source: Sophya/trunk/SophyaLib/Samba/spheregorski.cc@ 515

Last change on this file since 515 was 515, checked in by ansari, 26 years ago

Portage SGI-CC Reza 26/10/99

File size: 32.6 KB
Line 
1#include "spheregorski.h"
2#include "strutil.h"
3#include <math.h>
4#include <complex>
5#include "piocmplx.h"
6
7extern "C"
8{
9#include <stdio.h>
10#include <stdlib.h>
11#include <unistd.h>
12}
13
14
15//*******************************************************************
16// Class PIXELS_XY
17// Construction des tableaux necessaires a la traduction des indices RING en
18// indices NESTED (ou l'inverse)
19//*******************************************************************
20
21PIXELS_XY::PIXELS_XY()
22{
23 pix2x_.ReSize(1024);
24 pix2x_.Reset();
25 pix2y_.ReSize(1024);
26 pix2y_.Reset();
27 x2pix_.ReSize(128);
28 x2pix_.Reset();
29 y2pix_.ReSize(128);
30 y2pix_.Reset();
31 mk_pix2xy();
32 mk_xy2pix();
33}
34
35PIXELS_XY& PIXELS_XY::instance()
36{
37 static PIXELS_XY single;
38 return (single);
39}
40
41void PIXELS_XY::mk_pix2xy()
42{
43 /*
44 ==================================================
45 subroutine mk_pix2xy
46 ==================================================
47 c constructs the array giving x and y in the face from pixel number
48 c for the nested (quad-cube like) ordering of pixels
49 c
50 c the bits corresponding to x and y are interleaved in the pixel number
51 c one breaks up the pixel number by even and odd bits
52 ==================================================
53 */
54 // tranlated from FORTRAN (Gorski) to C, by B. Revenu, revised Guy Le Meur
55 // (16/12/98)
56
57 int kpix, jpix, IX, IY, IP, ID;
58
59 for(kpix = 0; kpix < 1024; kpix++)
60 {
61 jpix = kpix;
62 IX = 0;
63 IY = 0;
64 IP = 1 ;// ! bit position (in x and y)
65 while( jpix!=0 )
66 { // ! go through all the bits
67 ID=jpix%2;// ! bit value (in kpix), goes in ix
68 jpix = jpix/2;
69 IX = ID*IP+IX;
70
71 ID=jpix%2;// ! bit value (in kpix), goes in iy
72 jpix = jpix/2;
73 IY = ID*IP+IY;
74
75 IP = 2*IP;// ! next bit (in x and y)
76 }
77 pix2x_(kpix) = IX;// ! in 0,31
78 pix2y_(kpix) = IY;// ! in 0,31
79 }
80}
81
82void PIXELS_XY::mk_xy2pix()
83{
84 /*
85 =================================================
86 subroutine mk_xy2pix
87 =================================================
88 c sets the array giving the number of the pixel lying in (x,y)
89 c x and y are in {1,128}
90 c the pixel number is in {0,128**2-1}
91 c
92 c if i-1 = sum_p=0 b_p * 2^p
93 c then ix = sum_p=0 b_p * 4^p
94 c iy = 2*ix
95 c ix + iy in {0, 128**2 -1}
96 =================================================
97 */
98 // tranlated from FORTRAN (Gorski) to C, by B. Revenu, revised Guy Le Meur
99 // (16/12/98)
100
101 int K,IP,I,J,ID;
102 for(I = 1; I <= 128; I++)
103 {
104 J = I-1;// !pixel numbers
105 K = 0;//
106 IP = 1;//
107 truc : if( J==0 )
108 {
109 x2pix_(I-1) = K;
110 y2pix_(I-1) = 2*K;
111 }
112 else
113 {
114 ID = (int)fmod(J,2);
115 J = J/2;
116 K = IP*ID+K;
117 IP = IP*4;
118 goto truc;
119 }
120 }
121}
122
123//*******************************************************************
124//++
125// Class SphereGorski
126//
127// include spheregorski.h strutil.h
128//
129// Pixelisation Gorski
130//
131//
132//| -----------------------------------------------------------------------
133//| version 0.8.2 Aug97 TAC Eric Hivon, Kris Gorski
134//| -----------------------------------------------------------------------
135//
136// the sphere is split in 12 diamond-faces containing nside**2 pixels each
137//
138// the numbering of the pixels (in the nested scheme) is similar to
139// quad-cube
140// In each face the first pixel is in the lowest corner of the diamond
141//
142// the faces are (x,y) coordinate on each face
143//| . . . . <--- North Pole
144//| / \ / \ / \ / \ ^ ^
145//| . 0 . 1 . 2 . 3 . <--- z = 2/3 \ /
146//| \ / \ / \ / \ / y \ / x
147//| 4 . 5 . 6 . 7 . 4 <--- equator \ /
148//| / \ / \ / \ / \ \/
149//| . 8 . 9 .10 .11 . <--- z = -2/3 (0,0) : lowest corner
150//| \ / \ / \ / \ /
151//| . . . . <--- South Pole
152//|
153// phi:0 2Pi
154//
155// in the ring scheme pixels are numbered along the parallels
156// the first parallel is the one closest to the north pole and so on
157// on each parallel, pixels are numbered starting from the one closest
158// to phi = 0
159//
