| [729] | 1 | #include "machdefs.h"
 | 
|---|
 | 2 | #include <iostream.h>
 | 
|---|
 | 3 | #include <math.h>
 | 
|---|
 | 4 | #include <complex>
 | 
|---|
 | 5 | #include "sphericaltransformserver.h"
 | 
|---|
 | 6 | #include "tvector.h"
 | 
|---|
 | 7 | #include "nbrandom.h"
 | 
|---|
 | 8 | #include "nbmath.h"
 | 
|---|
| [1683] | 9 | #include "timing.h"
 | 
|---|
 | 10 | //#include "spherehealpix.h"
 | 
|---|
| [729] | 11 | 
 | 
|---|
| [1683] | 12 | 
 | 
|---|
| [1218] | 13 | /*! \class SOPHYA::SphericalTransformServer
 | 
|---|
| [729] | 14 | 
 | 
|---|
| [1218] | 15 |  Class for performing analysis and synthesis of sky maps using spin-0 or spin-2 spherical harmonics.
 | 
|---|
 | 16 | 
 | 
|---|
 | 17 | Maps must be SOPHYA SphericalMaps (SphereGorski or SphereThetaPhi).
 | 
|---|
 | 18 | 
 | 
|---|
 | 19 | Temperature and polarization (Stokes parameters) can be developped on spherical harmonics : 
 | 
|---|
 | 20 | \f[
 | 
|---|
 | 21 | \frac{\Delta T}{T}(\hat{n})=\sum_{lm}a_{lm}^TY_l^m(\hat{n})
 | 
|---|
 | 22 | \f]
 | 
|---|
 | 23 | \f[
 | 
|---|
 | 24 | Q(\hat{n})=\frac{1}{\sqrt{2}}\sum_{lm}N_l\left(a_{lm}^EW_{lm}(\hat{n})+a_{lm}^BX_{lm}(\hat{n})\right)
 | 
|---|
 | 25 | \f]
 | 
|---|
 | 26 | \f[
 | 
|---|
 | 27 | U(\hat{n})=-\frac{1}{\sqrt{2}}\sum_{lm}N_l\left(a_{lm}^EX_{lm}(\hat{n})-a_{lm}^BW_{lm}(\hat{n})\right)
 | 
|---|
 | 28 | \f]
 | 
|---|
 | 29 | \f[
 | 
|---|
 | 30 | \left(Q \pm iU\right)(\hat{n})=\sum_{lm}a_{\pm 2lm}\, _{\pm 2}Y_l^m(\hat{n})
 | 
|---|
 | 31 | \f]
 | 
|---|
 | 32 | 
 | 
|---|
 | 33 | \f[
 | 
|---|
 | 34 | Y_l^m(\hat{n})=\lambda_l^m(\theta)e^{im\phi}
 | 
|---|
 | 35 | \f]
 | 
|---|
 | 36 | \f[
 | 
|---|
 | 37 | _{\pm}Y_l^m(\hat{n})=_{\pm}\lambda_l^m(\theta)e^{im\phi}
 | 
|---|
 | 38 | \f]
 | 
|---|
 | 39 | \f[
 | 
|---|
 | 40 | W_{lm}(\hat{n})=\frac{1}{N_l}\,_{w}\lambda_l^m(\theta)e^{im\phi}
 | 
|---|
 | 41 | \f]
 | 
|---|
 | 42 | \f[
 | 
|---|
 | 43 | X_{lm}(\hat{n})=\frac{-i}{N_l}\,_{x}\lambda_l^m(\theta)e^{im\phi}
 | 
|---|
 | 44 | \f]
 | 
|---|
 | 45 | 
 | 
|---|
 | 46 | (see LambdaLMBuilder, LambdaPMBuilder, LambdaWXBuilder classes)
 | 
|---|
 | 47 | 
 | 
|---|
 | 48 | power spectra : 
 | 
|---|
 | 49 | 
 | 
|---|
 | 50 | \f[
 | 
|---|
 | 51 | C_l^T=\frac{1}{2l+1}\sum_{m=0}^{+ \infty }\left|a_{lm}^T\right|^2=\langle\left|a_{lm}^T\right|^2\rangle 
 | 
|---|
 | 52 | \f]
 | 
|---|
 | 53 | \f[
 | 
|---|
 | 54 | C_l^E=\frac{1}{2l+1}\sum_{m=0}^{+\infty}\left|a_{lm}^E\right|^2=\langle\left|a_{lm}^E\right|^2\rangle 
 | 
|---|
 | 55 | \f]
 | 
|---|
 | 56 | \f[
 | 
|---|
 | 57 | C_l^B=\frac{1}{2l+1}\sum_{m=0}^{+\infty}\left|a_{lm}^B\right|^2=\langle\left|a_{lm}^B\right|^2\rangle 
 | 
|---|
 | 58 | \f]
 | 
|---|
 | 59 | 
 | 
|---|
 | 60 | \arg
 | 
|---|
 | 61 | \b Synthesis : Get temperature and polarization maps  from \f$a_{lm}\f$ coefficients or from power spectra, (methods GenerateFrom...).
