iy_hi))*(128*128)+(PXY.x2pix_(ix_low)+PXY.y2pix_(iy_low)); return (ipf + face_num* nside *nside);// ! in {0, 12*nside**2 - 1} } template int SphereGorski::ang2pix_ring(int nside, double theta, double phi) const { /* ================================================== c gives the pixel number ipix (RING) c corresponding to angles theta and phi c================================================== */ // tranlated from FORTRAN (Gorski) to C, by B. Revenu, revised Guy Le Meur // (16/12/98) int nl2, nl4, ncap, npix, jp, jm, ipix1; double z, za, tt, tp, tmp; int ir, ip, kshift; double piover2(Pi/2.); double twopi(2.*Pi); double z0(2./3.); int ns_max(8192); if( nside<1 || nside>ns_max ) { cout << "nside out of range" << endl; exit(0); } if( theta<0. || theta>Pi) { cout << "theta out of range" << endl; exit(0); } z = cos(theta); za = fabs(z); if( phi >= twopi) phi = phi - twopi; if (phi < 0.) phi = phi + twopi; tt = phi / piover2;// ! in [0,4) nl2 = 2*nside; nl4 = 4*nside; ncap = nl2*(nside-1);// ! number of pixels in the north polar cap npix = 12*nside*nside; if( za <= z0 ) { jp = (int)floor(nside*(0.5 + tt - z*0.75));// ! index of ascending edge line jm = (int)floor(nside*(0.5 + tt + z*0.75));// ! index of descending edge line ir = nside + 1 + jp - jm;// ! in {1,2n+1} (ring number counted from z=2/3) kshift = 0; if (fmod(ir,2)==0.) kshift = 1;// ! kshift=1 if ir even, 0 otherwise ip = (int)floor( ( jp+jm - nside + kshift + 1 ) / 2 ) + 1;// ! in {1,4n} if( ip>nl4 ) ip = ip - nl4; ipix1 = ncap + nl4*(ir-1) + ip ; } else { tp = tt - floor(tt);// !MOD(tt,1.d0) tmp = sqrt( 3.*(1. - za) ); jp = (int)floor( nside * tp * tmp );// ! increasing edge line index jm = (int)floor( nside * (1. - tp) * tmp );// ! decreasing edge line index ir = jp + jm + 1;// ! ring number counted from the closest pole ip = (int)floor( tt * ir ) + 1;// ! in {1,4*ir} if( ip>4*ir ) ip = ip - 4*ir; ipix1 = 2*ir*(ir-1) + ip; if( z<=0. ) { ipix1 = npix - 2*ir*(ir+1) + ip; } } return (ipix1 - 1);// ! in {0, npix-1} } template int SphereGorski::ang2pix_nest(int nside, double theta, double phi) const { /* ================================================== subroutine ang2pix_nest(nside, theta, phi, ipix) ================================================== c gives the pixel number ipix (NESTED) c corresponding to angles theta and phi c c the computation is made to the highest resolution available (nside=8192) c and then degraded to that required (by integer division) c this doesn't cost more, and it makes sure c that the treatement of round-off will be consistent c for every resolution ================================================== */ // tranlated from FORTRAN (Gorski) to C, by B. Revenu, revised Guy Le Meur // (16/12/98) const PIXELS_XY& PXY= PIXELS_XY::instance(); double z, za, z0, tt, tp, tmp; int face_num,jp,jm; int ifp, ifm; int ix, iy, ix_low, ix_hi, iy_low, iy_hi, ipf, ntt; double piover2(Pi/2.), twopi(2.