source: Sophya/trunk/SophyaLib/Samba/spheregorski.cc@ 745

Last change on this file since 745 was 725, checked in by ansari, 26 years ago

complete en-tete du fichier de persistance

File size: 35.3 KB
Line 
1#include "machdefs.h"
2#include <math.h>
3#include <complex>
4
5#include "pexceptions.h"
6#include "spheregorski.h"
7#include "strutil.h"
8
9extern "C"
10{
11#include <stdio.h>
12#include <stdlib.h>
13#include <unistd.h>
14}
15
16
17//*******************************************************************
18// Class PIXELS_XY
19// Construction des tableaux necessaires a la traduction des indices RING en
20// indices NESTED (ou l'inverse)
21//*******************************************************************
22
23PIXELS_XY::PIXELS_XY()
24{
25 pix2x_.ReSize(1024);
26 pix2x_.Reset();
27 pix2y_.ReSize(1024);
28 pix2y_.Reset();
29 x2pix_.ReSize(128);
30 x2pix_.Reset();
31 y2pix_.ReSize(128);
32 y2pix_.Reset();
33 mk_pix2xy();
34 mk_xy2pix();
35}
36
37PIXELS_XY& PIXELS_XY::instance()
38{
39 static PIXELS_XY single;
40 return (single);
41}
42
43void PIXELS_XY::mk_pix2xy()
44{
45 /*
46 ==================================================
47 subroutine mk_pix2xy
48 ==================================================
49 c constructs the array giving x and y in the face from pixel number
50 c for the nested (quad-cube like) ordering of pixels
51 c
52 c the bits corresponding to x and y are interleaved in the pixel number
53 c one breaks up the pixel number by even and odd bits
54 ==================================================
55 */
56 // tranlated from FORTRAN (Gorski) to C, by B. Revenu, revised Guy Le Meur
57 // (16/12/98)
58
59 int kpix, jpix, IX, IY, IP, ID;
60
61 for(kpix = 0; kpix < 1024; kpix++)
62 {
63 jpix = kpix;
64 IX = 0;
65 IY = 0;
66 IP = 1 ;// ! bit position (in x and y)
67 while( jpix!=0 )
68 { // ! go through all the bits
69 ID=jpix%2;// ! bit value (in kpix), goes in ix
70 jpix = jpix/2;
71 IX = ID*IP+IX;
72
73 ID=jpix%2;// ! bit value (in kpix), goes in iy
74 jpix = jpix/2;
75 IY = ID*IP+IY;
76
77 IP = 2*IP;// ! next bit (in x and y)
78 }
79 pix2x_(kpix) = IX;// ! in 0,31
80 pix2y_(kpix) = IY;// ! in 0,31
81 }
82}
83
84void PIXELS_XY::mk_xy2pix()
85{
86 /*
87 =================================================
88 subroutine mk_xy2pix
89 =================================================
90 c sets the array giving the number of the pixel lying in (x,y)
91 c x and y are in {1,128}
92 c the pixel number is in {0,128**2-1}
93 c
94 c if i-1 = sum_p=0 b_p * 2^p
95 c then ix = sum_p=0 b_p * 4^p
96 c iy = 2*ix
97 c ix + iy in {0, 128**2 -1}
98 =================================================
99 */
100 // tranlated from FORTRAN (Gorski) to C, by B. Revenu, revised Guy Le Meur
101 // (16/12/98)
102
103 int K,IP,I,J,ID;
104 for(I = 1; I <= 128; I++)
105 {
106 J = I-1;// !pixel numbers
107 K = 0;//
108 IP = 1;//
109 truc : if( J==0 )
110 {
111 x2pix_(I-1) = K;
112 y2pix_(I-1) = 2*K;
113 }
114 else
115 {
116 ID = (int)fmod(J,2);
117 J = J/2;
118 K = IP*ID+K;
119 IP = IP*4;
120 goto truc;
121 }
122 }
123}
124
125//*******************************************************************
126//++
127// Class SphereGorski
128//
129// include spheregorski.h strutil.h
130//
131// Pixelisation Gorski
132//
133//
134//| -----------------------------------------------------------------------
135//| version 0.8.2 Aug97 TAC Eric Hivon, Kris Gorski
136//| -----------------------------------------------------------------------
137//
138// the sphere is split in 12 diamond-faces containing nside**2 pixels each
139//
140// the numbering of the pixels (in the nested scheme) is similar to
141// quad-cube
142// In each face the first pixel is in the lowest corner of the diamond
143//
144// the faces are (x,y) coordinate on each face
145//| . . . . <--- North Pole
146//| / \ / \ / \ / \ ^ ^
147//| . 0 . 1 . 2 . 3 . <--- z = 2/3 \ /
148//| \ / \ / \ / \ / y \ / x
149//| 4 . 5 . 6 . 7 . 4 <--- equator \ /
150//| / \ / \ / \ / \ \/
151//| . 8 . 9 .10 .11 . <--- z = -2/3 (0,0) : lowest corner
152//| \ / \ / \ / \ /
153//| . . . . <--- South Pole
154//|
155// phi:0 2Pi
156//
157// in the ring scheme pixels are numbered along the parallels
158// the first parallel is the one closest to the north pole and so on
159// on each parallel, pixels are numbered starting from the one closest
160// to phi = 0
161//
162// nside MUST be a power of 2 (<= 8192)
163//--
164//++
165//
166// Links Parents
167//
168// SphericalMap
169//--
170
171/* --Methode-- */
172//++
173// Titre Constructors
174//--
175//++
176
177template<class T>
178SphereGorski<T>::SphereGorski()
179
180//--
181{
182 InitNul();
183 pixels_.Reset();
184}
185
186//++