 | 
|---|
 | 62 | 
 | 
|---|
 | 63 | \b Temperature:
 | 
|---|
 | 64 | \f[
 | 
|---|
 | 65 | \frac{\Delta T}{T}(\hat{n})=\sum_{lm}a_{lm}^TY_l^m(\hat{n}) = \sum_{-\infty}^{+\infty}b_m(\theta)e^{im\phi}
 | 
|---|
 | 66 | \f]
 | 
|---|
 | 67 | 
 | 
|---|
 | 68 | with 
 | 
|---|
 | 69 | \f[
 | 
|---|
 | 70 | b_m(\theta)=\sum_{l=\left|m\right|}^{+\infty}a_{lm}^T\lambda_l^m(\theta)
 | 
|---|
 | 71 | \f]
 | 
|---|
 | 72 | 
 | 
|---|
 | 73 | \b Polarisation
 | 
|---|
 | 74 | \f[
 | 
|---|
 | 75 | Q \pm iU = \sum_{-\infty}^{+\infty}b_m^{\pm}(\theta)e^{im\phi}
 | 
|---|
 | 76 | \f]
 | 
|---|
 | 77 | 
 | 
|---|
 | 78 | where :
 | 
|---|
 | 79 | \f[
 | 
|---|
 | 80 | b_m^{\pm}(\theta) = \sum_{l=\left|m\right|}^{+\infty}a_{\pm 2lm}\,_{\pm}\lambda_l^m(\theta)
 | 
|---|
 | 81 | \f]
 | 
|---|
 | 82 | 
 | 
|---|
 | 83 | or :
 | 
|---|
 | 84 | \f[
 | 
|---|
 | 85 | Q  = \sum_{-\infty}^{+\infty}b_m^{Q}(\theta)e^{im\phi}
 | 
|---|
 | 86 | \f]
 | 
|---|
 | 87 | \f[
 | 
|---|
 | 88 | U  = \sum_{-\infty}^{+\infty}b_m^{U}(\theta)e^{im\phi}
 | 
|---|
 | 89 | \f]
 | 
|---|
 | 90 | 
 | 
|---|
 | 91 | where: 
 | 
|---|
 | 92 | \f[
 | 
|---|
 | 93 | b_m^{Q}(\theta) = \frac{1}{\sqrt{2}}\sum_{l=\left|m\right|}^{+\infty}\left(a_{lm}^E\,_{w}\lambda_l^m(\theta)-ia_{lm}^B\,_{x}\lambda_l^m(\theta)\right)
 | 
|---|
 | 94 | \f]
 | 
|---|
 | 95 | \f[
 | 
|---|
 | 96 | b_m^{U}(\theta) = \frac{1}{\sqrt{2}}\sum_{l=\left|m\right|}^{+\infty}\left(ia_{lm}^E\,_{x}\lambda_l^m(\theta)+a_{lm}^B\,_{w}\lambda_l^m(\theta)\right)
 | 
|---|
 | 97 | \f]
 | 
|---|
 | 98 | 
 | 
|---|
 | 99 | Since the pixelization provides "slices" with constant \f$\theta\f$ and \f$\phi\f$ equally distributed  on \f$2\pi\f$  \f$\frac{\Delta T}{T}\f$, \f$Q\f$,\f$U\f$  can be computed by FFT.