*Pi); int ns_max(8192); if( nside<1 || nside>ns_max ) { cout << "nside out of range" << endl; exit(0); } if( theta<0 || theta>Pi ) { cout << "theta out of range" << endl; exit(0); } z = cos(theta); za = fabs(z); z0 = 2./3.; if( phi>=twopi ) phi = phi - twopi; if( phi<0. ) phi = phi + twopi; tt = phi / piover2;// ! in [0,4[ if( za<=z0 ) { // then ! equatorial region //(the index of edge lines increase when the longitude=phi goes up) jp = (int)floor(ns_max*(0.5 + tt - z*0.75));// ! ascending edge line index jm = (int)floor(ns_max*(0.5 + tt + z*0.75));// ! descending edge line index //c finds the face ifp = jp / ns_max;// ! in {0,4} ifm = jm / ns_max; if( ifp==ifm ) face_num = (int)fmod(ifp,4) + 4; //then ! faces 4 to 7 else if( ifp 2/3 ntt = (int)floor(tt); if( ntt>=4 ) ntt = 3; tp = tt - ntt; tmp = sqrt( 3.*(1. - za) );// ! in ]0,1] //(the index of edge lines increase when distance from the closest pole goes up) jp = (int)floor(ns_max*tp*tmp); // ! line going toward the pole as phi increases jm = (int)floor(ns_max*(1.-tp)*tmp); // ! that one goes away of the closest pole jp = (int)min(ns_max-1, jp);// ! for points too close to the boundary jm = (int)min(ns_max-1, jm); // finds the face and pixel's (x,y) if( z>=0 ) { face_num = ntt;// ! in {0,3} ix = ns_max - jm - 1; iy = ns_max - jp - 1; } else { face_num = ntt + 8;// ! in {8,11} ix = jp; iy = jm; } } ix_low = (int)fmod(ix,128); ix_hi = ix/128; iy_low = (int)fmod(iy,128); iy_hi = iy/128; ipf= (PXY.x2pix_(ix_hi)+PXY.y2pix_(iy_hi))*(128*128)+(PXY.x2pix_(ix_low)+PXY.y2pix_(iy_low)); ipf = ipf / pow(ns_max/nside,2);// ! in {0, nside**2 - 1} return ( ipf + face_num*pow(nside,2));// ! in {0, 12*nside**2 - 1} } template void SphereGorski::pix2ang_ring(int nside,int ipix,double& theta,double& phi) const { /* =================================================== c gives theta and phi corresponding to pixel ipix (RING) c for a parameter nside =================================================== */ // tranlated from FORTRAN (Gorski) to C, by B. Revenu, revised Guy Le Meur // (16/12/98) int nl2, nl4, npix, ncap, iring, iphi, ip, ipix1; double fact1, fact2, fodd, hip, fihip; int ns_max(8192); if( nside<1 || nside>ns_max ) { cout << "nside out of range" << endl; exit(0); } npix = 12*nside*nside; // ! total number of points if( ipix<0 || ipix>npix-1 ) { cout << "ipix out of range" << endl; exit(0); } ipix1 = ipix + 1; // in {1, npix} nl2 = 2*nside; nl4 = 4*nside; ncap = 2*nside*(nside-1);// ! points in each polar cap, =0 for nside =1 fact1 = 1.5*nside; fact2 = 3.0*nside*nside; if( ipix1 <= ncap ) { //! North Polar cap ------------- hip = ipix1/2.; fihip = floor(hip); iring = (int)floor( sqrt( hip - sqrt(fihip) ) ) + 1;// ! counted from North pole iphi = ipix1 - 2*iring*(iring - 1); theta = acos( 1. - iring*iring / fact2 ); phi = (1.*iphi - 0.5) * Pi/(2.*iring); // cout << theta << " " << phi << endl; } else if( ipix1 <= nl2*(5*nside+1) ) {//then ! Equatorial region ------ ip = ipix1 - ncap - 1; iring = (int)floor( ip / nl4 ) + nside;// ! counted from North pole iphi = (int)fmod(ip,nl4) + 1; fodd = 0.5 * (1 + fmod((double)(iring+nside),2));// ! 1 if iring+nside is odd, 1/2 otherwise theta = acos( (nl2 - iring) / fact1 ); phi = (1.*iphi - fodd) * Pi /(2.*nside); } else {//! South Polar cap ----------------------------------- ip = npix - ipix1 + 1; hip = ip/2.; fihip = 1.*hip; iring = (int)floor( sqrt( hip - sqrt(fihip) ) ) + 1;// ! counted from South pole iphi = (int)(4.*iring + 1 - (ip - 2.