160// nside DOIT OBLIGATOIREMENT ETRE UNE PUISSANCE DE 2 (<= 8192)
161//--
162//++
163//
164// Links Parents
165//
166// SphericalMap
167//--
168//++
169//
170// Links Descendants
171//
172//
173//--
174
175/* --Methode-- */
176//++
177// Titre Constructeurs
178//--
179//++
180
181template<class T>
182SphereGorski<T>::SphereGorski()
183
184//--
185{
186 InitNul();
187}
188
189//++
190template<class T>
191SphereGorski<T>::SphereGorski(int m)
192
193// Constructeur : m est la variable nside de l'algorithme de Gorski
194// le nombre total de pixels sera Npix = 12*nside**2
195// m DOIT OBLIGATOIREMENT ETRE UNE PUISSANCE DE 2 (<= 8192)
196//--
197{
198
199 if(m <= 0 || m > 8192)
200 {
201 cout << "SphereGorski : m hors bornes [0,8192], m= " << m << endl;
202 exit(1);
203 }
204 // verifier que m est une puissance de deux
205 int x= m;
206 while(x%2 == 0) x/=2;
207 if(x != 1)
208 {
209 cout<<"SphereGorski: m doit etre une puissance de deux, m= "<<m<<endl;
210 exit(1);
211 }
212 InitNul();
213 Pixelize(m);
214}
215
216template<class T>
217SphereGorski<T>::SphereGorski(const SphereGorski<T>& s)
218{
219 cout << " constructeur de recopie " << endl;
220 if(s.mInfo_) mInfo_= new DVList(*s.mInfo_);
221
222 nSide_= s.nSide_;
223 nPix_ = s.nPix_;
224 omeg_ = s.omeg_;
225
226 pixels_= s.pixels_;
227
228}
229
230//++
231// Titre Destructeur
232//--
233//++
234template<class T>
235SphereGorski<T>::~SphereGorski()
236
237//--
238{
239 InitNul();
240}
241
242//++
243// Titre Méthodes
244//--
245
246//++
247template<class T>
248void SphereGorski<T>::Resize(int m)
249
250// m est la variable nside de l'algorithme de Gorski
251// le nombre total de pixels sera Npix = 12*nside**2
252// m DOIT OBLIGATOIREMENT ETRE UNE PUISSANCE DE 2 (<= 8192)
253//--
254{
255 if (m<=0 || m> 8192) {
256 cout << "SphereGorski : m hors bornes [0,8192], m= " << m << endl;
257 exit(1);
258 }
259 // verifier que m est une puissance de deux
260 int x= m;
261 while (x%2==0) x/=2;
262 if(x != 1)
263 {
264 cout<<"SphereGorski: m doit etre une puissance de deux, m= "<<m<<endl;
265 exit(1);
266 }
267 InitNul();
268 Pixelize(m);
269}
270
271template<class T>
272void SphereGorski<T>::Pixelize( int m)
273
274// prépare la pixelisation Gorski (m a la même signification
275// que pour le constructeur)
276//
277//
278//--
279{
280 // On memorise les arguments d'appel
281 nSide_= m;
282
283 // Nombre total de pixels sur la sphere entiere
284 nPix_= 12*nSide_*nSide_;
285
286 // pour le moment les tableaux qui suivent seront ranges dans l'ordre
287 // de l'indexation GORSKY "RING"
288 // on pourra ulterieurement changer de strategie et tirer profit
289 // de la dualite d'indexation GORSKY (RING et NEST) : tout dependra
290 // de pourquoi c'est faire
291
292 // Creation et initialisation du vecteur des contenus des pixels
293 pixels_.ReSize(nPix_);
294 pixels_.Reset();
295
296 // solid angle per pixel
297 omeg_= 4.0*Pi/nPix_;
298}
299
300template<class T>
301void SphereGorski<T>::InitNul()
302//
303// initialise à zéro les variables de classe
304{
305 nSide_= 0;
306 nPix_ = 0;
307 omeg_ = 0.;
308 pixels_.Reset();
309
310}
311
312/* --Methode-- */
313//++
314template<class T>
315int SphereGorski<T>::NbPixels() const
316
317// Retourne le nombre de pixels du découpage
318//--
319{
320 return(nPix_);
321}
322
323//++
324template<class T>
325int SphereGorski<T>::NbThetaSlices() const
326
327// Retourne le nombre de tranches en theta sur la sphere
328//--
329{
330 return int(4*nSide_-1);
331}
332
333//++
334template<class T>
335void SphereGorski<T>::GetThetaSlice(int index,double& theta,TVector<double>& phi,TVector<T>& value) const
336
337// Retourne, pour la tranche en theta d'indice 'index' le theta
338// correspondant, un vecteur (Peida) contenant les phi des pixels de
339// la tranche, un vecteur (Peida) contenant les valeurs de pixel
340// correspondantes
341//--
342{
343 cout << "entree GetThetaSlice, couche no " << index << endl;
344
345 if (index<0 || index > NbThetaSlices())
346 {
347 // THROW(out_of_range("SphereGorski::PIxVal Pixel index out of range"));
348 cout << " SphereGorski::GetThetaSlice : exceptions a mettre en place" <<endl;
349 THROW(rangeCheckErr);
350 }
351
352 int iring= 0;
353 int lring = 0;
354 if(index < nSide_-1)
355 {
356 iring= 2*index*(index+1);
357 lring= 4*(index+1);
358 }
359 else if(index < 3*nSide_)
360 {
