source: Sophya/trunk/SophyaLib/Samba/spheregorski.cc@ 470

Last change on this file since 470 was 470, checked in by ansari, 26 years ago

versions templatees, NdataBlocks etc. 15-OCT-99-GLM

File size: 38.7 KB
Line 
1//
2#include "spheregorski.h"
3#include "strutil.h"
4#include <complex>
5#include "piocmplx.h"
6
7extern "C"
8{
9#include <stdio.h>
10#include <stdlib.h>
11#include <unistd.h>
12}
13
14extern "C"
15{
16void anafast_(int&, int&, int&,double&,float*,float*,float*,float*,float*,float*,float*);
17void synfast_(int&, int&, int&,int&, float&,float*,float*,float*,double*, double*,double*,double*,double*,float*);
18}
19
20//*******************************************************************
21// Class PIXELS_XY
22// Construction des tableaux necessaires a la traduction des indices RING en
23// indices NESTED (ou l'inverse)
24//*******************************************************************
25
26PIXELS_XY::PIXELS_XY()
27{
28 cout << " appel du constructeur PIXELS_XY " <<endl;
29 pix2x_.ReSize(1024);
30 pix2x_.Reset();
31 pix2y_.ReSize(1024);
32 pix2y_.Reset();
33 x2pix_.ReSize(128);
34 x2pix_.Reset();
35 y2pix_.ReSize(128);
36 y2pix_.Reset();
37 mk_pix2xy();
38 mk_xy2pix();
39}
40
41PIXELS_XY& PIXELS_XY::instance()
42{
43 static PIXELS_XY single;
44 return (single);
45}
46
47void PIXELS_XY::mk_pix2xy()
48{
49 /*
50 ==================================================
51 subroutine mk_pix2xy
52 ==================================================
53 c constructs the array giving x and y in the face from pixel number
54 c for the nested (quad-cube like) ordering of pixels
55 c
56 c the bits corresponding to x and y are interleaved in the pixel number
57 c one breaks up the pixel number by even and odd bits
58 ==================================================
59 */
60 // tranlated from FORTRAN (Gorski) to C, by B. Revenu, revised Guy Le Meur
61 // (16/12/98)
62
63 int kpix, jpix, IX, IY, IP, ID;
64
65 for(kpix = 0; kpix < 1024; kpix++)
66 {
67 jpix = kpix;
68 IX = 0;
69 IY = 0;
70 IP = 1 ;// ! bit position (in x and y)
71 while( jpix!=0 )
72 { // ! go through all the bits
73 ID=jpix%2;// ! bit value (in kpix), goes in ix
74 jpix = jpix/2;
75 IX = ID*IP+IX;
76
77 ID=jpix%2;// ! bit value (in kpix), goes in iy
78 jpix = jpix/2;
79 IY = ID*IP+IY;
80
81 IP = 2*IP;// ! next bit (in x and y)
82 }
83 pix2x_(kpix) = IX;// ! in 0,31
84 pix2y_(kpix) = IY;// ! in 0,31
85 }
86}
87
88void PIXELS_XY::mk_xy2pix()
89{
90 /*
91 =================================================
92 subroutine mk_xy2pix
93 =================================================
94 c sets the array giving the number of the pixel lying in (x,y)
95 c x and y are in {1,128}
96 c the pixel number is in {0,128**2-1}
97 c
98 c if i-1 = sum_p=0 b_p * 2^p
99 c then ix = sum_p=0 b_p * 4^p
100 c iy = 2*ix
101 c ix + iy in {0, 128**2 -1}
102 =================================================
103 */
104 // tranlated from FORTRAN (Gorski) to C, by B. Revenu, revised Guy Le Meur
105 // (16/12/98)
106
107 int K,IP,I,J,ID;
108 for(I = 1; I <= 128; I++)
109 {
110 J = I-1;// !pixel numbers
111 K = 0;//
112 IP = 1;//
113 truc : if( J==0 )
114 {
115 x2pix_(I-1) = K;
116 y2pix_(I-1) = 2*K;
117 }
118 else
119 {
120 ID = (int)fmod(J,2);
121 J = J/2;
122 K = IP*ID+K;
123 IP = IP*4;
124 goto truc;
125 }
126 }
127}
128
129//*******************************************************************
130//++
131// Class SphereGorski
132//
133// include spheregorski.h strutil.h
134//
135// Pixelisation Gorski
136//
137//
138//| -----------------------------------------------------------------------
139//| version 0.8.2 Aug97 TAC Eric Hivon, Kris Gorski
140//| -----------------------------------------------------------------------
141//
142// the sphere is split in 12 diamond-faces containing nside**2 pixels each
143//
144// the numbering of the pixels (in the nested scheme) is similar to
145// quad-cube
146// In each face the first pixel is in the lowest corner of the diamond
147//
148// the faces are (x,y) coordinate on each face
149//| . . . . <--- North Pole
150//| / \ / \ / \ / \ ^ ^
151//| . 0 . 1 . 2 . 3 . <--- z = 2/3 \ /
152//| \ / \ / \ / \ / y \ / x
153//| 4 . 5 . 6 . 7 . 4 <--- equator \ /
154//| / \ / \ / \ / \ \/
155//| . 8 . 9 .10 .11 . <--- z = -2/3 (0,0) : lowest corner
156//| \ / \ / \ / \ /
157//| . . . . <--- South Pole
158//|
159// phi:0 2Pi
160//
161// in the ring scheme pixels are numbered along the parallels
162// the first parallel is the one closest to the north pole and so on
163// on each parallel, pixels are numbered starting from the one closest
164// to phi = 0
165//
166// nside DOIT OBLIGATOIREMENT ETRE UNE PUISSANCE DE 2 (<= 8192)
167//--
168//++
169//
170// Links Parents
171//
172// SphericalMap
173//--
174//++
175//
176// Links Descendants
177//
178//
179//--
180
181/* --Methode-- */
182//++
183// Titre Constructeurs
184//--
185//++
186
187template<class T>
188SphereGorski<T>::SphereGorski()
189
190//--
191{
192 cout<<" appel du constructeur SphereGorski ()" <<endl;
193 InitNul();
194}
195
196//++
197template<class T>
198SphereGorski<T>::SphereGorski(int_4 m)
199
200// Constructeur : m est la variable nside de l'algorithme de Gorski