187template<class T>
188SphereGorski<T>::SphereGorski(int_4 m)
189
190// m is the "nside" of the Gorski algorithm
191//
192// The total number of pixels will be Npix = 12*nside**2
193//
194// nside MUST be a power of 2 (<= 8192)
195//--
196{
197
198 if(m <= 0 || m > 8192)
199 {
200 cout << "SphereGorski : m hors bornes [0,8192], m= " << m << endl;
201 throw RangeCheckError("SphereGorski<T>::SphereGorski() - Out of bound nside (< 8192)!");
202 }
203 // verifier que m est une puissance de deux
204 int x= m;
205 while(x%2 == 0) x/=2;
206 if(x != 1)
207 {
208 cout<<"SphereGorski: m doit etre une puissance de deux, m= "<<m<<endl;
209 throw ParmError("SphereGorski<T>::SphereGorski() - nside != 2^n !");
210 }
211 InitNul();
212 Pixelize(m);
213 SetThetaSlices();
214}
215//++
216template<class T>
217SphereGorski<T>::SphereGorski(const SphereGorski<T>& s, bool share)
218 : pixels_(s.pixels_, share)
219// copy constructor
220//--
221{
222 if(s.mInfo_) mInfo_= new DVList(*s.mInfo_);
223
224 nSide_= s.nSide_;
225 nPix_ = s.nPix_;
226 omeg_ = s.omeg_;
227}
228
229//++
230// Titre Destructor
231//--
232//++
233template<class T>
234SphereGorski<T>::~SphereGorski()
235
236//--
237{
238}
239
240//++
241// Titre Public Methods
242//--
243
244//++
245template<class T>
246void SphereGorski<T>::Resize(int_4 m)
247
248// m is the "nside" of the Gorski algorithm
249//
250// The total number of pixels will be Npix = 12*nside**2
251//
252// nside MUST be a power of 2 (<= 8192)
253//--
254{
255 if (m<=0 || m> 8192) {
256 cout << "SphereGorski : m hors bornes [0,8192], m= " << m << endl;
257 exit(1);
258 }
259 // verifier que m est une puissance de deux
260 int x= m;
261 while (x%2==0) x/=2;
262 if(x != 1)
263 {
264 cout<<"SphereGorski: m doit etre une puissance de deux, m= "<<m<<endl;
265 exit(1);
266 }
267 InitNul();
268 Pixelize(m);
269 SetThetaSlices();
270}
271
272template<class T>
273void SphereGorski<T>::Pixelize( int_4 m)
274
275// prépare la pixelisation Gorski (m a la même signification
276// que pour le constructeur)
277//
278//
279{
280 // On memorise les arguments d'appel
281 nSide_= m;
282
283 // Nombre total de pixels sur la sphere entiere
284 nPix_= 12*nSide_*nSide_;
285
286 // pour le moment les tableaux qui suivent seront ranges dans l'ordre
287 // de l'indexation GORSKY "RING"
288 // on pourra ulterieurement changer de strategie et tirer profit
289 // de la dualite d'indexation GORSKY (RING et NEST) : tout dependra
290 // de pourquoi c'est faire
291
292 // Creation et initialisation du vecteur des contenus des pixels
293 pixels_.ReSize(nPix_);
294 pixels_.Reset();
295
296 // solid angle per pixel
297 omeg_= 4.0*Pi/nPix_;
298}
299
300template<class T>
301void SphereGorski<T>::InitNul()
302//
303// initialise à zéro les variables de classe
304{
305 nSide_= 0;
306 nPix_ = 0;
307 omeg_ = 0.;
308// pixels_.Reset(); - Il ne faut pas mettre les pixels a zero si share !
309}
310
311/* --Methode-- */
312//++
313template<class T>
314int_4 SphereGorski<T>::NbPixels() const
315
316// Retourne le nombre de pixels du découpage
317//--
318{
319 return(nPix_);
320}
321
322//++
323template<class T>
324uint_4 SphereGorski<T>::NbThetaSlices() const
325
326// Return number of slices in theta direction on the sphere
327//--
328{
329 uint_4 nbslices = uint_4(4*nSide_-1);
330 if (nSide_<=0)
331 {
332 nbslices = 0;
333 throw PException(" sphere not pixelized, NbSlice=0 ");
334 }
335 return nbslices;
336}
337
338//++
339template<class T>
340void SphereGorski<T>::GetThetaSlice(int_4 index,double& theta,TVector<double>& phi,TVector<T>& value) const
341
342// For a theta-slice with index 'index', return :
343//
344// the corresponding "theta"
345//
346// a vector containing the phi's of the pixels of the slice
347//
348// a vector containing the corresponding values of pixels
349//
350//--
351{
352
353 if (index<0 || index >= NbThetaSlices())
354 {
355 // THROW(out_of_range("SphereGorski::PIxVal Pixel index out of range"));
356 cout << " SphereGorski::GetThetaSlice : Pixel index out of range" <<endl;
357 THROW(rangeCheckErr);
358 }
359
360
361 int_4 iring= sliceBeginIndex_(index);
362 int_4 lring = sliceLenght_(index);
363
364
365 phi.ReSize(lring);
366 value.ReSize(lring);
367 double TH= 0.;
368 double FI= 0.;
369 for(int_4 kk = 0; kk < lring;kk++)
370 {
371 PixThetaPhi(kk+iring,TH,FI);
372 phi(kk)= FI;
373 value(kk)= PixVal(kk+iring);
374 }
375 theta= TH;
376}
377//++
378//++
379
380template<class T>
381void SphereGorski<T>::GetThetaSlice(int_4 sliceIndex,double& theta, double& phi0, TVector<int>& pixelIndices,TVector<T>& value) const
382
383// For a theta-slice with index 'sliceIndex', return :
384//
385// the corresponding "theta"