 | 
|---|
 | 100 | 
 | 
|---|
 | 101 | 
 | 
|---|
 | 102 | \arg
 | 
|---|
 | 103 | \b Analysis :  Get \f$a_{lm}\f$ coefficients or  power spectra from temperature and polarization maps   (methods DecomposeTo...). 
 | 
|---|
 | 104 | 
 | 
|---|
 | 105 | \b Temperature:
 | 
|---|
 | 106 | \f[
 | 
|---|
 | 107 | a_{lm}^T=\int\frac{\Delta T}{T}(\hat{n})Y_l^{m*}(\hat{n})d\hat{n}
 | 
|---|
 | 108 | \f]
 | 
|---|
 | 109 | 
 | 
|---|
 | 110 | approximated as : 
 | 
|---|
 | 111 | \f[
 | 
|---|
 | 112 | a_{lm}^T=\sum_{\theta_k}\omega_kC_m(\theta_k)\lambda_l^m(\theta_k)
 | 
|---|
 | 113 | \f]
 | 
|---|
 | 114 | where :
 | 
|---|
 | 115 | \f[
 | 
|---|
 | 116 | C_m (\theta _k)=\sum_{\phi _{k\prime}}\frac{\Delta T}{T}(\theta _k,\phi_{k\prime})e^{-im\phi _{k\prime}}
 | 
|---|
 | 117 | \f]
 | 
|---|
 | 118 | Since the pixelization provides "slices" with constant \f$\theta\f$ and \f$\phi\f$ equally distributed  on \f$2\pi\f$ (\f$\omega_k\f$ is the solid angle of each pixel of the slice \f$\theta_k\f$) \f$C_m\f$ can be computed by FFT.
 | 
|---|
 | 119 | 
 | 
|---|
 | 120 | \b polarisation:
 | 
|---|
 | 121 | 
 | 
|---|
 | 122 | \f[
 | 
|---|
 | 123 | a_{\pm 2lm}=\sum_{\theta_k}\omega_kC_m^{\pm}(\theta_k)\,_{\pm}\lambda_l^m(\theta_k)
 | 
|---|
 | 124 | \f]
 | 
|---|
 | 125 | where :
 | 
|---|
 | 126 | \f[
 | 
|---|
 | 127 | C_m^{\pm} (\theta _k)=\sum_{\phi _{k\prime}}\left(Q \pm iU\right)(\theta _k,\phi_{k\prime})e^{-im\phi _{k\prime}}
 | 
|---|
 | 128 | \f]
 | 
|---|
 | 129 | or :
 | 
|---|
 | 130 | 
 | 
|---|
 | 131 | \f[
 | 
|---|
 | 132 | a_{lm}^E=\frac{1}{\sqrt{2}}\sum_{\theta_k}\omega_k\left(C_m^{Q}(\theta_k)\,_{w}\lambda_l^m(\theta_k)-iC_m^{U}(\theta_k)\,_{x}\lambda_l^m(\theta_k)\right)
 | 
|---|
 | 133 | \f]
 | 
|---|
 | 134 | \f[
 | 
|---|
 | 135 | a_{lm}^B=\frac{1}{\sqrt{2}}\sum_{\theta_k}\omega_k\left(iC_m^{Q}(\theta_k)\,_{x}\lambda_l^m(\theta_k)+C_m^{U}(\theta_k)\,_{w}\lambda_l^m(\theta_k)\right)
 | 
|---|
 | 136 | \f]
 | 
|---|
 | 137 | 
 | 
|---|
 | 138 | where : 
 | 
|---|
 | 139 | \f[
 | 
|---|
 | 140 | C_m^{Q} (\theta _k)=\sum_{\phi _{k\prime}}Q(\theta _k,\phi_{k\prime})e^{-im\phi _{k\prime}}
 | 
|---|
 | 141 | \f]
 | 
|---|
 | 142 | \f[
 | 
|---|
 | 143 | C_m^{U} (\theta _k)=\sum_{\phi _{k\prime}}U(\theta _k,\phi_{k\prime})e^{-im\phi _{k\prime}}