*iring*(iring-1))); theta = acos( -1. + iring*iring / fact2 ); phi = (1.*iphi - 0.5) * Pi/(2.*iring); // cout << theta << " " << phi << endl; } } template void SphereGorski::pix2ang_nest(int nside,int ipix,double& theta,double& phi) const { /* ================================================== subroutine pix2ang_nest(nside, ipix, theta, phi) ================================================== c gives theta and phi corresponding to pixel ipix (NESTED) c for a parameter nside ================================================== */ // tranlated from FORTRAN (Gorski) to C, by B. Revenu, revised Guy Le Meur // (16/12/98) const PIXELS_XY& PXY= PIXELS_XY::instance(); int npix, npface, face_num; int ipf, ip_low, ip_trunc, ip_med, ip_hi; int ix, iy, jrt, jr, nr, jpt, jp, kshift, nl4; double z, fn, fact1, fact2; double piover2(Pi/2.); int ns_max(8192); // ! coordinate of the lowest corner of each face int jrll[12]={2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4};//! in unit of nside int jpll[12]={1, 3, 5, 7, 0, 2, 4, 6, 1, 3, 5, 7};// ! in unit of nside/2 if( nside<1 || nside>ns_max ) { cout << "nside out of range" << endl; exit(0); } npix = 12 * nside*nside; if( ipix<0 || ipix>npix-1 ) { cout << "ipix out of range" << endl; exit(0); } fn = 1.*nside; fact1 = 1./(3.*fn*fn); fact2 = 2./(3.*fn); nl4 = 4*nside; //c finds the face, and the number in the face npface = nside*nside; face_num = ipix/npface;// ! face number in {0,11} ipf = (int)fmod(ipix,npface);// ! pixel number in the face {0,npface-1} //c finds the x,y on the face (starting from the lowest corner) //c from the pixel number ip_low = (int)fmod(ipf,1024);// ! content of the last 10 bits ip_trunc = ipf/1024 ;// ! truncation of the last 10 bits ip_med = (int)fmod(ip_trunc,1024);// ! content of the next 10 bits ip_hi = ip_trunc/1024 ;//! content of the high weight 10 bits ix = 1024*PXY.pix2x_(ip_hi)+32*PXY.pix2x_(ip_med)+PXY.pix2x_(ip_low); iy = 1024*PXY.pix2y_(ip_hi)+32*PXY.pix2y_(ip_med)+PXY.pix2y_(ip_low); //c transforms this in (horizontal, vertical) coordinates jrt = ix + iy;// ! 'vertical' in {0,2*(nside-1)} jpt = ix - iy;// ! 'horizontal' in {-nside+1,nside-1} //c computes the z coordinate on the sphere // jr = jrll[face_num+1]*nside - jrt - 1;// ! ring number in {1,4*nside-1} jr = jrll[face_num]*nside - jrt - 1; nr = nside;// ! equatorial region (the most frequent) z = (2*nside-jr)*fact2; kshift = (int)fmod(jr - nside, 2); if( jr3*nside ) {// then ! south pole region nr = nl4 - jr; z = - 1. + nr*nr*fact1; kshift = 0; } } theta = acos(z); //c computes the phi coordinate on the sphere, in [0,2Pi] // jp = (jpll[face_num+1]*nr + jpt + 1 + kshift)/2;// ! 'phi' number in the ring in {1,4*nr} jp = (jpll[face_num]*nr + jpt + 1 + kshift)/2; if( jp>nl4 ) jp = jp - nl4; if( jp<1 ) jp = jp + nl4; phi = (jp - (kshift+1)*0.5) * (piover2 / nr); } // retourne le nom du fichier qui contient le spectre de puissance template void SphereGorski::powfile(char filename[]) const { bool status = false; for (int k=0; k< 128; k++) { if( powFile_[k] != ' ' ) { status = true; break; } } if ( status ) { strcpy(filename,powFile_); } else { strcpy(filename,"no file"); } } template void SphereGorski::getParafast(int& nlmax,int& nmmax,int& iseed,float& fwhm,float& quadr,float& cut) const { nlmax= nlmax_; nmmax= nmmax_; iseed= iseed_; fwhm = fwhm_; quadr= quadrupole_; cut = sym_cut_deg_; } template void SphereGorski::setParafast(int nlmax,int nmmax,int iseed,float fwhm,float quadr,float cut,char* filename) { nlmax_= nlmax; nmmax_= nmmax; iseed_= iseed; fwhm_ = fwhm; quadrupole_ = quadr; sym_cut_deg_= cut; strcpy(powFile_,filename); } template void SphereGorski::print(ostream& os) const { if(mInfo_) os << " DVList Info= " << *mInfo_ << endl; // os << " nSide_ = " << nSide_ << endl; os << " nPix_ = " << nPix_ << endl; os << " omeg_ = " << omeg_ << endl; os << " contenu de pixels : "; for(int i=0; i < nPix_; i++) { if(i%5 == 0) os << endl; os << pixels_(i) <<", "; } os << endl; os << endl; const PIXELS_XY& PXY= PIXELS_XY::instance(); os << endl; os << " contenu des tableaux conversions "<; } // Pour savoir s'il y avait un DVList Info associe char strg[256]; is.GetLine(strg, 255); bool hadinfo= false; if(strncmp(strg+strlen(strg)-7, "HasInfo", 7) == 0) hadinfo= true; if(hadinfo) { // Lecture eventuelle du DVList Info is >> dobj->Info(); } int nSide; is.GetI4(nSide); dobj->setSizeIndex(nSide); int nPix; is.GetI4(nPix); dobj->setNbPixels(nPix); double Omega; is.GetR8(Omega); dobj->setPixSolAngle(Omega); T* pixels= new T[nPix]; PIOSReadArray(is, pixels, nPix); dobj->setDataBlock(pixels, nPix); delete [] pixels; int nlmax,nmmax,iseed; is.GetI4(nlmax); is.GetI4(nmmax); is.GetI4(iseed); float fwhm,quadr,cut; is.GetR4(fwhm); is.GetR4(quadr); is.GetR4(cut); char powfl[128]; is.GetLine(powfl, 127); dobj->setParafast(nlmax,nmmax,iseed,fwhm,quadr,cut,powfl); } template void FIO_SphereGorski::WriteSelf(POutPersist& os) const { cout << " FIO_SphereGorski:: WriteSelf " << endl; if(dobj == NULL) { cout << " WriteSelf:: dobj= null " << endl; return; } char strg[256]; int nSide= dobj->SizeIndex(); int nPix = dobj->NbPixels(); if(dobj->ptrInfo()) { sprintf(strg,"SphereGorski: NSide=%6d NPix=%9d HasInfo",nSide,nPix); os.PutLine(strg); os << dobj->Info(); } else { sprintf(strg,"SphereGorski: NSide=%6d NPix=%9d ",nSide,nPix); os.PutLine(strg); } os.PutI4(nSide); os.PutI4(nPix); os.PutR8(dobj->PixSolAngle(0)); PIOSWriteArray(os,(dobj->getDataBlock())->Data(), nPix); int nlmax,nmmax,iseed; float fwhm,quadr,cut; dobj->getParafast(nlmax,nmmax,iseed,fwhm,quadr,cut); os.PutI4(nlmax); os.PutI4(nmmax); os.PutI4(iseed); os.PutR4(fwhm); os.PutR4(quadr); os.PutR4(cut); char powfl[128]; dobj->powfile(powfl); os.PutLine(powfl); } #ifdef __CXX_PRAGMA_TEMPLATES__ #pragma define_template SphereGorski #pragma define_template SphereGorski #pragma define_template SphereGorski< complex > #pragma define_template SphereGorski< complex > #pragma define_template FIO_SphereGorski #pragma define_template FIO_SphereGorski #pragma define_template FIO_SphereGorski< complex > #pragma define_template FIO_SphereGorski< complex > #endif #if defined(ANSI_TEMPLATES) || defined(GNU_TEMPLATES) template class SphereGorski; template class SphereGorski; template class SphereGorski< complex >; template class SphereGorski< complex >; template class FIO_SphereGorski; template class FIO_SphereGorski; template class FIO_SphereGorski< complex >; template class FIO_SphereGorski< complex >; #endif