386// the corresponding "phi" for first pixel of the slice
387//
388// a vector containing the indices of the pixels of the slice
389// (equally distributed in phi)
390//
391// a vector containing the corresponding values of pixels
392//
393//--
394{
395
396 if (sliceIndex<0 || sliceIndex >= NbThetaSlices())
397 {
398 // THROW(out_of_range("SphereGorski::PIxVal Pixel index out of range"));
399 cout << " SphereGorski::GetThetaSlice : Pixel index out of range" <<endl;
400 THROW(rangeCheckErr);
401 }
402
403 int_4 iring= sliceBeginIndex_(sliceIndex);
404 int_4 lring = sliceLenght_(sliceIndex);
405 pixelIndices.ReSize(lring);
406 value.ReSize(lring);
407 for(int_4 kk = 0; kk < lring;kk++)
408 {
409 pixelIndices(kk)= kk+iring;
410 value(kk)= PixVal(kk+iring);
411 }
412 PixThetaPhi(iring, theta, phi0);
413}
414//++
415template<class T>
416void SphereGorski<T>::SetThetaSlices()
417
418//--
419{
420 sliceBeginIndex_.ReSize(4*nSide_-1);
421 sliceLenght_.ReSize(4*nSide_-1);
422 for (int sliceIndex=0; sliceIndex< nSide_-1; sliceIndex++)
423 {
424 sliceBeginIndex_(sliceIndex) = 2*sliceIndex*(sliceIndex+1);
425 sliceLenght_(sliceIndex) = 4*(sliceIndex+1);
426 }
427 for (int sliceIndex= nSide_-1; sliceIndex< 3*nSide_; sliceIndex++)
428 {
429 sliceBeginIndex_(sliceIndex) = 2*nSide_*(2*sliceIndex-nSide_+1);
430 sliceLenght_(sliceIndex) = 4*nSide_;
431 }
432 for (int sliceIndex= 3*nSide_; sliceIndex< 4*nSide_-1; sliceIndex++)
433 {
434 int_4 nc= 4*nSide_-1-sliceIndex;
435 sliceBeginIndex_(sliceIndex) = nPix_-2*nc*(nc+1);
436 sliceLenght_(sliceIndex) = 4*nc;
437 }
438}
439
440/* --Methode-- */
441//++
442template<class T>
443T& SphereGorski<T>::PixVal(int_4 k)
444
445// Return value of pixel with "RING" index k
446//--
447{
448 if((k < 0) || (k >= nPix_))
449 {
450 // THROW(out_of_range("SphereGorski::PIxVal Pixel index out of range"));
451 cout << " SphereGorski::PIxVal : exception a mettre en place, k= " << k <<endl;
452 THROW(rangeCheckErr);
453 }
454 return pixels_(k);
455}
456
457/* --Methode-- */
458//++
459template<class T>
460T const& SphereGorski<T>::PixVal(int_4 k) const
461
462// Return value of pixel with "RING" index k
463//--
464{
465 if((k < 0) || (k >= nPix_))
466 {
467 //THROW(out_of_range("SphereGorski::PIxVal Pixel index out of range"));
468 cout << " SphereGorski::PIxVal : exception a mettre en place, k= " << k <<endl;
469 THROW(rangeCheckErr);
470 }
471 return *(pixels_.Data()+k);
472}
473
474//++
475template<class T>
476T& SphereGorski<T>::PixValNest(int_4 k)
477
478// Return value of pixel with "NESTED" index k
479//--
480{
481 if((k < 0) || (k >= nPix_))
482 {
483 //THROW(out_of_range("SphereGorski::PIxValNest Pixel index out of range"));
484 cout<<" SphereGorski::PIxValNest : exceptions a mettre en place" <<endl;
485 THROW(rangeCheckErr);
486 }
487 return pixels_(nest2ring(nSide_,k));
488}
489//++
490
491template<class T>
492T const& SphereGorski<T>::PixValNest(int_4 k) const
493
494// Return value of pixel with "NESTED" index k
495//--
496{
497 if((k < 0) || (k >= nPix_))
498 {
499 //THROW(out_of_range("SphereGorski::PIxValNest Pixel index out of range"));
500 cout<<" SphereGorski::PIxValNest : exceptions a mettre en place" <<endl;
501 THROW(rangeCheckErr);
502 }
503 int_4 pix= nest2ring(nSide_,k);
504 return *(pixels_.Data()+pix);
505}
506
507/* --Methode-- */
508//++
509template<class T>
510bool SphereGorski<T>::ContainsSph(double /*theta*/, double /*phi*/) const
511//--
512{
513return(true);
514}
515
516/* --Methode-- */
517//++
518template<class T>
519int_4 SphereGorski<T>::PixIndexSph(double theta,double phi) const
520
521// Return "RING" index of the pixel corresponding to
522// direction (theta, phi).
523//--
524{
525 return ang2pix_ring(nSide_,theta,phi);
526}
527
528//++
529template<class T>
530int_4 SphereGorski<T>::PixIndexSphNest(double theta,double phi) const
531
532// Return "NESTED" index of the pixel corresponding to
533// direction (theta, phi).
534//--
535{
536 return ang2pix_nest(nSide_,theta,phi);
537}
538
539
540/* --Methode-- */
541//++
542template<class T>
543void SphereGorski<T>::PixThetaPhi(int_4 k,double& theta,double& phi) const
544
545// Return (theta,phi) coordinates of middle of pixel with "RING" index k
546//--
547{
548 pix2ang_ring(nSide_,k,theta,phi);
549}
550
551template <class T>
552T SphereGorski<T>::SetPixels(T v)
553{
554pixels_.Reset(v);
555return(v);
556}
557
558//++
559template<class T>
560double SphereGorski<T>::PixSolAngle(int_4 /*dummy*/) const
561// Pixel Solid angle (steradians)
562// All the pixels have the same solid angle. The dummy argument is
563// for compatibility with eventual pixelizations which would not
564// fulfil this requirement.