 | 
|---|
 | 144 | \f]
 | 
|---|
 | 145 | 
 | 
|---|
 | 146 |  */
 | 
|---|
 | 147 | 
 | 
|---|
 | 148 |  /*! \fn void SOPHYA::SphericalTransformServer::GenerateFromAlm( SphericalMap<T>& map, int_4 pixelSizeIndex, const Alm<T>& alm) const
 | 
|---|
 | 149 | 
 | 
|---|
 | 150 |  synthesis of a temperature  map from  Alm coefficients 
 | 
|---|
 | 151 | */
 | 
|---|
| [729] | 152 | template<class T>
 | 
|---|
 | 153 | void SphericalTransformServer<T>::GenerateFromAlm( SphericalMap<T>& map, int_4 pixelSizeIndex, const Alm<T>& alm) const
 | 
|---|
 | 154 | {
 | 
|---|
 | 155 |   /*=======================================================================
 | 
|---|
| [1756] | 156 |     computes a map from its alm for the HEALPIX pixelisation
 | 
|---|
| [729] | 157 |     map(theta,phi) = sum_l_m a_lm Y_lm(theta,phi)
 | 
|---|
 | 158 |     = sum_m {e^(i*m*phi) sum_l a_lm*lambda_lm(theta)}
 | 
|---|
 | 159 |     
 | 
|---|
 | 160 |     where Y_lm(theta,phi) = lambda(theta) * e^(i*m*phi)
 | 
|---|
 | 161 |     
 | 
|---|
 | 162 |     * the recurrence of Ylm is the standard one (cf Num Rec)
 | 
|---|
 | 163 |     * the sum over m is done by FFT
 | 
|---|
 | 164 |     
 | 
|---|
 | 165 |     =======================================================================*/
 | 
|---|
 | 166 |   int_4 nlmax=alm.Lmax();
 | 
|---|
 | 167 |   int_4 nmmax=nlmax;
 | 
|---|
 | 168 |   int_4 nsmax=0;
 | 
|---|
| [1756] | 169 |   // le Resize est suppose mettre a zero
 | 
|---|
| [729] | 170 |   map.Resize(pixelSizeIndex);
 | 
|---|
 | 171 |   char* sphere_type=map.TypeOfMap();
 | 
|---|
| [1756] | 172 |       int premiereTranche = 0;
 | 
|---|
 | 173 |       int derniereTranche = map.NbThetaSlices()-1;
 | 
|---|
| [729] | 174 |   if (strncmp(sphere_type,"RING",4) == 0)
 | 
|---|
| [1756] | 175 |   {
 | 
|---|
 | 176 |     nsmax=map.SizeIndex();
 | 
|---|
 | 177 |   }
 | 
|---|
| [729] | 178 |   else
 | 
|---|
| [1756] | 179 |   {
 | 
|---|
| [729] | 180 |     // pour une sphere Gorski le nombre de pixels est 12*nsmax**2
 | 
|---|
 | 181 |     // on calcule une quantite equivalente a nsmax pour la sphere-theta-phi
 | 
|---|
 | 182 |     // en vue de l'application du critere Healpix : nlmax<=3*nsmax-1
 | 
|---|
 | 183 |     // c'est approximatif ; a raffiner.