361 iring= 2*nSide_*(2*index-nSide_+1);
362 lring= 4*nSide_;
363 }
364 else
365 {
366 int nc= 4*nSide_-1-index;
367 iring = nPix_-2*nc*(nc+1);
368 lring = 4*nc;
369 }
370
371 phi.ReSize(lring);
372 value.ReSize(lring);
373 double TH= 0.;
374 double FI= 0.;
375 for(int kk = 0; kk < lring;kk++)
376 {
377 PixThetaPhi(kk+iring,TH,FI);
378 phi(kk)= FI;
379 value(kk)= PixVal(kk+iring);
380 }
381 theta= TH;
382}
383
384/* --Methode-- */
385//++
386template<class T>
387T& SphereGorski<T>::PixVal(int k)
388
389// Retourne la valeur du contenu du pixel d'indice "RING" k
390//--
391{
392 if((k < 0) || (k >= nPix_))
393 {
394 // THROW(out_of_range("SphereGorski::PIxVal Pixel index out of range"));
395 cout << " SphereGorski::PIxVal : exceptions a mettre en place" <<endl;
396 THROW(rangeCheckErr);
397 }
398 return pixels_(k);
399}
400
401/* --Methode-- */
402//++
403template<class T>
404T const& SphereGorski<T>::PixVal(int k) const
405
406// Retourne la valeur du contenu du pixel d'indice "RING" k
407//--
408{
409 if((k < 0) || (k >= nPix_))
410 {
411 //THROW(out_of_range("SphereGorski::PIxVal Pixel index out of range"));
412 cout << " SphereGorski::PIxVal : exceptions a mettre en place" <<endl;
413 THROW(rangeCheckErr);
414 }
415 return *(pixels_.Data()+k);
416}
417
418//++
419template<class T>
420T& SphereGorski<T>::PixValNest(int k)
421
422// Retourne la valeur du contenu du pixel d'indice "NESTED" k
423//--
424{
425 if((k < 0) || (k >= nPix_))
426 {
427 //THROW(out_of_range("SphereGorski::PIxValNest Pixel index out of range"));
428 cout<<" SphereGorski::PIxValNest : exceptions a mettre en place" <<endl;
429 THROW(rangeCheckErr);
430 }
431 return pixels_(nest2ring(nSide_,k));
432}
433//++
434
435template<class T>
436T const& SphereGorski<T>::PixValNest(int k) const
437
438// Retourne la valeur du contenu du pixel d'indice "NESTED" k
439//--
440{
441 if((k < 0) || (k >= nPix_))
442 {
443 //THROW(out_of_range("SphereGorski::PIxValNest Pixel index out of range"));
444 cout<<" SphereGorski::PIxValNest : exceptions a mettre en place" <<endl;
445 THROW(rangeCheckErr);
446 }
447 int pix= nest2ring(nSide_,k);
448 return *(pixels_.Data()+pix);
449}
450
451/* --Methode-- */
452//++
453template<class T>
454int SphereGorski<T>::PixIndexSph(double theta,double phi) const
455
456// Retourne l'indice "RING" du pixel vers lequel pointe une direction
457// définie par ses coordonnées sphériques
458//--
459{
460 return ang2pix_ring(nSide_,theta,phi);
461}
462
463//++
464template<class T>
465int SphereGorski<T>::PixIndexSphNest(double theta,double phi) const
466
467// Retourne l'indice NESTED" du pixel vers lequel pointe une direction
468// définie par ses coordonnées sphériques
469//--
470{
471 return ang2pix_nest(nSide_,theta,phi);
472}
473
474
475/* --Methode-- */
476//++
477template<class T>
478void SphereGorski<T>::PixThetaPhi(int k,double& theta,double& phi) const
479
480// Retourne les coordonnées (theta,phi) du milieu du pixel d'indice "RING" k
481//--
482{
483 pix2ang_ring(nSide_,k,theta,phi);
484}
485
486//++
487template<class T>
488double SphereGorski<T>::PixSolAngle(int dummy) const
489// Pixel Solid angle (steradians)
490// All the pixels have the same solid angle. The dummy argument is
491// for compatibility with eventual pixelizations which would not
492// fulfil this requirement.
493//--
494{
495 return omeg_;
496}
497
498//++
499template<class T>
500void SphereGorski<T>::PixThetaPhiNest(int k,double& theta,double& phi) const
501
502// Retourne les coordonnées (theta,phi) du milieu du pixel d'indice
503// NESTED k
504//--
505{
506 pix2ang_nest(nSide_,k,theta,phi);
507}
508
509//++
510template<class T>
511int SphereGorski<T>::NestToRing(int k) const
512
513// conversion d'index NESTD en un index RING
514//
515//--
516{
517 return nest2ring(nSide_,k);
518}
519
520//++
521template<class T>
522int SphereGorski<T>::RingToNest(int k) const
523//
524// conversion d'index RING en un index NESTED
525//
526//--
527{
528 return ring2nest(nSide_,k);
529}
530
531
532template<class T>
533int SphereGorski<T>::nest2ring(int nside, int ipnest) const
534{
535 /*
536 ====================================================
537 subroutine nest2ring(nside, ipnest, ipring)
538 ====================================================
539 c conversion from NESTED to RING pixel number
540 ====================================================