565//--
566{
567 return omeg_;
568}
569
570//++
571template<class T>
572void SphereGorski<T>::PixThetaPhiNest(int_4 k,double& theta,double& phi) const
573
574// Return (theta,phi) coordinates of middle of pixel with "NESTED" index k
575//--
576{
577 pix2ang_nest(nSide_,k,theta,phi);
578}
579
580//++
581template<class T>
582int_4 SphereGorski<T>::NestToRing(int_4 k) const
583
584// translation from NESTED index into RING index
585//
586//--
587{
588 return nest2ring(nSide_,k);
589}
590
591//++
592template<class T>
593int_4 SphereGorski<T>::RingToNest(int_4 k) const
594//
595// translation from RING index into NESTED index
596//
597//--
598{
599 return ring2nest(nSide_,k);
600}
601
602
603template<class T>
604int_4 SphereGorski<T>::nest2ring(int_4 nside, int_4 ipnest) const
605{
606 /*
607 ====================================================
608 subroutine nest2ring(nside, ipnest, ipring)
609 ====================================================
610 c conversion from NESTED to RING pixel number
611 ====================================================
612 */
613 // tranlated from FORTRAN (Gorski) to C, by B. Revenu, revised Guy Le Meur
614 // (16/12/98)
615
616 const PIXELS_XY& PXY= PIXELS_XY::instance();
617
618 int npix, npface, face_num, ncap, n_before;
619 int ipf, ip_low, ip_trunc, ip_med, ip_hi;
620 int ix, iy, jrt, jr, nr, jpt, jp, kshift, nl4;
621 int ns_max=8192;
622 int jrll[12]={2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4};
623 int jpll[12]={1, 3, 5, 7, 0, 2, 4, 6, 1, 3, 5, 7};
624
625 if( nside<1 || nside>ns_max ) {
626 cout << "nside out of range" << endl;
627 exit(0);
628 }
629 npix = 12 * nside* nside;
630 if( ipnest<0 || ipnest>npix-1 ) {
631 cout << "ipnest out of range" << endl;
632 exit(0);
633 }
634
635 ncap = 2* nside*( nside-1);// ! number of points in the North Polar cap
636 nl4 = 4* nside;
637
638 //c finds the face, and the number in the face
639 npface = nside* nside;
640 //cccccc ip = ipnest - 1 ! in {0,npix-1}
641
642 face_num = ipnest/npface;// ! face number in {0,11}
643 ipf =ipnest%npface;// ! pixel number in the face {0,npface-1}
644 //c finds the x,y on the face (starting from the lowest corner)
645 //c from the pixel number
646 ip_low=ipf%1024; // ! content of the last 10 bits
647 ip_trunc = ipf/1024; // ! truncation of the last 10 bits
648 ip_med=ip_trunc%1024; // ! content of the next 10 bits
649 ip_hi = ip_trunc/1024;// ! content of the high weight 10 bits
650
651 ix = 1024*PXY.pix2x_(ip_hi)+32*PXY.pix2x_(ip_med)+PXY.pix2x_(ip_low);
652 iy = 1024*PXY.pix2y_(ip_hi)+32*PXY.pix2y_(ip_med)+PXY.pix2y_(ip_low);
653
654 //c transforms this in (horizontal, vertical) coordinates
655 jrt = ix + iy;// ! 'vertical' in {0,2*(nside-1)}
656 jpt = ix - iy;// ! 'horizontal' in {-nside+1,nside-1}
657
658 //c computes the z coordinate on the sphere
659 // jr = jrll[face_num+1]*nside - jrt - 1;// ! ring number in {1,4*nside-1}
660 jr = jrll[face_num]*nside - jrt - 1;
661 nr = nside;// ! equatorial region (the most frequent)
662 n_before = ncap + nl4 * (jr - nside);
663 kshift=(jr - nside)%2;
664 if( jr<nside ) {//then ! north pole region
665 nr = jr;
666 n_before = 2 * nr * (nr - 1);
667 kshift = 0;
668 }
669 else if( jr>3*nside ) {//then ! south pole region
670 nr = nl4 - jr;
671 n_before = npix - 2 * (nr + 1) * nr;
672 kshift = 0;
673 }
674
675 //c computes the phi coordinate on the sphere, in [0,2Pi]
676 jp = (jpll[face_num]*nr + jpt + 1 + kshift)/2;// ! 'phi' number in the ring in {1,4*nr}
677
678 if( jp>nl4 ) jp = jp - nl4;
679 if( jp<1 ) jp = jp + nl4;
680
681 int aux=n_before + jp - 1;
682 return (n_before + jp - 1);// ! in {0, npix-1}
683}
684
685template<class T>
686int_4 SphereGorski<T>::ring2nest(int_4 nside, int_4 ipring) const
687{
688 /*
689 ==================================================
690 subroutine ring2nest(nside, ipring, ipnest)
691 ==================================================
692 c conversion from RING to NESTED pixel number
693 ==================================================
694 */
695 // tranlated from FORTRAN (Gorski) to C, by B. Revenu, revised Guy Le Meur
696 // (16/12/98)
697
698 const PIXELS_XY& PXY= PIXELS_XY::instance();
699
700 double fihip, hip;
701 int npix, nl2, nl4, ncap, ip, iphi, ipt, ipring1;
702 int kshift, face_num, nr;
703 int irn, ire, irm, irs, irt, ifm , ifp;
704 int ix, iy, ix_low, ix_hi, iy_low, iy_hi, ipf;
705 int ns_max(8192);
706
707 // coordinate of the lowest corner of each face
708 int jrll[12]={2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4};// ! in unit of nside
709 int jpll[12]={1, 3, 5, 7, 0, 2, 4, 6, 1, 3, 5, 7};//! in unit of nside/2
710
711 if( nside<1 || nside>ns_max ) {
712 cout << "nside out of range" << endl;
713 exit(0);