 | 
|---|
 | 184 |     if (strncmp(sphere_type,"TETAFI",6) == 0)
 | 
|---|
| [1756] | 185 |     {
 | 
|---|
 | 186 |       nsmax=(int_4)sqrt(map.NbPixels()/12.);
 | 
|---|
 | 187 |       premiereTranche++;
 | 
|---|
 | 188 |       derniereTranche--;
 | 
|---|
 | 189 |     }
 | 
|---|
| [729] | 190 |     else
 | 
|---|
| [1756] | 191 |     {
 | 
|---|
 | 192 |       cout << " unknown type of sphere : " << sphere_type << endl;
 | 
|---|
 | 193 |       throw IOExc(" unknown type of sphere: " + (string)sphere_type );
 | 
|---|
 | 194 |     }
 | 
|---|
| [1683] | 195 |   //  cout << "GenerateFromAlm: the sphere is of type : " << sphere_type << endl;
 | 
|---|
 | 196 |   //  cout << "GenerateFromAlm: size index (nside) of the sphere= " << nsmax << endl;
 | 
|---|
 | 197 |   //  cout << "GenerateFromAlm: nlmax (from Alm) = " << nlmax << endl;
 | 
|---|
| [1756] | 198 |   //  if (nlmax>3*nsmax-1) 
 | 
|---|
 | 199 |   //  {
 | 
|---|
| [1683] | 200 |       //     cout << "GenerateFromAlm: nlmax should be <= 3*nside-1" << endl;
 | 
|---|
| [1756] | 201 |   //   if (strncmp(sphere_type,"TETAFI",6) == 0)
 | 
|---|
 | 202 |   //    {
 | 
|---|
 | 203 |   //      cout << "GenerateFromAlm: nlmax should be <= 3*nside-1" << endl;
 | 
|---|
 | 204 |   //      cout << " (for this criterium, nsmax is computed as sqrt(nbPixels/12))" << endl;
 | 
|---|
 | 205 |   //    }
 | 
|---|
 | 206 |   //}
 | 
|---|
 | 207 |   }
 | 
|---|
| [729] | 208 |   Bm<complex<T> > b_m_theta(nmmax);
 | 
|---|
 | 209 | 
 | 
|---|
 | 210 |   //  map.Resize(nsmax);
 | 
|---|
 | 211 | 
 | 
|---|
 | 212 | 
 | 
|---|
 | 213 |   // pour chaque tranche en theta
 | 
|---|
| [1756] | 214 |   for (int_4 ith = premiereTranche; ith <= derniereTranche;ith++)
 | 
|---|
| [729] | 215 |     {
 | 
|---|
 | 216 |       int_4 nph;
 | 
|---|
 | 217 |       r_8 phi0;
 | 
|---|
 | 218 |       r_8 theta;
 | 
|---|
 | 219 |       TVector<int_4> pixNumber; 
 | 
|---|
 | 220 |       TVector<T> datan;
 | 
|---|
 | 221 |       
 | 
|---|
 | 222 |       map.GetThetaSlice(ith,theta,phi0, pixNumber,datan);
 | 
|---|
 | 223 |       nph = pixNumber.NElts();
 | 
|---|
 | 224 | 
 | 
|---|
 | 225 |       //       -----------------------------------------------------
 | 
|---|
 | 226 |       //              for each theta, and each m, computes
 | 
|---|
 | 227 |       //              b(m,theta) = sum_over_l>m (lambda_l_m(theta) * a_l_m) 
 | 
|---|
 | 228 |       //              ------------------------------------------------------
 | 
|---|
 | 229 |       LambdaLMBuilder lb(theta,nlmax,nmmax);
 | 
|---|
 | 230 |       //  somme sur m de 0 a l'infini
 | 
|---|
| [833] | 231 |       int m;
 | 
|---|
 | 232 |       for (m = 0; m <= nmmax; m++)
 | 
|---|
| [729] | 233 |         {
 | 
|---|
 | 234 |           b_m_theta(m) = (T)( lb.lamlm(m,m) ) * alm(m,m);
 | 
|---|
 | 235 |           for (int l = m+1; l<= nlmax; l++)
 | 
|---|
 | 236 |             {
 | 
|---|
 | 237 |                b_m_theta(m) += (T)( lb.lamlm(l,m) ) * alm(l,m);
 | 
|---|
 | 238 |             }
 | 
|---|
 | 239 |         }
 | 
|---|
 | 240 |     //        obtains the negative m of b(m,theta) (= complex conjugate)
 | 
|---|
 | 241 | 
 | 
|---|
| [833] | 242 |       for (m=1;m<=nmmax;m++)
 | 
|---|
| [729] | 243 |         {
 | 
|---|
 | 244 |           b_m_theta(-m) = conj(b_m_theta(m));
 | 
|---|
 | 245 |         }
 | 
|---|
 | 246 |       // ---------------------------------------------------------------
 | 
|---|
 | 247 |       //    sum_m  b(m,theta)*exp(i*m*phi)   -> f(phi,theta)
 | 
|---|
 | 248 |       // ---------------------------------------------------------------*/
 | 
|---|
| [1683] | 249 |       TVector<T> Temp = RfourierSynthesisFromB(b_m_theta,nph,phi0);
 | 
|---|
| [729] | 250 |       for (int i=0;i< nph;i++)
 | 
|---|
 | 251 |         {
 | 
|---|
| [1683] | 252 |           map(pixNumber(i))=Temp(i);
 | 
|---|
| [729] | 253 |         }
 | 
|---|
 | 254 |     }
 | 
|---|
 | 255 | }
 | 
|---|
 | 256 | 
 | 
|---|
 | 257 | 
 | 
|---|
 | 258 | 
 | 
|---|
| [1218] | 259 |   /*! \fn TVector< complex<T> >  SOPHYA::SphericalTransformServer::fourierSynthesisFromB(const Bm<complex<T> >& b_m,  int_4 nph, r_8 phi0) const
 | 
|---|
 | 260 | 
 | 
|---|
 | 261 | \return a vector with nph elements  which are  sums :\f$\sum_{m=-mmax}^{mmax}b_m(\theta)e^{im\varphi}\f$ for nph values of \f$\varphi\f$ regularly distributed in \f$[0,\pi]\f$ ( calculated by FFT)
 | 
|---|
 | 262 | 
 | 
|---|
 | 263 |   The object b_m (\f$b_m\f$) of the class Bm is a special vector which index goes from -mmax to mmax. 