201// le nombre total de pixels sera Npix = 12*nside**2
202// m DOIT OBLIGATOIREMENT ETRE UNE PUISSANCE DE 2 (<= 8192)
203//--
204{
205 cout<<" appel du constructeur SphereGorski (m)" <<endl;
206
207 if(m <= 0 || m > 8192)
208 {
209 cout << "SphereGorski : m hors bornes [0,8192], m= " << m << endl;
210 exit(1);
211 }
212 // verifier que m est une puissance de deux
213 int_4 x=m;
214 while(x%2 == 0) x/=2;
215 if(x != 1)
216 {
217 cout<<"SphereGorski: m doit etre une puissance de deux, m= "<<m<<endl;
218 exit(1);
219 }
220 InitNul();
221 Pixelize(m);
222}
223
224template<class T>
225SphereGorski<T>::SphereGorski(const SphereGorski<T>& s)
226{
227 cout << " constructeur de recopie " << endl;
228 if(s.mInfo_) mInfo_= new DVList(*s.mInfo_);
229
230 nSide_= s.nSide_;
231 nPix_ = s.nPix_;
232 omeg_ = s.omeg_;
233
234 pixels_= s.pixels_;
235
236 nlmax_= s.nlmax_;
237 nmmax_= s.nmmax_;
238 iseed_= s.iseed_;
239 fwhm_ = s.fwhm_;
240 quadrupole_ = s.quadrupole_;
241 sym_cut_deg_= s.sym_cut_deg_;
242 strcpy(powFile_,s.powFile_);
243}
244
245//++
246// Titre Destructeur
247//--
248//++
249template<class T>
250SphereGorski<T>::~SphereGorski()
251
252//--
253{
254 InitNul();
255}
256
257//++
258// Titre Méthodes
259//--
260
261//++
262template<class T>
263void SphereGorski<T>::Resize(int_4 m)
264
265// m est la variable nside de l'algorithme de Gorski
266// le nombre total de pixels sera Npix = 12*nside**2
267// m DOIT OBLIGATOIREMENT ETRE UNE PUISSANCE DE 2 (<= 8192)
268//--
269{
270 if (m<=0 || m> 8192) {
271 cout << "SphereGorski : m hors bornes [0,8192], m= " << m << endl;
272 exit(1);
273 }
274 // verifier que m est une puissance de deux
275 int_4 x=m;
276 while (x%2==0) x/=2;
277 if(x != 1)
278 {
279 cout<<"SphereGorski: m doit etre une puissance de deux, m= "<<m<<endl;
280 exit(1);
281 }
282 InitNul();
283 Pixelize(m);
284}
285
286template<class T>
287void SphereGorski<T>::Pixelize( int_4 m)
288
289// prépare la pixelisation Gorski (m a la même signification
290// que pour le constructeur)
291//
292//
293//--
294{
295 // On memorise les arguments d'appel
296 nSide_ = m;
297
298 // Nombre total de pixels sur la sphere entiere
299 nPix_=12*nSide_*nSide_;
300
301 // pour le moment les tableaux qui suivent seront ranges dans l'ordre
302 // de l'indexation GORSKY "RING"
303 // on pourra ulterieurement changer de strategie et tirer profit
304 // de la dualite d'indexation GORSKY (RING et NEST) : tout dependra
305 // de pourquoi c'est faire
306
307 // Creation et initialisation du vecteur des contenus des pixels
308 pixels_.ReSize(nPix_);
309 pixels_.Reset();
310
311 // solid angle per pixel
312 omeg_= 4*Pi/nPix_;
313}
314
315template<class T>
316void SphereGorski<T>::InitNul()
317//
318// initialise à zéro les variables de classe
319{
320 nSide_= 0;
321 nPix_ = 0;
322 omeg_ = 0.;
323 pixels_.Reset();
324
325 nlmax_= 0;
326 nmmax_= 0;
327 iseed_= 0;
328 fwhm_ = 0.;
329 quadrupole_ = 0.;
330 sym_cut_deg_= 0.;
331 for(int k = 0; k < 128; k++) powFile_[k]=' ';
332}
333
334/* --Methode-- */
335//++
336template<class T>
337int_4 SphereGorski<T>::NbPixels() const
338
339// Retourne le nombre de pixels du découpage
340//--
341{
342 return(nPix_);
343}
344
345//++
346template<class T>
347int_4 SphereGorski<T>::NbThetaSlices() const
348
349// Retourne le nombre de tranches en theta sur la sphere
350//--
351{
352 return int_4(4*nSide_-1);
353}
354
355//++
356template<class T>
357void SphereGorski<T>::GetThetaSlice(int_4 index, r_4& theta, TVector<float>& phi, TVector<T>& value) const
358
359// Retourne, pour la tranche en theta d'indice 'index' le theta
360// correspondant, un vecteur (Peida) contenant les phi des pixels de
361// la tranche, un vecteur (Peida) contenant les valeurs de pixel
362// correspondantes
363//--
364{
365 cout << "entree GetThetaSlice, couche no " << index << endl;
366
367 if (index<0 || index > NbThetaSlices())
368 {
369 // THROW(out_of_range("SphereGorski::PIxVal Pixel index out of range"));
370 cout << " SphereGorski::GetThetaSlice : exceptions a mettre en place" <<endl;
371 THROW(rangeCheckErr);
372 }
373
374 int_4 iring= 0;
375 int lring = 0;
376 if(index < nSide_-1)
377 {
378 iring= 2*index*(index+1);
379 lring= 4*(index+1);
380 }
381 else if(index < 3*nSide_)
382 {
383 iring= 2*nSide_*(2*index-nSide_+1);
384 lring= 4*nSide_;
385 }
386 else
387 {
388 int nc= 4*nSide_-1-index;
389 iring = nPix_-2*nc*(nc+1);
390 lring = 4*nc;
391 }
392
393 phi.ReSize(lring);
394 value.ReSize(lring);
395 float TH=0.;
396 float F =0.;
397 for(int kk = 0; kk < lring;kk++)
398 {
399 PixThetaPhi(kk+iring,TH,F);
400 phi(kk)= F;
401 value(kk)= PixVal(kk+iring);
402 }
403 theta= TH;
404}
405
406/* --Methode-- */
407//++
408template<class T>
409T& SphereGorski<T>::PixVal(int_4 k)
410
411// Retourne la valeur du contenu du pixel d'indice "RING" k
412//--
413{
414 if((k < 0) || (k >= nPix_))
415 {
416 // THROW(out_of_range("SphereGorski::PIxVal Pixel index out of range"));
417 cout << " SphereGorski::PIxVal : exceptions a mettre en place" <<endl;
418 THROW(rangeCheckErr);
419 }
420 return pixels_(k);
421}
422
423/* --Methode-- */
424//++
425template<class T>
426T const& SphereGorski<T>::PixVal(int_4 k) const