714 }
715 npix = 12 * nside*nside;
716 if( ipring<0 || ipring>npix-1 ) {
717 cout << "ipring out of range" << endl;
718 exit(0);
719 }
720
721 nl2 = 2*nside;
722 nl4 = 4*nside;
723 npix = 12*nside*nside;// ! total number of points
724 ncap = 2*nside*(nside-1);// ! points in each polar cap, =0 for nside =1
725 ipring1 = ipring + 1;
726
727 //c finds the ring number, the position of the ring and the face number
728 if( ipring1<=ncap ) {//then
729
730 hip = ipring1/2.;
731 fihip = floor ( hip );
732 irn = (int)floor( sqrt( hip - sqrt(fihip) ) ) + 1;// ! counted from North pole
733 iphi = ipring1 - 2*irn*(irn - 1);
734
735 kshift = 0;
736 nr = irn ;// ! 1/4 of the number of points on the current ring
737 face_num = (iphi-1) / irn;// ! in {0,3}
738 }
739 else if( ipring1<=nl2*(5*nside+1) ) {//then
740
741 ip = ipring1 - ncap - 1;
742 irn = (int)floor( ip / nl4 ) + nside;// ! counted from North pole
743 iphi = (int)fmod(ip,nl4) + 1;
744
745 kshift = (int)fmod(irn+nside,2);// ! 1 if irn+nside is odd, 0 otherwise
746 nr = nside;
747 ire = irn - nside + 1;// ! in {1, 2*nside +1}
748 irm = nl2 + 2 - ire;
749 ifm = (iphi - ire/2 + nside -1) / nside;// ! face boundary
750 ifp = (iphi - irm/2 + nside -1) / nside;
751 if( ifp==ifm ) {//then ! faces 4 to 7
752 face_num = (int)fmod(ifp,4) + 4;
753 }
754 else if( ifp + 1==ifm ) {//then ! (half-)faces 0 to 3
755 face_num = ifp;
756 }
757 else if( ifp - 1==ifm ) {//then ! (half-)faces 8 to 11
758 face_num = ifp + 7;
759 }
760 }
761 else {
762
763 ip = npix - ipring1 + 1;
764 hip = ip/2.;
765 fihip = floor ( hip );
766 irs = (int)floor( sqrt( hip - sqrt(fihip) ) ) + 1;// ! counted from South pole
767 iphi = 4*irs + 1 - (ip - 2*irs*(irs-1));
768
769 kshift = 0;
770 nr = irs;
771 irn = nl4 - irs;
772 face_num = (iphi-1) / irs + 8;// ! in {8,11}
773 }
774
775 //c finds the (x,y) on the face
776 irt = irn - jrll[face_num]*nside + 1;// ! in {-nside+1,0}
777 ipt = 2*iphi - jpll[face_num]*nr - kshift - 1;// ! in {-nside+1,nside-1}
778
779
780 if( ipt>=nl2 ) ipt = ipt - 8*nside;// ! for the face #4
781
782 ix = (ipt - irt ) / 2;
783 iy = -(ipt + irt ) / 2;
784
785 ix_low = (int)fmod(ix,128);
786 ix_hi = ix/128;
787 iy_low = (int)fmod(iy,128);
788 iy_hi = iy/128;
789 ipf=(PXY.x2pix_(ix_hi)+PXY.y2pix_(iy_hi))*(128*128)+(PXY.x2pix_(ix_low)+PXY.y2pix_(iy_low));
790
791 return (ipf + face_num* nside *nside);// ! in {0, 12*nside**2 - 1}
792}
793
794template<class T>
795int_4 SphereGorski<T>::ang2pix_ring(int_4 nside, double theta, double phi) const
796{
797 /*
798 ==================================================
799 c gives the pixel number ipix (RING)
800 c corresponding to angles theta and phi
801 c==================================================
802 */
803 // tranlated from FORTRAN (Gorski) to C, by B. Revenu, revised Guy Le Meur
804 // (16/12/98)
805
806 int nl2, nl4, ncap, npix, jp, jm, ipix1;
807 double z, za, tt, tp, tmp;
808 int ir, ip, kshift;
809
810 double piover2(Pi/2.);
811 double twopi(2.*Pi);
812 double z0(2./3.);
813 int ns_max(8192);
814
815 if( nside<1 || nside>ns_max ) {
816 cout << "nside out of range" << endl;
817 exit(0);
818 }
819
820 if( theta<0. || theta>Pi) {
821 cout << "theta out of range" << endl;
822 exit(0);
823 }
824
825 z = cos(theta);
826 za = fabs(z);
827 if( phi >= twopi) phi = phi - twopi;
828 if (phi < 0.) phi = phi + twopi;
829 tt = phi / piover2;// ! in [0,4)
830
831 nl2 = 2*nside;
832 nl4 = 4*nside;
833 ncap = nl2*(nside-1);// ! number of pixels in the north polar cap
834 npix = 12*nside*nside;
835
836 if( za <= z0 ) {
837
838 jp = (int)floor(nside*(0.5 + tt - z*0.75));// ! index of ascending edge line
839 jm = (int)floor(nside*(0.5 + tt + z*0.75));// ! index of descending edge line
840
841 ir = nside + 1 + jp - jm;// ! in {1,2n+1} (ring number counted from z=2/3)
842 kshift = 0;
843 if (fmod(ir,2)==0.) kshift = 1;// ! kshift=1 if ir even, 0 otherwise
844
845 ip = (int)floor( ( jp+jm - nside + kshift + 1 ) / 2 ) + 1;// ! in {1,4n}
846 if( ip>nl4 ) ip = ip - nl4;
847
848 ipix1 = ncap + nl4*(ir-1) + ip ;
849 }
850 else {
851
852 tp = tt - floor(tt);// !MOD(tt,1.d0)
853 tmp = sqrt( 3.*(1. - za) );
854
855 jp = (int)floor( nside * tp * tmp );// ! increasing edge line index
856 jm = (int)floor( nside * (1. - tp) * tmp );// ! decreasing edge line index
857
858 ir = jp + jm + 1;// ! ring number counted from the closest pole
859 ip = (int)floor( tt * ir ) + 1;// ! in {1,4*ir}
860 if( ip>4*ir ) ip = ip - 4*ir;
861
862 ipix1 = 2*ir*(ir-1) + ip;
863 if( z<=0. ) {
864 ipix1 = npix - 2*ir*(ir+1) + ip;
865 }
866 }
867 return (ipix1 - 1);// ! in {0, npix-1}
868}
869
870template<class T>
871int_4 SphereGorski<T>::ang2pix_nest(int_4 nside, double theta, double phi) const
872{