541 */
542 // tranlated from FORTRAN (Gorski) to C, by B. Revenu, revised Guy Le Meur
543 // (16/12/98)
544
545 const PIXELS_XY& PXY= PIXELS_XY::instance();
546
547 int npix, npface, face_num, ncap, n_before;
548 int ipf, ip_low, ip_trunc, ip_med, ip_hi;
549 int ix, iy, jrt, jr, nr, jpt, jp, kshift, nl4;
550 int ns_max=8192;
551 int jrll[12]={2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4};
552 int jpll[12]={1, 3, 5, 7, 0, 2, 4, 6, 1, 3, 5, 7};
553
554 if( nside<1 || nside>ns_max ) {
555 cout << "nside out of range" << endl;
556 exit(0);
557 }
558 npix = 12 * nside* nside;
559 if( ipnest<0 || ipnest>npix-1 ) {
560 cout << "ipnest out of range" << endl;
561 exit(0);
562 }
563
564 ncap = 2* nside*( nside-1);// ! number of points in the North Polar cap
565 nl4 = 4* nside;
566
567 //c finds the face, and the number in the face
568 npface = nside* nside;
569 //cccccc ip = ipnest - 1 ! in {0,npix-1}
570
571 face_num = ipnest/npface;// ! face number in {0,11}
572 ipf =ipnest%npface;// ! pixel number in the face {0,npface-1}
573 //c finds the x,y on the face (starting from the lowest corner)
574 //c from the pixel number
575 ip_low=ipf%1024; // ! content of the last 10 bits
576 ip_trunc = ipf/1024; // ! truncation of the last 10 bits
577 ip_med=ip_trunc%1024; // ! content of the next 10 bits
578 ip_hi = ip_trunc/1024;// ! content of the high weight 10 bits
579
580 ix = 1024*PXY.pix2x_(ip_hi)+32*PXY.pix2x_(ip_med)+PXY.pix2x_(ip_low);
581 iy = 1024*PXY.pix2y_(ip_hi)+32*PXY.pix2y_(ip_med)+PXY.pix2y_(ip_low);
582
583 //c transforms this in (horizontal, vertical) coordinates
584 jrt = ix + iy;// ! 'vertical' in {0,2*(nside-1)}
585 jpt = ix - iy;// ! 'horizontal' in {-nside+1,nside-1}
586
587 //c computes the z coordinate on the sphere
588 // jr = jrll[face_num+1]*nside - jrt - 1;// ! ring number in {1,4*nside-1}
589 jr = jrll[face_num]*nside - jrt - 1;
590 nr = nside;// ! equatorial region (the most frequent)
591 n_before = ncap + nl4 * (jr - nside);
592 kshift=(jr - nside)%2;
593 if( jr<nside ) {//then ! north pole region
594 nr = jr;
595 n_before = 2 * nr * (nr - 1);
596 kshift = 0;
597 }
598 else if( jr>3*nside ) {//then ! south pole region
599 nr = nl4 - jr;
600 n_before = npix - 2 * (nr + 1) * nr;
601 kshift = 0;
602 }
603
604 //c computes the phi coordinate on the sphere, in [0,2Pi]
605 jp = (jpll[face_num]*nr + jpt + 1 + kshift)/2;// ! 'phi' number in the ring in {1,4*nr}
606
607 if( jp>nl4 ) jp = jp - nl4;
608 if( jp<1 ) jp = jp + nl4;
609
610 int aux=n_before + jp - 1;
611 return (n_before + jp - 1);// ! in {0, npix-1}
612}
613
614template<class T>
615int SphereGorski<T>::ring2nest(int nside, int ipring) const
616{
617 /*
618 ==================================================
619 subroutine ring2nest(nside, ipring, ipnest)
620 ==================================================
621 c conversion from RING to NESTED pixel number
622 ==================================================
623 */
624 // tranlated from FORTRAN (Gorski) to C, by B. Revenu, revised Guy Le Meur
625 // (16/12/98)
626
627 const PIXELS_XY& PXY= PIXELS_XY::instance();
628
629 double fihip, hip;
630 int npix, nl2, nl4, ncap, ip, iphi, ipt, ipring1;
631 int kshift, face_num, nr;
632 int irn, ire, irm, irs, irt, ifm , ifp;
633 int ix, iy, ix_low, ix_hi, iy_low, iy_hi, ipf;
634 int ns_max(8192);
635
636 // coordinate of the lowest corner of each face
637 int jrll[12]={2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4};// ! in unit of nside
638 int jpll[12]={1, 3, 5, 7, 0, 2, 4, 6, 1, 3, 5, 7};//! in unit of nside/2
639
640 if( nside<1 || nside>ns_max ) {
641 cout << "nside out of range" << endl;
642 exit(0);
643 }
644 npix = 12 * nside*nside;
645 if( ipring<0 || ipring>npix-1 ) {
646 cout << "ipring out of range" << endl;
647 exit(0);
648 }
649
650 nl2 = 2*nside;
651 nl4 = 4*nside;
652 npix = 12*nside*nside;// ! total number of points
653 ncap = 2*nside*(nside-1);// ! points in each polar cap, =0 for nside =1
654 ipring1 = ipring + 1;
655
656 //c finds the ring number, the position of the ring and the face number
657 if( ipring1<=ncap ) {//then
658
659 hip = ipring1/2.;
660 fihip = (int)floor ( hip );
661 irn = (int)floor( sqrt( hip - sqrt(fihip) ) ) + 1;// ! counted from North pole
662 iphi = ipring1 - 2*irn*(irn - 1);
663
664 kshift = 0;