 | 
|---|
 | 264 |   */
 | 
|---|
| [729] | 265 | template<class T>
 | 
|---|
 | 266 | TVector< complex<T> >  SphericalTransformServer<T>::fourierSynthesisFromB(const Bm<complex<T> >& b_m,  int_4 nph, r_8 phi0) const
 | 
|---|
 | 267 | {
 | 
|---|
 | 268 |   /*=======================================================================
 | 
|---|
 | 269 |      dataout(j) = sum_m datain(m) * exp(i*m*phi(j)) 
 | 
|---|
 | 270 |      with phi(j) = j*2pi/nph + kphi0*pi/nph and kphi0 =0 or 1
 | 
|---|
 | 271 | 
 | 
|---|
 | 272 |      as the set of frequencies {m} is larger than nph, 
 | 
|---|
 | 273 |      we wrap frequencies within {0..nph-1}
 | 
|---|
 | 274 |      ie  m = k*nph + m' with m' in {0..nph-1}
 | 
|---|
 | 275 |      then
 | 
|---|
 | 276 |      noting bw(m') = exp(i*m'*phi0) 
 | 
|---|
 | 277 |                    * sum_k (datain(k*nph+m') exp(i*k*pi*kphi0))
 | 
|---|
 | 278 |         with bw(nph-m') = CONJ(bw(m')) (if datain(-m) = CONJ(datain(m)))
 | 
|---|
 | 279 |      dataout(j) = sum_m' [ bw(m') exp (i*j*m'*2pi/nph) ]
 | 
|---|
 | 280 |                 = Fourier Transform of bw
 | 
|---|
 | 281 |         is real
 | 
|---|
 | 282 | 
 | 
|---|
 | 283 |          NB nph is not necessarily a power of 2
 | 
|---|
 | 284 | 
 | 
|---|
 | 285 | =======================================================================*/
 | 
|---|
 | 286 |   //**********************************************************************
 | 
|---|
 | 287 |   // pour une valeur de phi (indexee par j) la temperature est la transformee 
 | 
|---|
 | 288 |   // de Fourier de bm (somme sur m de -nmax a +nmmax de bm*exp(i*m*phi)).
 | 
|---|
 | 289 |   // on demande nph (nombre de pixels sur la tranche) valeurs de transformees, pour nph valeurs de phi, regulierement reparties sur 2*pi. On a:
 | 
|---|
 | 290 |   //      DT/T(j) = sum_m b(m) * exp(i*m*phi(j)) 
 | 
|---|
 | 291 |   // sommation de -infini a +infini, en fait limitee a -nmamx, +nmmax
 | 
|---|
 | 292 |   // On pose m=k*nph + m', avec m' compris entre 0 et nph-1. Alors :
 | 
|---|
 | 293 |   // DT/T(j) = somme_k somme_m'  b(k*nph + m')*exp(i*(k*nph + m')*phi(j))
 | 
|---|
 | 294 |   // somme_k : de -infini a +infini
 | 
|---|
 | 295 |   // somme_m' : de 0 a nph-1
 | 
|---|
 | 296 |   // On echange les sommations :
 | 
|---|
 | 297 |   // DT/T(j) = somme_k (exp(i*m'*phi(j)) somme_m' b(k*nph + m')*exp(i*(k*nph*phi(j))
 | 
|---|
 | 298 |   // mais phi(j) est un multiple entier de 2*pi/nph, la seconde exponentielle 
 | 
|---|
 | 299 |   // vaut 1.