873 /*
874 ==================================================
875 subroutine ang2pix_nest(nside, theta, phi, ipix)
876 ==================================================
877 c gives the pixel number ipix (NESTED)
878 c corresponding to angles theta and phi
879 c
880 c the computation is made to the highest resolution available (nside=8192)
881 c and then degraded to that required (by integer division)
882 c this doesn't cost more, and it makes sure
883 c that the treatement of round-off will be consistent
884 c for every resolution
885 ==================================================
886 */
887 // tranlated from FORTRAN (Gorski) to C, by B. Revenu, revised Guy Le Meur
888 // (16/12/98)
889
890 const PIXELS_XY& PXY= PIXELS_XY::instance();
891
892 double z, za, z0, tt, tp, tmp;
893 int face_num,jp,jm;
894 int ifp, ifm;
895 int ix, iy, ix_low, ix_hi, iy_low, iy_hi, ipf, ntt;
896 double piover2(Pi/2.), twopi(2.*Pi);
897 int ns_max(8192);
898
899 if( nside<1 || nside>ns_max ) {
900 cout << "nside out of range" << endl;
901 exit(0);
902 }
903 if( theta<0 || theta>Pi ) {
904 cout << "theta out of range" << endl;
905 exit(0);
906 }
907 z = cos(theta);
908 za = fabs(z);
909 z0 = 2./3.;
910 if( phi>=twopi ) phi = phi - twopi;
911 if( phi<0. ) phi = phi + twopi;
912 tt = phi / piover2;// ! in [0,4[
913 if( za<=z0 ) { // then ! equatorial region
914
915 //(the index of edge lines increase when the longitude=phi goes up)
916 jp = (int)floor(ns_max*(0.5 + tt - z*0.75));// ! ascending edge line index
917 jm = (int)floor(ns_max*(0.5 + tt + z*0.75));// ! descending edge line index
918
919 //c finds the face
920 ifp = jp / ns_max;// ! in {0,4}
921 ifm = jm / ns_max;
922 if( ifp==ifm ) face_num = (int)fmod(ifp,4) + 4; //then ! faces 4 to 7
923 else if( ifp<ifm ) face_num = (int)fmod(ifp,4); // (half-)faces 0 to 3
924 else face_num = (int)fmod(ifm,4) + 8;//! (half-)faces 8 to 11
925
926 ix = (int)fmod(jm, ns_max);
927 iy = ns_max - (int)fmod(jp, ns_max) - 1;
928 }
929 else { //! polar region, za > 2/3
930
931 ntt = (int)floor(tt);
932 if( ntt>=4 ) ntt = 3;
933 tp = tt - ntt;
934 tmp = sqrt( 3.*(1. - za) );// ! in ]0,1]
935
936 //(the index of edge lines increase when distance from the closest pole goes up)
937 jp = (int)floor(ns_max*tp*tmp); // ! line going toward the pole as phi increases
938 jm = (int)floor(ns_max*(1.-tp)*tmp); // ! that one goes away of the closest pole
939 jp = (int)min(ns_max-1, jp);// ! for points too close to the boundary
940 jm = (int)min(ns_max-1, jm);
941
942 // finds the face and pixel's (x,y)
943 if( z>=0 ) {
944 face_num = ntt;// ! in {0,3}
945 ix = ns_max - jm - 1;
946 iy = ns_max - jp - 1;
947 }
948 else {
949 face_num = ntt + 8;// ! in {8,11}
950 ix = jp;
951 iy = jm;
952 }
953 }
954
955 ix_low = (int)fmod(ix,128);
956 ix_hi = ix/128;
957 iy_low = (int)fmod(iy,128);
958 iy_hi = iy/128;
959 ipf= (PXY.x2pix_(ix_hi)+PXY.y2pix_(iy_hi))*(128*128)+(PXY.x2pix_(ix_low)+PXY.y2pix_(iy_low));
960 // ipf = ipf / pow(ns_max/nside,2.);// ! in {0, nside**2 - 1}
961 // return ( ipf + face_num*pow(nside,2));// ! in {0, 12*nside**2 - 1}
962 // $CHECK$ Reza 25/10/99 , pow remplace par *
963 ipf = ipf / ((ns_max/nside)*(ns_max/nside));
964 return (ipf + face_num*nside*nside);
965}
966
967template<class T>
968void SphereGorski<T>::pix2ang_ring(int_4 nside,int_4 ipix,double& theta,double& phi) const {
969 /*
970 ===================================================
971 c gives theta and phi corresponding to pixel ipix (RING)
972 c for a parameter nside
973 ===================================================
974 */
975 // tranlated from FORTRAN (Gorski) to C, by B. Revenu, revised Guy Le Meur
976 // (16/12/98)
977
978 int nl2, nl4, npix, ncap, iring, iphi, ip, ipix1;
979 double fact1, fact2, fodd, hip, fihip;
980
981 int ns_max(8192);
982
983 if( nside<1 || nside>ns_max ) {
984 cout << "nside out of range" << endl;
985 exit(0);
986 }
987 npix = 12*nside*nside; // ! total number of points
988 if( ipix<0 || ipix>npix-1 ) {
989 cout << "ipix out of range" << endl;
990 exit(0);
991 }
992
993 ipix1 = ipix + 1; // in {1, npix}
994 nl2 = 2*nside;
995 nl4 = 4*nside;
996 ncap = 2*nside*(nside-1);// ! points in each polar cap, =0 for nside =1
997 fact1 = 1.5*nside;
998 fact2 = 3.0*nside*nside;
999
1000 if( ipix1 <= ncap ) { //! North Polar cap -------------
1001
1002 hip = ipix1/2.;
1003 fihip = floor(hip);
1004 iring = (int)floor( sqrt( hip - sqrt(fihip) ) ) + 1;// ! counted from North pole
1005 iphi = ipix1 - 2*iring*(iring - 1);
1006
1007 theta = acos( 1. - iring*iring / fact2 );
1008 phi = ((double)iphi - 0.5) * Pi/(2.*iring);
1009 // cout << theta << " " << phi << endl;
1010 }
1011 else if( ipix1 <= nl2*(5*nside+1) ) {//then ! Equatorial region ------