665 nr = irn ;// ! 1/4 of the number of points on the current ring
666 face_num = (iphi-1) / irn;// ! in {0,3}
667 }
668 else if( ipring1<=nl2*(5*nside+1) ) {//then
669
670 ip = ipring1 - ncap - 1;
671 irn = (int)floor( ip / nl4 ) + nside;// ! counted from North pole
672 iphi = (int)fmod(ip,nl4) + 1;
673
674 kshift = (int)fmod(irn+nside,2);// ! 1 if irn+nside is odd, 0 otherwise
675 nr = nside;
676 ire = irn - nside + 1;// ! in {1, 2*nside +1}
677 irm = nl2 + 2 - ire;
678 ifm = (iphi - ire/2 + nside -1) / nside;// ! face boundary
679 ifp = (iphi - irm/2 + nside -1) / nside;
680 if( ifp==ifm ) {//then ! faces 4 to 7
681 face_num = (int)fmod(ifp,4) + 4;
682 }
683 else if( ifp + 1==ifm ) {//then ! (half-)faces 0 to 3
684 face_num = ifp;
685 }
686 else if( ifp - 1==ifm ) {//then ! (half-)faces 8 to 11
687 face_num = ifp + 7;
688 }
689 }
690 else {
691
692 ip = npix - ipring1 + 1;
693 hip = ip/2.;
694 fihip = floor ( hip );
695 irs = (int)floor( sqrt( hip - sqrt(fihip) ) ) + 1;// ! counted from South pole
696 iphi = 4*irs + 1 - (ip - 2*irs*(irs-1));
697
698 kshift = 0;
699 nr = irs;
700 irn = nl4 - irs;
701 face_num = (iphi-1) / irs + 8;// ! in {8,11}
702 }
703
704 //c finds the (x,y) on the face
705 irt = irn - jrll[face_num]*nside + 1;// ! in {-nside+1,0}
706 ipt = 2*iphi - jpll[face_num]*nr - kshift - 1;// ! in {-nside+1,nside-1}
707
708
709 if( ipt>=nl2 ) ipt = ipt - 8*nside;// ! for the face #4
710
711 ix = (ipt - irt ) / 2;
712 iy = -(ipt + irt ) / 2;
713
714 ix_low = (int)fmod(ix,128);
715 ix_hi = ix/128;
716 iy_low = (int)fmod(iy,128);
717 iy_hi = iy/128;
718 ipf=(PXY.x2pix_(ix_hi)+PXY.y2pix_(iy_hi))*(128*128)+(PXY.x2pix_(ix_low)+PXY.y2pix_(iy_low));
719
720 return (ipf + face_num* nside *nside);// ! in {0, 12*nside**2 - 1}
721}
722
723template<class T>
724int SphereGorski<T>::ang2pix_ring(int nside, double theta, double phi) const
725{
726 /*
727 ==================================================
728 c gives the pixel number ipix (RING)
729 c corresponding to angles theta and phi
730 c==================================================
731 */
732 // tranlated from FORTRAN (Gorski) to C, by B. Revenu, revised Guy Le Meur
733 // (16/12/98)
734
735 int nl2, nl4, ncap, npix, jp, jm, ipix1;
736 double z, za, tt, tp, tmp;
737 int ir, ip, kshift;
738
739 double piover2(Pi/2.);
740 double twopi(2.*Pi);
741 double z0(2./3.);
742 int ns_max(8192);
743
744 if( nside<1 || nside>ns_max ) {
745 cout << "nside out of range" << endl;
746 exit(0);
747 }
748
749 if( theta<0. || theta>Pi) {
750 cout << "theta out of range" << endl;
751 exit(0);
752 }
753
754 z = cos(theta);
755 za = fabs(z);
756 if( phi >= twopi) phi = phi - twopi;
757 if (phi < 0.) phi = phi + twopi;
758 tt = phi / piover2;// ! in [0,4)
759
760 nl2 = 2*nside;
761 nl4 = 4*nside;
762 ncap = nl2*(nside-1);// ! number of pixels in the north polar cap
763 npix = 12*nside*nside;
764
765 if( za <= z0 ) {
766
767 jp = (int)floor(nside*(0.5 + tt - z*0.75));// ! index of ascending edge line
768 jm = (int)floor(nside*(0.5 + tt + z*0.75));// ! index of descending edge line
769
770 ir = nside + 1 + jp - jm;// ! in {1,2n+1} (ring number counted from z=2/3)
771 kshift = 0;
772 if (fmod(ir,2)==0.) kshift = 1;// ! kshift=1 if ir even, 0 otherwise
773
774 ip = (int)floor( ( jp+jm - nside + kshift + 1 ) / 2 ) + 1;// ! in {1,4n}
775 if( ip>nl4 ) ip = ip - nl4;
776
777 ipix1 = ncap + nl4*(ir-1) + ip ;
778 }
779 else {
780
781 tp = tt - floor(tt);// !MOD(tt,1.d0)
782 tmp = sqrt( 3.*(1. - za) );
783
784 jp = (int)floor( nside * tp * tmp );// ! increasing edge line index
785 jm = (int)floor( nside * (1. - tp) * tmp );// ! decreasing edge line index
786
787 ir = jp + jm + 1;// ! ring number counted from the closest pole
788 ip = (int)floor( tt * ir ) + 1;// ! in {1,4*ir}
789 if( ip>4*ir ) ip = ip - 4*ir;
790
791 ipix1 = 2*ir*(ir-1) + ip;
792 if( z<=0. ) {
793 ipix1 = npix - 2*ir*(ir+1) + ip;
794 }
795 }
796 return (ipix1 - 1);// ! in {0, npix-1}
797}
798
799template<class T>
800int SphereGorski<T>::ang2pix_nest(int nside, double theta, double phi) const
801{
802 /*
803 ==================================================
804 subroutine ang2pix_nest(nside, theta, phi, ipix)
805 ==================================================
806 c gives the pixel number ipix (NESTED)
807 c corresponding to angles theta and phi
808 c