427
428// Retourne la valeur du contenu du pixel d'indice "RING" k
429//--
430{
431 if((k < 0) || (k >= nPix_))
432 {
433 //THROW(out_of_range("SphereGorski::PIxVal Pixel index out of range"));
434 cout << " SphereGorski::PIxVal : exceptions a mettre en place" <<endl;
435 THROW(rangeCheckErr);
436 }
437 return *(pixels_.Data()+k);
438}
439
440//++
441template<class T>
442T& SphereGorski<T>::PixValNest(int_4 k)
443
444// Retourne la valeur du contenu du pixel d'indice "NESTED" k
445//--
446{
447 if((k < 0) || (k >= nPix_))
448 {
449 //THROW(out_of_range("SphereGorski::PIxValNest Pixel index out of range"));
450 cout<<" SphereGorski::PIxValNest : exceptions a mettre en place" <<endl;
451 THROW(rangeCheckErr);
452 }
453 return pixels_(nest2ring(nSide_,k));
454}
455//++
456
457template<class T>
458T const& SphereGorski<T>::PixValNest(int_4 k) const
459
460// Retourne la valeur du contenu du pixel d'indice "NESTED" k
461//--
462{
463 if((k < 0) || (k >= nPix_))
464 {
465 //THROW(out_of_range("SphereGorski::PIxValNest Pixel index out of range"));
466 cout<<" SphereGorski::PIxValNest : exceptions a mettre en place" <<endl;
467 THROW(rangeCheckErr);
468 }
469 int_4 pix= nest2ring(nSide_,k);
470 return *(pixels_.Data()+pix);
471}
472
473/* --Methode-- */
474//++
475template<class T>
476int_4 SphereGorski<T>::PixIndexSph(r_4 theta, r_4 phi) const
477
478// Retourne l'indice "RING" du pixel vers lequel pointe une direction
479// définie par ses coordonnées sphériques
480//--
481{
482 return ang2pix_ring(nSide_,double(theta),double(phi));
483}
484
485//++
486template<class T>
487int_4 SphereGorski<T>::PixIndexSphNest(r_4 theta, r_4 phi) const
488
489// Retourne l'indice NESTED" du pixel vers lequel pointe une direction
490// définie par ses coordonnées sphériques
491//--
492{
493 return ang2pix_nest(nSide_,double(theta),double(phi));
494}
495
496
497/* --Methode-- */
498//++
499template<class T>
500void SphereGorski<T>::PixThetaPhi(int_4 k, r_4& teta, r_4& phi) const
501
502// Retourne les coordonnées (teta,phi) du milieu du pixel d'indice "RING" k
503//--
504{
505 double t;
506 double p;
507 pix2ang_ring(nSide_,k, t, p);
508 teta= (r_4)t;
509 phi = (r_4)p;
510}
511
512//++
513template<class T>
514r_8 SphereGorski<T>::PixSolAngle(int_4 dummy) const
515// Pixel Solid angle (steradians)
516// All the pixels have the same solid angle. The dummy argument is
517// for compatibility with eventual pixelizations which would not
518// fulfil this requirement.
519//--
520{
521 return omeg_;
522}
523
524//++
525template<class T>
526void SphereGorski<T>::PixThetaPhiNest(int_4 k, float& teta, float& phi) const
527
528// Retourne les coordonnées (teta,phi) du milieu du pixel d'indice
529// NESTED k
530//--
531{
532 double t;
533 double p;
534 pix2ang_nest(nSide_, k, t, p);
535 teta= (r_4)t;
536 phi = (r_4)p;
537}
538
539//++
540template<class T>
541int_4 SphereGorski<T>::NestToRing(int_4 k) const
542
543// conversion d'index NESTD en un index RING
544//
545//--
546{
547 return nest2ring(nSide_,k);
548}
549
550//++
551template<class T>
552int_4 SphereGorski<T>::RingToNest(int_4 k) const
553//
554// conversion d'index RING en un index NESTED
555//
556//--
557{
558 return ring2nest(nSide_,k);
559}
560
561/*
562//++
563template<class T>
564void SphereGorski<T>::anharm(int nlmax, float sym_c,float* powspec)
565//
566// analyse en harmoniques spheriques des valeurs des pixels de la
567// sphere : appel du module anafast (Gorski-Hivon)
568//
569// "nlmax" : multipole maximum, nlmax <= 2*nsmax (cf. Nyquist)
570//
571// "sym c" : coupure symetrique autour de l'equateur (degres)
572//
573// "powspec" : tableau resultat (a reserver avant l'appel) de C(l)
574// (spectre de puissance)
575//
576//--
577//
578// Pb a resoudre : dans cette classe les valeurs de pixel sont "double"
579// dans anafast le tableau correspondant est "float"
580// pour l'instant on duplique les tableaux, il faudra decider quelque chose
581//
582{
583 if (nlmax > 2*nSide_) {
584 cout << " anharm : nlmax= " << nlmax <<
585 " doit etre <= 2*nsmax (cf. Nyquist), soit :" << 2*nSide_ << endl;
586 exit(1);
587 }
588 else {
589 nlmax_=nlmax;
590 nmmax_=nlmax_;
591 }
592 sym_cut_deg_=sym_c;
593 float* map=new float[nPix_];
594 for (int k=0; k<nPix_; k++) map[k]=(float)pixels_(k);
595 int nsmax=nSide_;
596 int nmmax=nmmax_;
597 double sc=(double)sym_cut_deg_;
598 float* alm_T=new float[2*(nlmax+1)*(nmmax+1)];
599 if (powspec==NULL) {
600
601 cout <<
602 " anharm : un tableau de C_l doit etre alloue avant appel " << endl;
603 exit(1);
604 }
605 float* phas_n=new float[2*(nmmax+1)];
606 float* phas_s=new float[2*(nmmax+1)];
607 float* dataw =new float[16*nsmax];
608 float* work =new float[16*nsmax];
609
610 anafast_(nsmax,nlmax,nmmax,sc,map,alm_T, powspec,phas_n,phas_s,dataw,work);
611 quadrupole_=powspec[2];
612 delete [] map;
613 delete [] alm_T;
614 delete [] phas_n;
615 delete [] phas_s;
616 delete [] dataw;
617 delete [] work;
618}
619*/
620
621/*
622//++
623template<class T>
624void SphereGorski<T>::synharm(int nlmax, int iseed,float fwhm, float* powspec)
625//
626// synthese des valeurs des pixels de la sphere par l'intermediaire