1012
1013 ip = ipix1 - ncap - 1;
1014 iring = (int)floor( ip / nl4 ) + nside;// ! counted from North pole
1015 iphi = ip%nl4 + 1;
1016
1017 fodd = 0.5 * (1 + (iring+nside)%2 );// ! 1 if iring+nside is odd, 1/2 otherwise
1018 theta = acos( (nl2 - iring) / fact1 );
1019 phi = ((double)iphi - fodd) * Pi /(2.*nside);
1020 }
1021 else {//! South Polar cap -----------------------------------
1022
1023 ip = npix - ipix1 + 1;
1024 hip = ip/2.;
1025 fihip = floor(hip);
1026 iring = (int)floor( sqrt( hip - sqrt(fihip) ) ) + 1;// ! counted from South pole
1027 iphi = (int)(4.*iring + 1 - (ip - 2.*iring*(iring-1)));
1028
1029 theta = acos( -1. + iring*iring / fact2 );
1030 phi = ((double)iphi - 0.5) * Pi/(2.*iring);
1031 // cout << theta << " " << phi << endl;
1032 }
1033}
1034
1035template<class T>
1036void SphereGorski<T>::pix2ang_nest(int_4 nside,int_4 ipix,double& theta,double& phi) const {
1037 /*
1038 ==================================================
1039 subroutine pix2ang_nest(nside, ipix, theta, phi)
1040 ==================================================
1041 c gives theta and phi corresponding to pixel ipix (NESTED)
1042 c for a parameter nside
1043 ==================================================
1044 */
1045 // tranlated from FORTRAN (Gorski) to C, by B. Revenu, revised Guy Le Meur
1046 // (16/12/98)
1047
1048 const PIXELS_XY& PXY= PIXELS_XY::instance();
1049
1050 int npix, npface, face_num;
1051 int ipf, ip_low, ip_trunc, ip_med, ip_hi;
1052 int ix, iy, jrt, jr, nr, jpt, jp, kshift, nl4;
1053 double z, fn, fact1, fact2;
1054 double piover2(Pi/2.);
1055 int ns_max(8192);
1056
1057 // ! coordinate of the lowest corner of each face
1058 int jrll[12]={2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4};//! in unit of nside
1059 int jpll[12]={1, 3, 5, 7, 0, 2, 4, 6, 1, 3, 5, 7};// ! in unit of nside/2
1060
1061 if( nside<1 || nside>ns_max ) {
1062 cout << "nside out of range" << endl;
1063 exit(0);
1064 }
1065 npix = 12 * nside*nside;
1066 if( ipix<0 || ipix>npix-1 ) {
1067 cout << "ipix out of range" << endl;
1068 exit(0);
1069 }
1070
1071 fn = 1.*nside;
1072 fact1 = 1./(3.*fn*fn);
1073 fact2 = 2./(3.*fn);
1074 nl4 = 4*nside;
1075
1076 //c finds the face, and the number in the face
1077 npface = nside*nside;
1078
1079 face_num = ipix/npface;// ! face number in {0,11}
1080 ipf = (int)fmod(ipix,npface);// ! pixel number in the face {0,npface-1}
1081
1082 //c finds the x,y on the face (starting from the lowest corner)
1083 //c from the pixel number
1084 ip_low = (int)fmod(ipf,1024);// ! content of the last 10 bits
1085 ip_trunc = ipf/1024 ;// ! truncation of the last 10 bits
1086 ip_med = (int)fmod(ip_trunc,1024);// ! content of the next 10 bits
1087 ip_hi = ip_trunc/1024 ;//! content of the high weight 10 bits
1088
1089 ix = 1024*PXY.pix2x_(ip_hi)+32*PXY.pix2x_(ip_med)+PXY.pix2x_(ip_low);
1090 iy = 1024*PXY.pix2y_(ip_hi)+32*PXY.pix2y_(ip_med)+PXY.pix2y_(ip_low);
1091
1092 //c transforms this in (horizontal, vertical) coordinates
1093 jrt = ix + iy;// ! 'vertical' in {0,2*(nside-1)}
1094 jpt = ix - iy;// ! 'horizontal' in {-nside+1,nside-1}
1095
1096 //c computes the z coordinate on the sphere
1097 // jr = jrll[face_num+1]*nside - jrt - 1;// ! ring number in {1,4*nside-1}
1098 jr = jrll[face_num]*nside - jrt - 1;
1099 nr = nside;// ! equatorial region (the most frequent)
1100 z = (2*nside-jr)*fact2;
1101 kshift = (int)fmod(jr - nside, 2);
1102 if( jr<nside ) { //then ! north pole region
1103 nr = jr;
1104 z = 1. - nr*nr*fact1;
1105 kshift = 0;
1106 }
1107 else {
1108 if( jr>3*nside ) {// then ! south pole region
1109 nr = nl4 - jr;
1110 z = - 1. + nr*nr*fact1;
1111 kshift = 0;
1112 }
1113 }
1114 theta = acos(z);
1115
1116 //c computes the phi coordinate on the sphere, in [0,2Pi]
1117 // jp = (jpll[face_num+1]*nr + jpt + 1 + kshift)/2;// ! 'phi' number in the ring in {1,4*nr}
1118 jp = (jpll[face_num]*nr + jpt + 1 + kshift)/2;
1119 if( jp>nl4 ) jp = jp - nl4;
1120 if( jp<1 ) jp = jp + nl4;
1121 phi = (jp - (kshift+1)*0.5) * (piover2 / nr);
1122}
1123
1124
1125
1126template <class T>
1127void SphereGorski<T>::print(ostream& os) const
1128{
1129 if(mInfo_) os << " DVList Info= " << *mInfo_ << endl;
1130 //
1131 os << " nSide_ = " << nSide_ << endl;
1132 os << " nPix_ = " << nPix_ << endl;
1133 os << " omeg_ = " << omeg_ << endl;
1134
1135 os << " content of pixels : ";
1136 for(int i=0; i < nPix_; i++)
1137 {
1138 if(i%5 == 0) os << endl;
1139 os << pixels_(i) <<", ";
1140 }
1141 os << endl;
1142
1143 os << endl;
1144 //const PIXELS_XY& PXY= PIXELS_XY::instance();
1145
1146 //os << endl; os << " contenu des tableaux conversions "<<endl;
1147 //for(int i=0; i < 5; i++)
1148 // {