809 c the computation is made to the highest resolution available (nside=8192)
810 c and then degraded to that required (by integer division)
811 c this doesn't cost more, and it makes sure
812 c that the treatement of round-off will be consistent
813 c for every resolution
814 ==================================================
815 */
816 // tranlated from FORTRAN (Gorski) to C, by B. Revenu, revised Guy Le Meur
817 // (16/12/98)
818
819 const PIXELS_XY& PXY= PIXELS_XY::instance();
820
821 double z, za, z0, tt, tp, tmp;
822 int face_num,jp,jm;
823 int ifp, ifm;
824 int ix, iy, ix_low, ix_hi, iy_low, iy_hi, ipf, ntt;
825 double piover2(Pi/2.), twopi(2.*Pi);
826 int ns_max(8192);
827
828 if( nside<1 || nside>ns_max ) {
829 cout << "nside out of range" << endl;
830 exit(0);
831 }
832 if( theta<0 || theta>Pi ) {
833 cout << "theta out of range" << endl;
834 exit(0);
835 }
836 z = cos(theta);
837 za = fabs(z);
838 z0 = 2./3.;
839 if( phi>=twopi ) phi = phi - twopi;
840 if( phi<0. ) phi = phi + twopi;
841 tt = phi / piover2;// ! in [0,4[
842 if( za<=z0 ) { // then ! equatorial region
843
844 //(the index of edge lines increase when the longitude=phi goes up)
845 jp = (int)floor(ns_max*(0.5 + tt - z*0.75));// ! ascending edge line index
846 jm = (int)floor(ns_max*(0.5 + tt + z*0.75));// ! descending edge line index
847
848 //c finds the face
849 ifp = jp / ns_max;// ! in {0,4}
850 ifm = jm / ns_max;
851 if( ifp==ifm ) face_num = (int)fmod(ifp,4) + 4; //then ! faces 4 to 7
852 else if( ifp<ifm ) face_num = (int)fmod(ifp,4); // (half-)faces 0 to 3
853 else face_num = (int)fmod(ifm,4) + 8;//! (half-)faces 8 to 11
854
855 ix = (int)fmod(jm, ns_max);
856 iy = ns_max - (int)fmod(jp, ns_max) - 1;
857 }
858 else { //! polar region, za > 2/3
859
860 ntt = (int)floor(tt);
861 if( ntt>=4 ) ntt = 3;
862 tp = tt - ntt;
863 tmp = sqrt( 3.*(1. - za) );// ! in ]0,1]
864
865 //(the index of edge lines increase when distance from the closest pole goes up)
866 jp = (int)floor(ns_max*tp*tmp); // ! line going toward the pole as phi increases
867 jm = (int)floor(ns_max*(1.-tp)*tmp); // ! that one goes away of the closest pole
868 jp = (int)min(ns_max-1, jp);// ! for points too close to the boundary
869 jm = (int)min(ns_max-1, jm);
870
871 // finds the face and pixel's (x,y)
872 if( z>=0 ) {
873 face_num = ntt;// ! in {0,3}
874 ix = ns_max - jm - 1;
875 iy = ns_max - jp - 1;
876 }
877 else {
878 face_num = ntt + 8;// ! in {8,11}
879 ix = jp;
880 iy = jm;
881 }
882 }
883
884 ix_low = (int)fmod(ix,128);
885 ix_hi = ix/128;
886 iy_low = (int)fmod(iy,128);
887 iy_hi = iy/128;
888 ipf= (PXY.x2pix_(ix_hi)+PXY.y2pix_(iy_hi))*(128*128)+(PXY.x2pix_(ix_low)+PXY.y2pix_(iy_low));
889 // ipf = ipf / pow(ns_max/nside,2.);// ! in {0, nside**2 - 1}
890 // return ( ipf + face_num*pow(nside,2));// ! in {0, 12*nside**2 - 1}
891 // $CHECK$ Reza 25/10/99 , pow remplace par *
892 // ipf = ipf / ((ns_max/nside)*(ns_max/nside)); // ! in {0, nside**2 - 1}
893 // return ( ipf + face_num*(nside*nside);// ! in {0, 12*nside**2 - 1}
894}
895
896template<class T>
897void SphereGorski<T>::pix2ang_ring(int nside,int ipix,double& theta,double& phi) const {
898 /*
899 ===================================================
900 c gives theta and phi corresponding to pixel ipix (RING)
901 c for a parameter nside
902 ===================================================
903 */
904 // tranlated from FORTRAN (Gorski) to C, by B. Revenu, revised Guy Le Meur
905 // (16/12/98)
906
907 int nl2, nl4, npix, ncap, iring, iphi, ip, ipix1;
908 double fact1, fact2, fodd, hip, fihip;
909
910 int ns_max(8192);
911
912 if( nside<1 || nside>ns_max ) {
913 cout << "nside out of range" << endl;
914 exit(0);
915 }
916 npix = 12*nside*nside; // ! total number of points
917 if( ipix<0 || ipix>npix-1 ) {
918 cout << "ipix out of range" << endl;
919 exit(0);
920 }
921
922 ipix1 = ipix + 1; // in {1, npix}
923 nl2 = 2*nside;
924 nl4 = 4*nside;
925 ncap = 2*nside*(nside-1);// ! points in each polar cap, =0 for nside =1
926 fact1 = 1.5*nside;
927 fact2 = 3.0*nside*nside;
928
929 if( ipix1 <= ncap ) { //! North Polar cap -------------
930
931 hip = ipix1/2.;
932 fihip = floor(hip);
933 iring = (int)floor( sqrt( hip - sqrt(fihip) ) ) + 1;// ! counted from North pole
934 iphi = ipix1 - 2*iring*(iring - 1);
935
936 theta = acos( 1. - iring*iring / fact2 );
937 phi = (1.*iphi - 0.5) * Pi/(2.*iring);