627// des coefficients en harmoniques spheriques reconstitues apartir d'un
628// spectre en puissance : appel du module synfast (Gorski-Hivon)
629//
630// powspec est un tableau (a fournir) de C(l) (spectre de puissance)
631// Ce tableau doit contenir les valeur de C(l) par ordre
632// SEQUENTIEL de l (de l=0 a l=nlmax). IL SERA MODIFIE PAR L'ALGORITHME
633//
634// nlmax : multipole maximum (nlmax <= 2*nsmax (cf. Nyquist)
635// iseed : initialisation generation aleatoire (negatif, suggere : -1)
636// fwhm : largeur totale a mi-hauteur (minutes d'arc, >=0, ex: 5)
637//--
638// Pb a resoudre : dans cette classe les valeurs de pixel sont "double"
639// dans anafast le tableau correspondant est "float"
640// pour l'instant on duplique les tableaux, il faudra decider quelque chose
641
642{
643 if (nlmax > 2*nSide_) {
644 cout << " sphereGorski::synharm: nlmax= " << nlmax <<
645 " doit etre <= 2*nsmax (cf. Nyquist), soit : " << 2*nSide_ << endl;
646 exit(1);
647 }
648 else {
649 nlmax_=nlmax;
650 nmmax_=nlmax_;
651 quadrupole_=powspec[2];
652 }
653 if (powspec==NULL) {
654
655 cout <<
656 "sphereGorski::synharm : un tableau de C_l doit etre alloue avant appel"
657 << endl;
658 exit(1);
659 }
660 iseed_=iseed;
661 fwhm_ =fwhm;
662 float* map=new float[nPix_];
663 int nsmax=nSide_;
664 int nmmax=nmmax_;
665 float* alm_T=new float[2*(nlmax+1)*(nmmax+1)];
666
667 // tableaux de travail
668 double* b_north=new double[2*(2*nmmax+1)];
669 double* b_south=new double[2*(2*nmmax+1)];
670 double* bw=new double[2*4*nsmax];
671 double* data=new double[2*4*nsmax];
672 double* work=new double[2*4*nsmax];
673 float* lread=new float[nlmax+1];
674 synfast_(nsmax,nlmax,nmmax,iseed,fwhm, map,alm_T, powspec,
675 b_north,b_south,bw,data,work,lread);
676 for (int k=0; k<nPix_; k++) pixels_(k) = (T)map[k];
677 delete [] map;
678 delete [] alm_T;
679 delete [] b_north;
680 delete [] b_south;
681 delete [] bw;
682 delete [] data;
683 delete [] work;
684 delete [] lread;
685}
686*/
687
688template<class T>
689int SphereGorski<T>::nest2ring(int nside, int ipnest) const {
690 /*
691 ====================================================
692 subroutine nest2ring(nside, ipnest, ipring)
693 ====================================================
694 c conversion from NESTED to RING pixel number
695 ====================================================
696 */
697 // tranlated from FORTRAN (Gorski) to C, by B. Revenu, revised Guy Le Meur
698 // (16/12/98)
699
700 const PIXELS_XY& PXY= PIXELS_XY::instance();
701
702 int npix, npface, face_num, ncap, n_before;
703 int ipf, ip_low, ip_trunc, ip_med, ip_hi;
704 int ix, iy, jrt, jr, nr, jpt, jp, kshift, nl4;
705 int ns_max=8192;
706 int jrll[12]={2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4};
707 int jpll[12]={1, 3, 5, 7, 0, 2, 4, 6, 1, 3, 5, 7};
708
709 if( nside<1 || nside>ns_max ) {
710 cout << "nside out of range" << endl;
711 exit(0);
712 }
713 npix = 12 * nside* nside;
714 if( ipnest<0 || ipnest>npix-1 ) {
715 cout << "ipnest out of range" << endl;
716 exit(0);
717 }
718
719 ncap = 2* nside*( nside-1);// ! number of points in the North Polar cap
720 nl4 = 4* nside;
721
722 //c finds the face, and the number in the face
723 npface = nside* nside;
724 //cccccc ip = ipnest - 1 ! in {0,npix-1}
725
726 face_num = ipnest/npface;// ! face number in {0,11}
727 ipf =ipnest%npface;// ! pixel number in the face {0,npface-1}
728 //c finds the x,y on the face (starting from the lowest corner)
729 //c from the pixel number
730 ip_low=ipf%1024; // ! content of the last 10 bits
731 ip_trunc = ipf/1024; // ! truncation of the last 10 bits
732 ip_med=ip_trunc%1024; // ! content of the next 10 bits
733 ip_hi = ip_trunc/1024;// ! content of the high weight 10 bits
734
735 ix = 1024*PXY.pix2x_(ip_hi)+32*PXY.pix2x_(ip_med)+PXY.pix2x_(ip_low);
736 iy = 1024*PXY.pix2y_(ip_hi)+32*PXY.pix2y_(ip_med)+PXY.pix2y_(ip_low);
737
738 //c transforms this in (horizontal, vertical) coordinates
739 jrt = ix + iy;// ! 'vertical' in {0,2*(nside-1)}
740 jpt = ix - iy;// ! 'horizontal' in {-nside+1,nside-1}
741
742 //c computes the z coordinate on the sphere
743 // jr = jrll[face_num+1]*nside - jrt - 1;// ! ring number in {1,4*nside-1}
744 jr = jrll[face_num]*nside - jrt - 1;
745 nr = nside;// ! equatorial region (the most frequent)
746 n_before = ncap + nl4 * (jr - nside);
747 kshift=(jr - nside)%2;
748 if( jr<nside ) {//then ! north pole region
749 nr = jr;
750 n_before = 2 * nr * (nr - 1);
751 kshift = 0;
752 }
753 else if( jr>3*nside ) {//then ! south pole region
754 nr = nl4 - jr;
755 n_before = npix - 2 * (nr + 1) * nr;
756 kshift = 0;
757 }
758
759 //c computes the phi coordinate on the sphere, in [0,2Pi]
760 jp = (jpll[face_num]*nr + jpt + 1 + kshift)/2;// ! 'phi' number in the ring in {1,4*nr}
761
762 if( jp>nl4 ) jp = jp - nl4;
763 if( jp<1 ) jp = jp + nl4;
764
765 int aux=n_before + jp - 1;
766 return (n_before + jp - 1);// ! in {0, npix-1}
767}
768
769template<class T>
770int SphereGorski<T>::ring2nest(int nside, int ipring) const
771{
772 /*
773 ==================================================
774 subroutine ring2nest(nside, ipring, ipnest)
775 ==================================================