1149 // os<<PXY.pix2x_(i)<<", "<<PXY.pix2y_(i)<<", "<<PXY.x2pix_(i)<<", "<<PXY.y2pix_(i)<<endl;
1150 // }
1151 os << endl;
1152
1153}
1154
1155//*******************************************************************
1156// Class FIO_SphereGorski<T>
1157// Les objets delegues pour la gestion de persistance
1158//*******************************************************************
1159
1160template <class T>
1161FIO_SphereGorski<T>::FIO_SphereGorski()
1162{
1163 dobj= new SphereGorski<T>;
1164 ownobj= true;
1165}
1166
1167template <class T>
1168FIO_SphereGorski<T>::FIO_SphereGorski(string const& filename)
1169{
1170 dobj= new SphereGorski<T>;
1171 dobj->pixels_.SetTemp(true);
1172 ownobj= true;
1173 Read(filename);
1174}
1175
1176template <class T>
1177FIO_SphereGorski<T>::FIO_SphereGorski(const SphereGorski<T>& obj)
1178{
1179 dobj= new SphereGorski<T>(obj, true);
1180 dobj->pixels_.SetTemp(true);
1181 ownobj= true;
1182}
1183
1184template <class T>
1185FIO_SphereGorski<T>::FIO_SphereGorski(SphereGorski<T>* obj)
1186{
1187 dobj= obj;
1188 ownobj= false;
1189}
1190
1191template <class T>
1192FIO_SphereGorski<T>::~FIO_SphereGorski()
1193{
1194 if (ownobj && dobj) delete dobj;
1195}
1196
1197template <class T>
1198AnyDataObj* FIO_SphereGorski<T>::DataObj()
1199{
1200 return(dobj);
1201}
1202
1203template <class T>
1204void FIO_SphereGorski<T>::ReadSelf(PInPersist& is)
1205{
1206
1207 if(dobj == NULL)
1208 {
1209 dobj= new SphereGorski<T>;
1210 dobj->pixels_.SetTemp(true);
1211 ownobj= true;
1212 }
1213
1214// On lit les 3 premiers uint_8
1215uint_8 itab[3];
1216is.Get(itab, 3);
1217// Let's Read the SphereCoordSys object -- ATTENTIOn - $CHECK$
1218 FIO_SphereCoordSys fio_scs( dobj->GetCoordSys());
1219 fio_scs.Read(is);
1220 // Pour savoir s'il y avait un DVList Info associe
1221 char strg[256];
1222 is.GetLine(strg, 255);
1223 bool hadinfo= false;
1224 if(strncmp(strg+strlen(strg)-7, "HasInfo", 7) == 0) hadinfo= true;
1225 if(hadinfo)
1226 { // Lecture eventuelle du DVList Info
1227 is >> dobj->Info();
1228 }
1229
1230 int_4 nSide;
1231 is.GetI4(nSide);
1232 int_4 nPix;
1233 is.GetI4(nPix);
1234 double Omega;
1235 is.GetR8(Omega);
1236 dobj->setParameters(nSide,nPix, Omega);
1237
1238// On lit les DataBlocks;
1239 FIO_NDataBlock<T> fio_nd(&dobj->pixels_);
1240 fio_nd.Read(is);
1241 FIO_NDataBlock<int> fio_ndi1(&dobj->sliceBeginIndex_);
1242 fio_ndi1.Read(is);
1243 FIO_NDataBlock<int> fio_ndi2(&dobj->sliceLenght_);
1244 fio_ndi2.Read(is);
1245}
1246
1247template <class T>
1248void FIO_SphereGorski<T>::WriteSelf(POutPersist& os) const
1249{
1250 if(dobj == NULL)
1251 {
1252 cout << " WriteSelf:: dobj= null " << endl;
1253 return;
1254 }
1255
1256// On ecrit 3 uint_8
1257// 0 : Numero de version, 1 : Size index, 2 reserve a l
1258uint_8 itab[3];
1259itab[0] = 1;
1260itab[1] = dobj->SizeIndex();
1261itab[2] = 0;
1262os.Put(itab, 3);
1263// Let's write the SphereCoordSys object
1264 FIO_SphereCoordSys fio_scs( dobj->GetCoordSys());
1265 fio_scs.Write(os);
1266
1267 char strg[256];
1268 int_4 nSide= dobj->SizeIndex();
1269 int_4 nPix = dobj->NbPixels();
1270
1271 if(dobj->ptrInfo())
1272 {
1273 sprintf(strg,"SphereGorski: NSide=%6d NPix=%9d HasInfo",nSide,nPix);
1274 os.PutLine(strg);
1275 os << dobj->Info();
1276 }
1277 else
1278 {
1279 sprintf(strg,"SphereGorski: NSide=%6d NPix=%9d ",nSide,nPix);
1280 os.PutLine(strg);
1281 }
1282
1283 os.PutI4(nSide);
1284 os.PutI4(nPix);
1285 os.PutR8(dobj->PixSolAngle());
1286// On ecrit les dataBlocks
1287 FIO_NDataBlock<T> fio_nd(&dobj->pixels_);
1288 fio_nd.Write(os);
1289 FIO_NDataBlock<int> fio_ndi1(&dobj->sliceBeginIndex_);
1290 fio_ndi1.Write(os);
1291 FIO_NDataBlock<int> fio_ndi2(&dobj->sliceLenght_);
1292 fio_ndi2.Write(os);
1293}
1294
1295#ifdef __CXX_PRAGMA_TEMPLATES__
1296#pragma define_template SphereGorski<double>
1297#pragma define_template SphereGorski<float>
1298#pragma define_template SphereGorski< complex<float> >
1299#pragma define_template SphereGorski< complex<double> >
1300#pragma define_template FIO_SphereGorski<double>
1301#pragma define_template FIO_SphereGorski<float>
1302#pragma define_template FIO_SphereGorski< complex<float> >
1303#pragma define_template FIO_SphereGorski< complex<double> >
1304#endif
1305#if defined(ANSI_TEMPLATES) || defined(GNU_TEMPLATES)
1306template class SphereGorski<double>;
1307template class SphereGorski<float>;
1308template class SphereGorski< complex<float> >;
1309template class SphereGorski< complex<double> >;
1310template class FIO_SphereGorski<double>;
1311template class FIO_SphereGorski<float>;
1312template class FIO_SphereGorski< complex<float> >;
1313template class FIO_SphereGorski< complex<double> >;
1314#endif
1315
Note: See TracBrowser for help on using the repository browser.