938 // cout << theta << " " << phi << endl;
939 }
940 else if( ipix1 <= nl2*(5*nside+1) ) {//then ! Equatorial region ------
941
942 ip = ipix1 - ncap - 1;
943 iring = (int)floor( ip / nl4 ) + nside;// ! counted from North pole
944 iphi = (int)fmod(ip,nl4) + 1;
945
946 fodd = 0.5 * (1 + fmod((double)(iring+nside),2));// ! 1 if iring+nside is odd, 1/2 otherwise
947 theta = acos( (nl2 - iring) / fact1 );
948 phi = (1.*iphi - fodd) * Pi /(2.*nside);
949 }
950 else {//! South Polar cap -----------------------------------
951
952 ip = npix - ipix1 + 1;
953 hip = ip/2.;
954 fihip = 1.*hip;
955 iring = (int)floor( sqrt( hip - sqrt(fihip) ) ) + 1;// ! counted from South pole
956 iphi = (int)(4.*iring + 1 - (ip - 2.*iring*(iring-1)));
957
958 theta = acos( -1. + iring*iring / fact2 );
959 phi = (1.*iphi - 0.5) * Pi/(2.*iring);
960 // cout << theta << " " << phi << endl;
961 }
962}
963
964template<class T>
965void SphereGorski<T>::pix2ang_nest(int nside,int ipix,double& theta,double& phi) const {
966 /*
967 ==================================================
968 subroutine pix2ang_nest(nside, ipix, theta, phi)
969 ==================================================
970 c gives theta and phi corresponding to pixel ipix (NESTED)
971 c for a parameter nside
972 ==================================================
973 */
974 // tranlated from FORTRAN (Gorski) to C, by B. Revenu, revised Guy Le Meur
975 // (16/12/98)
976
977 const PIXELS_XY& PXY= PIXELS_XY::instance();
978
979 int npix, npface, face_num;
980 int ipf, ip_low, ip_trunc, ip_med, ip_hi;
981 int ix, iy, jrt, jr, nr, jpt, jp, kshift, nl4;
982 double z, fn, fact1, fact2;
983 double piover2(Pi/2.);
984 int ns_max(8192);
985
986 // ! coordinate of the lowest corner of each face
987 int jrll[12]={2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4};//! in unit of nside
988 int jpll[12]={1, 3, 5, 7, 0, 2, 4, 6, 1, 3, 5, 7};// ! in unit of nside/2
989
990 if( nside<1 || nside>ns_max ) {
991 cout << "nside out of range" << endl;
992 exit(0);
993 }
994 npix = 12 * nside*nside;
995 if( ipix<0 || ipix>npix-1 ) {
996 cout << "ipix out of range" << endl;
997 exit(0);
998 }
999
1000 fn = 1.*nside;
1001 fact1 = 1./(3.*fn*fn);
1002 fact2 = 2./(3.*fn);
1003 nl4 = 4*nside;
1004
1005 //c finds the face, and the number in the face
1006 npface = nside*nside;
1007
1008 face_num = ipix/npface;// ! face number in {0,11}
1009 ipf = (int)fmod(ipix,npface);// ! pixel number in the face {0,npface-1}
1010
1011 //c finds the x,y on the face (starting from the lowest corner)
1012 //c from the pixel number
1013 ip_low = (int)fmod(ipf,1024);// ! content of the last 10 bits
1014 ip_trunc = ipf/1024 ;// ! truncation of the last 10 bits
1015 ip_med = (int)fmod(ip_trunc,1024);// ! content of the next 10 bits
1016 ip_hi = ip_trunc/1024 ;//! content of the high weight 10 bits
1017
1018 ix = 1024*PXY.pix2x_(ip_hi)+32*PXY.pix2x_(ip_med)+PXY.pix2x_(ip_low);
1019 iy = 1024*PXY.pix2y_(ip_hi)+32*PXY.pix2y_(ip_med)+PXY.pix2y_(ip_low);
1020
1021 //c transforms this in (horizontal, vertical) coordinates
1022 jrt = ix + iy;// ! 'vertical' in {0,2*(nside-1)}
1023 jpt = ix - iy;// ! 'horizontal' in {-nside+1,nside-1}
1024
1025 //c computes the z coordinate on the sphere
1026 // jr = jrll[face_num+1]*nside - jrt - 1;// ! ring number in {1,4*nside-1}
1027 jr = jrll[face_num]*nside - jrt - 1;
1028 nr = nside;// ! equatorial region (the most frequent)
1029 z = (2*nside-jr)*fact2;
1030 kshift = (int)fmod(jr - nside, 2);
1031 if( jr<nside ) { //then ! north pole region
1032 nr = jr;
1033 z = 1. - nr*nr*fact1;
1034 kshift = 0;
1035 }
1036 else {
1037 if( jr>3*nside ) {// then ! south pole region
1038 nr = nl4 - jr;
1039 z = - 1. + nr*nr*fact1;
1040 kshift = 0;
1041 }
1042 }
1043 theta = acos(z);
1044
1045 //c computes the phi coordinate on the sphere, in [0,2Pi]
1046 // jp = (jpll[face_num+1]*nr + jpt + 1 + kshift)/2;// ! 'phi' number in the ring in {1,4*nr}
1047 jp = (jpll[face_num]*nr + jpt + 1 + kshift)/2;
1048 if( jp>nl4 ) jp = jp - nl4;
1049 if( jp<1 ) jp = jp + nl4;
1050 phi = (jp - (kshift+1)*0.5) * (piover2 / nr);
1051}
1052
1053
1054
1055template <class T>
1056void SphereGorski<T>::print(ostream& os) const
1057{
1058 if(mInfo_) os << " DVList Info= " << *mInfo_ << endl;
1059 //
1060 os << " nSide_ = " << nSide_ << endl;
1061 os << " nPix_ = " << nPix_ << endl;