776 c conversion from RING to NESTED pixel number
777 ==================================================
778 */
779 // tranlated from FORTRAN (Gorski) to C, by B. Revenu, revised Guy Le Meur
780 // (16/12/98)
781
782 const PIXELS_XY& PXY= PIXELS_XY::instance();
783
784 double fihip, hip;
785 int npix, nl2, nl4, ncap, ip, iphi, ipt, ipring1;
786 int kshift, face_num, nr;
787 int irn, ire, irm, irs, irt, ifm , ifp;
788 int ix, iy, ix_low, ix_hi, iy_low, iy_hi, ipf;
789 int ns_max(8192);
790
791 // coordinate of the lowest corner of each face
792 int jrll[12]={2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4};// ! in unit of nside
793 int jpll[12]={1, 3, 5, 7, 0, 2, 4, 6, 1, 3, 5, 7};//! in unit of nside/2
794
795 if( nside<1 || nside>ns_max ) {
796 cout << "nside out of range" << endl;
797 exit(0);
798 }
799 npix = 12 * nside*nside;
800 if( ipring<0 || ipring>npix-1 ) {
801 cout << "ipring out of range" << endl;
802 exit(0);
803 }
804
805 nl2 = 2*nside;
806 nl4 = 4*nside;
807 npix = 12*nside*nside;// ! total number of points
808 ncap = 2*nside*(nside-1);// ! points in each polar cap, =0 for nside =1
809 ipring1 = ipring + 1;
810
811 //c finds the ring number, the position of the ring and the face number
812 if( ipring1<=ncap ) {//then
813
814 hip = ipring1/2.;
815 fihip = (int)floor ( hip );
816 irn = (int)floor( sqrt( hip - sqrt(fihip) ) ) + 1;// ! counted from North pole
817 iphi = ipring1 - 2*irn*(irn - 1);
818
819 kshift = 0;
820 nr = irn ;// ! 1/4 of the number of points on the current ring
821 face_num = (iphi-1) / irn;// ! in {0,3}
822 }
823 else if( ipring1<=nl2*(5*nside+1) ) {//then
824
825 ip = ipring1 - ncap - 1;
826 irn = (int)floor( ip / nl4 ) + nside;// ! counted from North pole
827 iphi = (int)fmod(ip,nl4) + 1;
828
829 kshift = (int)fmod(irn+nside,2);// ! 1 if irn+nside is odd, 0 otherwise
830 nr = nside;
831 ire = irn - nside + 1;// ! in {1, 2*nside +1}
832 irm = nl2 + 2 - ire;
833 ifm = (iphi - ire/2 + nside -1) / nside;// ! face boundary
834 ifp = (iphi - irm/2 + nside -1) / nside;
835 if( ifp==ifm ) {//then ! faces 4 to 7
836 face_num = (int)fmod(ifp,4) + 4;
837 }
838 else if( ifp + 1==ifm ) {//then ! (half-)faces 0 to 3
839 face_num = ifp;
840 }
841 else if( ifp - 1==ifm ) {//then ! (half-)faces 8 to 11
842 face_num = ifp + 7;
843 }
844 }
845 else {
846
847 ip = npix - ipring1 + 1;
848 hip = ip/2.;
849 fihip = floor ( hip );
850 irs = (int)floor( sqrt( hip - sqrt(fihip) ) ) + 1;// ! counted from South pole
851 iphi = 4*irs + 1 - (ip - 2*irs*(irs-1));
852
853 kshift = 0;
854 nr = irs;
855 irn = nl4 - irs;
856 face_num = (iphi-1) / irs + 8;// ! in {8,11}
857 }
858
859 //c finds the (x,y) on the face
860 irt = irn - jrll[face_num]*nside + 1;// ! in {-nside+1,0}
861 ipt = 2*iphi - jpll[face_num]*nr - kshift - 1;// ! in {-nside+1,nside-1}
862
863
864 if( ipt>=nl2 ) ipt = ipt - 8*nside;// ! for the face #4
865
866 ix = (ipt - irt ) / 2;
867 iy = -(ipt + irt ) / 2;
868
869 ix_low = (int)fmod(ix,128);
870 ix_hi = ix/128;
871 iy_low = (int)fmod(iy,128);
872 iy_hi = iy/128;
873 ipf=(PXY.x2pix_(ix_hi)+PXY.y2pix_(iy_hi))*(128*128)+(PXY.x2pix_(ix_low)+PXY.y2pix_(iy_low));
874
875 return (ipf + face_num* nside *nside);// ! in {0, 12*nside**2 - 1}
876}
877
878template<class T>
879int SphereGorski<T>::ang2pix_ring(int nside, double theta, double phi) const
880{
881 /*
882 ==================================================
883 c gives the pixel number ipix (RING)
884 c corresponding to angles theta and phi
885 c==================================================
886 */
887 // tranlated from FORTRAN (Gorski) to C, by B. Revenu, revised Guy Le Meur
888 // (16/12/98)
889
890 int nl2, nl4, ncap, npix, jp, jm, ipix1;
891 double z, za, tt, tp, tmp;
892 int ir, ip, kshift;
893
894 double piover2(Pi/2.);
895 double twopi(2.*Pi);
896 double z0(2./3.);
897 int ns_max(8192);
898
899 if( nside<1 || nside>ns_max ) {
900 cout << "nside out of range" << endl;
901 exit(0);
902 }
903
904 if( theta<0. || theta>Pi) {
905 cout << "theta out of range" << endl;
906 exit(0);
907 }
908
909 z = cos(theta);
910 za = fabs(z);
911 if( phi >= twopi) phi = phi - twopi;
912 if (phi < 0.) phi = phi + twopi;
913 tt = phi / piover2;// ! in [0,4)
914
915 nl2 = 2*nside;
916 nl4 = 4*nside;
917 ncap = nl2*(nside-1);// ! number of pixels in the north polar cap
918 npix = 12*nside*nside;
919
920 if( za <= z0 ) {
921
922 jp = (int)floor(nside*(0.5 + tt - z*0.75));// ! index of ascending edge line
923 jm = (int)floor(nside*(0.5 + tt + z*0.75));// ! index of descending edge line
924
925 ir = nside + 1 + jp - jm;// ! in {1,2n+1} (ring number counted from z=2/3)
926 kshift = 0;
927 if (fmod(ir,2)==0.) kshift = 1;// ! kshift=1 if ir even, 0 otherwise
928
929 ip = (int)floor( ( jp+jm - nside + kshift + 1 ) / 2 ) + 1;// ! in {1,4n}
930 if( ip>nl4 ) ip = ip - nl4;
931
932 ipix1 = ncap + nl4*(ir-1) + ip ;
933 }
934 else {
935
936 tp = tt - floor(tt);// !MOD(tt,1.d0)
937 tmp = sqrt( 3.*(1. - za) );
938
939 jp = (int)floor( nside * tp * tmp );// ! increasing edge line index
940 jm = (int)floor( nside * (1. - tp) * tmp );// ! decreasing edge line index
941
942 ir = jp + jm + 1;// ! ring number counted from the closest pole
943 ip = (int)floor( tt * ir ) + 1;// ! in {1,4*ir}
944 if( ip>4*ir ) ip = ip - 4*ir;
945
946 ipix1 = 2*ir*(ir-1) + ip;
947 if( z<=0. ) {
948 ipix1 = npix - 2*ir*(ir+1) + ip;
949 }
950 }
951 return (ipix1 - 1);// ! in {0, npix-1}
952}
953
954template<class T>
955int SphereGorski<T>::ang2pix_nest(int nside, double theta, double phi) const
956{
957 /*
958 ==================================================
959 subroutine ang2pix_nest(nside, theta, phi, ipix)
960 ==================================================
961 c gives the pixel number ipix (NESTED)
962 c corresponding to angles theta and phi
963 c
964 c the computation is made to the highest resolution available (nside=8192)
965 c and then degraded to that required (by integer division)
966 c this doesn't cost more, and it makes sure
967 c that the treatement of round-off will be consistent
968 c for every resolution
969 ==================================================
970 */
971 // tranlated from FORTRAN (Gorski) to C, by B. Revenu, revised Guy Le Meur
972 // (16/12/98)
973
974 const PIXELS_XY& PXY= PIXELS_XY::instance();
975
976 double z, za, z0, tt, tp, tmp;
977 int face_num,jp,jm;
978 int ifp, ifm;
979 int ix, iy, ix_low, ix_hi, iy_low, iy_hi, ipf, ntt;
980 double piover2(Pi/2.), twopi(2.*Pi);
981 int ns_max(8192);
982
983 if( nside<1 || nside>ns_max ) {
984 cout << "nside out of range" << endl;
985 exit(0);
986 }
987 if( theta<0 || theta>Pi ) {
988 cout << "theta out of range" << endl;
989 exit(0);
990 }
991 z = cos(theta);
992 za = fabs(z);
993 z0 = 2./3.;
994 if( phi>=twopi ) phi = phi - twopi;
995 if( phi<0. ) phi = phi + twopi;
996 tt = phi / piover2;// ! in [0,4[
997 if( za<=z0 ) { // then ! equatorial region
998
999 //(the index of edge lines increase when the longitude=phi goes up)
1000 jp = (int)floor(ns_max*(0.5 + tt - z*0.75));// ! ascending edge line index
1001 jm = (int)floor(ns_max*(0.5 + tt + z*0.75));// ! descending edge line index
1002
1003 //c finds the face
1004 ifp = jp / ns_max;// ! in {0,4}
1005 ifm = jm / ns_max;
1006 if( ifp==ifm ) face_num = (int)fmod(ifp,4) + 4; //then ! faces 4 to 7
1007 else if( ifp<ifm ) face_num = (int)fmod(ifp,4); // (half-)faces 0 to 3
1008 else face_num = (int)fmod(ifm,4) + 8;//! (half-)faces 8 to 11
1009
1010 ix = (int)fmod(jm, ns_max);
1011 iy = ns_max - (int)fmod(jp, ns_max) - 1;
1012 }
1013 else { //! polar region, za > 2/3
1014
1015 ntt = (int)floor(tt);
1016 if( ntt>=4 ) ntt = 3;
1017 tp = tt - ntt;
1018 tmp = sqrt( 3.*(1. - za) );// ! in ]0,1]
1019
1020 //(the index of edge lines increase when distance from the closest pole goes up)
1021 jp = (int)floor(ns_max*tp*tmp); // ! line going toward the pole as phi increases
1022 jm = (int)floor(ns_max*(1.-tp)*tmp); // ! that one goes away of the closest pole
1023 jp = (int)min(ns_max-1, jp);// ! for points too close to the boundary
1024 jm = (int)min(ns_max-1, jm);
1025
1026 // finds the face and pixel's (x,y)
1027 if( z>=0 ) {
1028 face_num = ntt;// ! in {0,3}
1029 ix = ns_max - jm - 1;
1030 iy = ns_max - jp - 1;
1031 }
1032 else {
1033 face_num = ntt + 8;// ! in {8,11}
1034 ix = jp;
1035 iy = jm;
1036 }
1037 }
1038
1039 ix_low = (int)fmod(ix,128);
1040 ix_hi = ix/128;
1041 iy_low = (int)fmod(iy,128);
1042 iy_hi = iy/128;
1043 ipf= (PXY.x2pix_(ix_hi)+PXY.y2pix_(iy_hi))*(128*128)+(PXY.x2pix_(ix_low)+PXY.y2pix_(iy_low));
1044 ipf = ipf / pow(ns_max/nside,2);// ! in {0, nside**2 - 1}
1045 return ( ipf + face_num*pow(nside,2));// ! in {0, 12*nside**2 - 1}
1046}
1047
1048template<class T>
1049void SphereGorski<T>::pix2ang_ring(int nside,int ipix,double& theta,double& phi) const {
1050 /*
1051 ===================================================
1052 c gives theta and phi corresponding to pixel ipix (RING)
1053 c for a parameter nside
1054 ===================================================
1055 */
1056 // tranlated from FORTRAN (Gorski) to C, by B. Revenu, revised Guy Le Meur
1057 // (16/12/98)
1058
1059 int nl2, nl4, npix, ncap, iring, iphi, ip, ipix1;
1060 double fact1, fact2, fodd, hip, fihip;
1061
1062 int ns_max(8192);
1063
1064 if( nside<1 || nside>ns_max ) {
1065 cout << "nside out of range" << endl;
1066 exit(0);
1067 }
1068 npix = 12*nside*nside; // ! total number of points
1069 if( ipix<0 || ipix>npix-1 ) {
1070 cout << "ipix out of range" << endl;
1071 exit(0);
1072 }
1073
1074 ipix1 = ipix + 1; // in {1, npix}
1075 nl2 = 2*nside;
1076 nl4 = 4*nside;
1077 ncap = 2*nside*(nside-1);// ! points in each polar cap, =0 for nside =1
1078 fact1 = 1.5*nside;
1079 fact2 = 3.0*nside*nside;
1080
1081 if( ipix1 <= ncap ) { //! North Polar cap -------------
1082
1083 hip = ipix1/2.;
1084 fihip = floor(hip);
1085 iring = (int)floor( sqrt( hip - sqrt(fihip) ) ) + 1;// ! counted from North pole
1086 iphi = ipix1 - 2*iring*(iring - 1);
1087
1088 theta = acos( 1. - iring*iring / fact2 );
1089 phi = (1.*iphi - 0.5) * Pi/(2.*iring);
1090 // cout << theta << " " << phi << endl;
1091 }
1092 else if( ipix1 <= nl2*(5*nside+1) ) {//then ! Equatorial region ------
1093
1094 ip = ipix1 - ncap - 1;
1095 iring = (int)floor( ip / nl4 ) + nside;// ! counted from North pole
1096 iphi = (int)fmod(ip,nl4) + 1;
1097