1062 os << " omeg_ = " << omeg_ << endl;
1063
1064 os << " content of pixels : ";
1065 for(int i=0; i < nPix_; i++)
1066 {
1067 if(i%5 == 0) os << endl;
1068 os << pixels_(i) <<", ";
1069 }
1070 os << endl;
1071
1072 os << endl;
1073 //const PIXELS_XY& PXY= PIXELS_XY::instance();
1074
1075 //os << endl; os << " contenu des tableaux conversions "<<endl;
1076 //for(int i=0; i < 5; i++)
1077 // {
1078 // os<<PXY.pix2x_(i)<<", "<<PXY.pix2y_(i)<<", "<<PXY.x2pix_(i)<<", "<<PXY.y2pix_(i)<<endl;
1079 // }
1080 os << endl;
1081
1082}
1083
1084//*******************************************************************
1085// Class FIO_SphereGorski<T>
1086// Les objets delegues pour la gestion de persistance
1087//*******************************************************************
1088
1089template <class T>
1090FIO_SphereGorski<T>::FIO_SphereGorski()
1091{
1092 dobj= new SphereGorski<T>;
1093 ownobj= true;
1094}
1095
1096template <class T>
1097FIO_SphereGorski<T>::FIO_SphereGorski(string const& filename)
1098{
1099 dobj= new SphereGorski<T>;
1100 ownobj= true;
1101 Read(filename);
1102}
1103
1104template <class T>
1105FIO_SphereGorski<T>::FIO_SphereGorski(const SphereGorski<T>& obj)
1106{
1107 dobj= new SphereGorski<T>(obj);
1108 ownobj= true;
1109}
1110
1111template <class T>
1112FIO_SphereGorski<T>::FIO_SphereGorski(SphereGorski<T>* obj)
1113{
1114 dobj= obj;
1115 ownobj= false;
1116}
1117
1118template <class T>
1119FIO_SphereGorski<T>::~FIO_SphereGorski()
1120{
1121 if (ownobj && dobj) delete dobj;
1122}
1123
1124template <class T>
1125AnyDataObj* FIO_SphereGorski<T>::DataObj()
1126{
1127 return(dobj);
1128}
1129
1130template <class T>
1131void FIO_SphereGorski<T>::ReadSelf(PInPersist& is)
1132{
1133 cout << " FIO_SphereGorski:: ReadSelf " << endl;
1134
1135 if(dobj == NULL)
1136 {
1137 dobj= new SphereGorski<T>;
1138 }
1139
1140 // Pour savoir s'il y avait un DVList Info associe
1141 char strg[256];
1142 is.GetLine(strg, 255);
1143 bool hadinfo= false;
1144 if(strncmp(strg+strlen(strg)-7, "HasInfo", 7) == 0) hadinfo= true;
1145 if(hadinfo)
1146 { // Lecture eventuelle du DVList Info
1147 is >> dobj->Info();
1148 }
1149
1150 int nSide;
1151 is.GetI4(nSide);
1152 dobj->setSizeIndex(nSide);
1153
1154 int nPix;
1155 is.GetI4(nPix);
1156 dobj->setNbPixels(nPix);
1157
1158 double Omega;
1159 is.GetR8(Omega);
1160 dobj->setPixSolAngle(Omega);
1161
1162 T* pixels= new T[nPix];
1163 PIOSReadArray(is, pixels, nPix);
1164 dobj->setDataBlock(pixels, nPix);
1165 delete [] pixels;
1166
1167}
1168
1169template <class T>
1170void FIO_SphereGorski<T>::WriteSelf(POutPersist& os) const
1171{
1172 cout << " FIO_SphereGorski:: WriteSelf " << endl;
1173
1174 if(dobj == NULL)
1175 {
1176 cout << " WriteSelf:: dobj= null " << endl;
1177 return;
1178 }
1179
1180 char strg[256];
1181 int nSide= dobj->SizeIndex();
1182 int nPix = dobj->NbPixels();
1183
1184 if(dobj->ptrInfo())
1185 {
1186 sprintf(strg,"SphereGorski: NSide=%6d NPix=%9d HasInfo",nSide,nPix);
1187 os.PutLine(strg);
1188 os << dobj->Info();
1189 }
1190 else
1191 {
1192 sprintf(strg,"SphereGorski: NSide=%6d NPix=%9d ",nSide,nPix);
1193 os.PutLine(strg);
1194 }
1195
1196 os.PutI4(nSide);
1197 os.PutI4(nPix);
1198 os.PutR8(dobj->PixSolAngle(0));
1199
1200 PIOSWriteArray(os,(dobj->getDataBlock())->Data(), nPix);
1201
1202
1203}
1204
1205#ifdef __CXX_PRAGMA_TEMPLATES__
1206#pragma define_template SphereGorski<double>
1207#pragma define_template SphereGorski<float>
1208#pragma define_template SphereGorski< complex<float> >
1209#pragma define_template SphereGorski< complex<double> >
1210#pragma define_template FIO_SphereGorski<double>
1211#pragma define_template FIO_SphereGorski<float>
1212#pragma define_template FIO_SphereGorski< complex<float> >
1213#pragma define_template FIO_SphereGorski< complex<double> >
1214#endif
1215#if defined(ANSI_TEMPLATES) || defined(GNU_TEMPLATES)
1216template class SphereGorski<double>;
1217template class SphereGorski<float>;
1218template class SphereGorski< complex<float> >;
1219template class SphereGorski< complex<double> >;
1220template class FIO_SphereGorski<double>;
1221template class FIO_SphereGorski<float>;
1222template class FIO_SphereGorski< complex<float> >;
1223template class FIO_SphereGorski< complex<double> >;
1224#endif
1225
Note: See TracBrowser for help on using the repository browser.