1098 fodd = 0.5 * (1 + fmod((double)(iring+nside),2));// ! 1 if iring+nside is odd, 1/2 otherwise
1099 theta = acos( (nl2 - iring) / fact1 );
1100 phi = (1.*iphi - fodd) * Pi /(2.*nside);
1101 }
1102 else {//! South Polar cap -----------------------------------
1103
1104 ip = npix - ipix1 + 1;
1105 hip = ip/2.;
1106 fihip = 1.*hip;
1107 iring = (int)floor( sqrt( hip - sqrt(fihip) ) ) + 1;// ! counted from South pole
1108 iphi = (int)(4.*iring + 1 - (ip - 2.*iring*(iring-1)));
1109
1110 theta = acos( -1. + iring*iring / fact2 );
1111 phi = (1.*iphi - 0.5) * Pi/(2.*iring);
1112 // cout << theta << " " << phi << endl;
1113 }
1114}
1115
1116template<class T>
1117void SphereGorski<T>::pix2ang_nest(int nside,int ipix,double& theta,double& phi) const {
1118 /*
1119 ==================================================
1120 subroutine pix2ang_nest(nside, ipix, theta, phi)
1121 ==================================================
1122 c gives theta and phi corresponding to pixel ipix (NESTED)
1123 c for a parameter nside
1124 ==================================================
1125 */
1126 // tranlated from FORTRAN (Gorski) to C, by B. Revenu, revised Guy Le Meur
1127 // (16/12/98)
1128
1129 const PIXELS_XY& PXY= PIXELS_XY::instance();
1130
1131 int npix, npface, face_num;
1132 int ipf, ip_low, ip_trunc, ip_med, ip_hi;
1133 int ix, iy, jrt, jr, nr, jpt, jp, kshift, nl4;
1134 double z, fn, fact1, fact2;
1135 double piover2(Pi/2.);
1136 int ns_max(8192);
1137
1138 // ! coordinate of the lowest corner of each face
1139 int jrll[12]={2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4};//! in unit of nside
1140 int jpll[12]={1, 3, 5, 7, 0, 2, 4, 6, 1, 3, 5, 7};// ! in unit of nside/2
1141
1142 if( nside<1 || nside>ns_max ) {
1143 cout << "nside out of range" << endl;
1144 exit(0);
1145 }
1146 npix = 12 * nside*nside;
1147 if( ipix<0 || ipix>npix-1 ) {
1148 cout << "ipix out of range" << endl;
1149 exit(0);
1150 }
1151
1152 fn = 1.*nside;
1153 fact1 = 1./(3.*fn*fn);
1154 fact2 = 2./(3.*fn);
1155 nl4 = 4*nside;
1156
1157 //c finds the face, and the number in the face
1158 npface = nside*nside;
1159
1160 face_num = ipix/npface;// ! face number in {0,11}
1161 ipf = (int)fmod(ipix,npface);// ! pixel number in the face {0,npface-1}
1162
1163 //c finds the x,y on the face (starting from the lowest corner)
1164 //c from the pixel number
1165 ip_low = (int)fmod(ipf,1024);// ! content of the last 10 bits
1166 ip_trunc = ipf/1024 ;// ! truncation of the last 10 bits
1167 ip_med = (int)fmod(ip_trunc,1024);// ! content of the next 10 bits
1168 ip_hi = ip_trunc/1024 ;//! content of the high weight 10 bits
1169
1170 ix = 1024*PXY.pix2x_(ip_hi)+32*PXY.pix2x_(ip_med)+PXY.pix2x_(ip_low);
1171 iy = 1024*PXY.pix2y_(ip_hi)+32*PXY.pix2y_(ip_med)+PXY.pix2y_(ip_low);
1172
1173 //c transforms this in (horizontal, vertical) coordinates
1174 jrt = ix + iy;// ! 'vertical' in {0,2*(nside-1)}
1175 jpt = ix - iy;// ! 'horizontal' in {-nside+1,nside-1}
1176
1177 //c computes the z coordinate on the sphere
1178 // jr = jrll[face_num+1]*nside - jrt - 1;// ! ring number in {1,4*nside-1}
1179 jr = jrll[face_num]*nside - jrt - 1;
1180 nr = nside;// ! equatorial region (the most frequent)
1181 z = (2*nside-jr)*fact2;
1182 kshift = (int)fmod(jr - nside, 2);
1183 if( jr<nside ) { //then ! north pole region
1184 nr = jr;
1185 z = 1. - nr*nr*fact1;
1186 kshift = 0;
1187 }
1188 else {
1189 if( jr>3*nside ) {// then ! south pole region
1190 nr = nl4 - jr;
1191 z = - 1. + nr*nr*fact1;
1192 kshift = 0;
1193 }
1194 }
1195 theta = acos(z);
1196
1197 //c computes the phi coordinate on the sphere, in [0,2Pi]
1198 // jp = (jpll[face_num+1]*nr + jpt + 1 + kshift)/2;// ! 'phi' number in the ring in {1,4*nr}
1199 jp = (jpll[face_num]*nr + jpt + 1 + kshift)/2;
1200 if( jp>nl4 ) jp = jp - nl4;
1201 if( jp<1 ) jp = jp + nl4;
1202 phi = (jp - (kshift+1)*0.5) * (piover2 / nr);
1203}
1204
1205// retourne le nom du fichier qui contient le spectre de puissance
1206template<class T>
1207void SphereGorski<T>::powfile(char filename[]) const
1208{
1209 bool status = false;
1210 for (int k=0; k< 128; k++)
1211 {
1212 if( powFile_[k] != ' ' )
1213 {
1214 status = true;
1215 break;
1216 }
1217 }
1218 if ( status )
1219 {
1220 strcpy(filename,powFile_);
1221 }
1222 else
1223 {
1224 strcpy(filename,"no file");
1225 }
1226}
1227
1228template<class T>
1229void SphereGorski<T>::getParafast(int_4& nlmax,int_4& nmmax,int_4& iseed,float& fwhm,float& quadr,float& cut) const
1230{
1231 nlmax= nlmax_;
1232 nmmax= nmmax_;
1233 iseed= iseed_;
1234 fwhm = fwhm_;
1235 quadr= quadrupole_;
1236 cut = sym_cut_deg_;
1237}
1238
1239template<class T>
1240void SphereGorski<T>::setParafast(int_4 nlmax,int_4 nmmax,int_4 iseed,float fwhm,float quadr,float cut,char* filename)
1241{
1242 nlmax_= nlmax;
1243 nmmax_= nmmax;
1244 iseed_= iseed;
1245 fwhm_ = fwhm;
1246 quadrupole_ = quadr;
1247 sym_cut_deg_= cut;
1248 strcpy(powFile_,filename);
1249}
1250
1251template <class T>
1252void SphereGorski<T>::print(ostream& os) const
1253{
1254 if(mInfo_) os << " DVList Info= " << *mInfo_ << endl;
1255 //
1256 os << " nSide_ = " << nSide_ << endl;
1257 os << " nPix_ = " << nPix_ << endl;
1258 os << " omeg_ = " << omeg_ << endl;
1259
1260 os << " contenu de pixels : ";
1261 for(int i=0; i < nPix_; i++)
1262 {
1263 if(i%5 == 0) os << endl;
1264 os << pixels_(i) <<", ";
1265 }
1266 os << endl;
1267
1268 os << endl;
1269 const PIXELS_XY& PXY= PIXELS_XY::instance();
1270
1271 os << endl; os << " contenu des tableaux conversions "<<endl;
1272 for(int i=0; i < 5; i++)
1273 {
1274 os<<PXY.pix2x_(i)<<", "<<PXY.pix2y_(i)<<", "<<PXY.x2pix_(i)<<", "<<PXY.y2pix_(i)<<endl;
1275 }
1276 os << endl;
1277
1278 os << " les parametres des modules anafast et synfast " <<endl;
1279 os << " nlmax, nmmax & iseed= " <<nlmax_<<", "<<nmmax_<<", "<<iseed_<<endl;
1280 os << " fwhm, quadr & cut = "<<fwhm_<<", "<<quadrupole_<<", "<<sym_cut_deg_<<endl;
1281 os << " powfile= " << powFile_<<endl;
1282}
1283
1284//*******************************************************************
1285// Class FIO_SphereGorski<T>
1286// Les objets delegues pour la gestion de persistance
1287//*******************************************************************
1288
1289template <class T>
1290FIO_SphereGorski<T>::FIO_SphereGorski()
1291{
1292 dobj= new SphereGorski<T>;
1293 ownobj= true;
1294}
1295
1296template <class T>
1297FIO_SphereGorski<T>::FIO_SphereGorski(string const& filename)
1298{
1299 dobj= new SphereGorski<T>;
1300 ownobj= true;
1301 Read(filename);
1302}
1303
1304template <class T>
1305FIO_SphereGorski<T>::FIO_SphereGorski(const SphereGorski<T>& obj)
1306{
1307 dobj= new SphereGorski<T>(obj);
1308 ownobj= true;
1309}
1310
1311template <class T>
1312FIO_SphereGorski<T>::FIO_SphereGorski(SphereGorski<T>* obj)
1313{
1314 dobj= obj;
1315 ownobj= false;
1316}
1317
1318template <class T>
1319FIO_SphereGorski<T>::~FIO_SphereGorski()
1320{
1321 if (ownobj && dobj) delete dobj;
1322}
1323
1324template <class T>
1325AnyDataObj* FIO_SphereGorski<T>::DataObj()
1326{
1327 return(dobj);
1328}
1329
1330template <class T>
1331void FIO_SphereGorski<T>::ReadSelf(PInPersist& is)
1332{
1333 cout << " FIO_SphereGorski:: ReadSelf " << endl;
1334
1335 if(dobj == NULL)
1336 {
1337 dobj= new SphereGorski<T>;
1338 }
1339
1340 // Pour savoir s'il y avait un DVList Info associe
1341 char strg[256];
1342 is.GetLine(strg, 255);
1343 bool hadinfo= false;
1344 if(strncmp(strg+strlen(strg)-7, "HasInfo", 7) == 0) hadinfo= true;
1345 if(hadinfo)
1346 { // Lecture eventuelle du DVList Info
1347 is >> dobj->Info();
1348 }
1349
1350 int_4 nSide;
1351 is.GetI4(nSide);
1352 dobj->setSizeIndex(nSide);
1353
1354 int_4 nPix;
1355 is.GetI4(nPix);
1356 dobj->setNbPixels(nPix);
1357
1358 r_8 Omega;
1359 is.GetR8(Omega);
1360 dobj->setPixSolAngle(Omega);
1361
1362 T* pixels= new T[nPix];
1363 PIOSReadArray(is, pixels, nPix);
1364 dobj->setDataBlock(pixels, nPix);
1365 delete [] pixels;
1366
1367 int_4 nlmax,nmmax,iseed;
1368 is.GetI4(nlmax);
1369 is.GetI4(nmmax);
1370 is.GetI4(iseed);
1371
1372 float fwhm,quadr,cut;
1373 is.GetR4(fwhm);
1374 is.GetR4(quadr);
1375 is.GetR4(cut);
1376
1377 char powfl[128];
1378 is.GetLine(powfl, 127);
1379
1380 dobj->setParafast(nlmax,nmmax,iseed,fwhm,quadr,cut,powfl);
1381}
1382
1383template <class T>
1384void FIO_SphereGorski<T>::WriteSelf(POutPersist& os) const
1385{
1386 cout << " FIO_SphereGorski:: WriteSelf " << endl;
1387
1388 if(dobj == NULL)
1389 {
1390 cout << " WriteSelf:: dobj= null " << endl;
1391 return;
1392 }
1393
1394 char strg[256];
1395 int_4 nSide= dobj->SizeIndex();
1396 int_4 nPix = dobj->NbPixels();
1397
1398 if(dobj->ptrInfo())
1399 {
1400 sprintf(strg,"SphereGorski: NSide=%6d NPix=%9d HasInfo",nSide,nPix);
1401 os.PutLine(strg);
1402 os << dobj->Info();
1403 }
1404 else
1405 {
1406 sprintf(strg,"SphereGorski: NSide=%6d NPix=%9d ",nSide,nPix);
1407 os.PutLine(strg);
1408 }
1409
1410 os.PutI4(nSide);
1411 os.PutI4(nPix);
1412 os.PutR8(dobj->PixSolAngle(0));
1413
1414 PIOSWriteArray(os,(dobj->getDataBlock())->Data(), nPix);
1415
1416 int_4 nlmax,nmmax,iseed;
1417 float fwhm,quadr,cut;
1418 dobj->getParafast(nlmax,nmmax,iseed,fwhm,quadr,cut);
1419 os.PutI4(nlmax);
1420 os.PutI4(nmmax);
1421 os.PutI4(iseed);
1422 os.PutR4(fwhm);
1423 os.PutR4(quadr);
1424 os.PutR4(cut);
1425
1426 char powfl[128];
1427 dobj->powfile(powfl);
1428 os.PutLine(powfl);
1429}
1430
1431#ifdef __CXX_PRAGMA_TEMPLATES__
1432#pragma define_template SphereGorski<double>
1433#pragma define_template SphereGorski<float>
1434#pragma define_template SphereGorski< complex<float> >
1435#pragma define_template SphereGorski< complex<double> >
1436#pragma define_template FIO_SphereGorski<double>
1437#pragma define_template FIO_SphereGorski<float>
1438#pragma define_template FIO_SphereGorski< complex<float> >
1439#pragma define_template FIO_SphereGorski< complex<double> >
1440#endif
1441#if defined(ANSI_TEMPLATES) || defined(GNU_TEMPLATES)
1442template class SphereGorski<double>;
1443template class SphereGorski<float>;
1444template class SphereGorski< complex<float> >;
1445template class SphereGorski< complex<double> >;
1446template class FIO_SphereGorski<double>;
1447template class FIO_SphereGorski<float>;
1448template class FIO_SphereGorski< complex<float> >;
1449template class FIO_SphereGorski< complex<double> >;
1450#endif
1451
Note: See TracBrowser for help on using the repository browser.