 | 
|---|
 | 300 |   // Il reste a calculer les transformees de Fourier de somme_m' b(k*nph + m')
 | 
|---|
 | 301 |   // si phi0 n'est pas nul, il y a juste un decalage a faire.
 | 
|---|
 | 302 |   //**********************************************************************
 | 
|---|
 | 303 | 
 | 
|---|
 | 304 |   TVector< complex<T> > bw(nph);
 | 
|---|
 | 305 |   TVector< complex<T> > dataout(nph);
 | 
|---|
 | 306 |   TVector< complex<T> > data(nph);
 | 
|---|
 | 307 | 
 | 
|---|
 | 308 | 
 | 
|---|
 | 309 |   for (int kk=0; kk<bw.NElts(); kk++) bw(kk)=(T)0.;
 | 
|---|
| [833] | 310 |   int m;
 | 
|---|
 | 311 |   for (m=-b_m.Mmax();m<=-1;m++)
 | 
|---|
| [729] | 312 |     {
 | 
|---|
 | 313 |       int maux=m;
 | 
|---|
 | 314 |       while (maux<0) maux+=nph;
 | 
|---|
 | 315 |       int iw=maux%nph;
 | 
|---|
 | 316 |       double aux=(m-iw)*phi0;
 | 
|---|
 | 317 |       bw(iw) += b_m(m) * complex<T>( (T)cos(aux),(T)sin(aux) )  ;
 | 
|---|
 | 318 |     }
 | 
|---|
| [833] | 319 |   for (m=0;m<=b_m.Mmax();m++)
 | 
|---|
| [729] | 320 |     {
 | 
|---|
 | 321 |       //      int iw=((m % nph) +nph) % nph; //between 0 and nph = m'
 | 
|---|
 | 322 |       int iw=m%nph;
 | 
|---|
 | 323 |       double aux=(m-iw)*phi0;
 | 
|---|
 | 324 |       bw(iw)+=b_m(m) * complex<T>( (T)cos(aux),(T)sin(aux) );
 | 
|---|
 | 325 |     }
 | 
|---|
 | 326 | 
 | 
|---|
 | 327 |   //     applies the shift in position <-> phase factor in Fourier space
 | 
|---|
 | 328 |   for (int mprime=0; mprime < nph; mprime++)
 | 
|---|
 | 329 |     {
 | 
|---|
 | 330 |       complex<double> aux(cos(mprime*phi0),sin(mprime*phi0));
 | 
|---|
 | 331 |       data(mprime)=bw(mprime)*
 | 
|---|
 | 332 |                        (complex<T>)(complex<double>(cos(mprime*phi0),sin(mprime*phi0)));
 | 
|---|
 | 333 |     }
 | 
|---|
 | 334 | 
 | 
|---|
 | 335 |   //sortie.ReSize(nph);
 | 
|---|
 | 336 |   TVector< complex<T> > sortie(nph);
 | 
|---|
 | 337 | 
 | 
|---|
 | 338 |   fftIntfPtr_-> FFTBackward(data, sortie);
 | 
|---|
 | 339 |   
 | 
|---|
 | 340 |   return sortie;
 | 
|---|
 | 341 | }
 | 
|---|
 | 342 | 
 | 
|---|
 | 343 | //********************************************
 | 
|---|
| [1218] | 344 | /*! \fn TVector<T>  SOPHYA::SphericalTransformServer::RfourierSynthesisFromB(const Bm<complex<T> >& b_m,  int_4 nph, r_8 phi0) const
 | 
|---|
 | 345 | 
 | 
|---|
 | 346 | same as fourierSynthesisFromB, but return a real vector, taking into account the fact that b(-m) is conjugate of b(m) */
 | 
|---|
| [729] | 347 | template<class T>
 | 
|---|
 | 348 | TVector<T>  SphericalTransformServer<T>::RfourierSynthesisFromB(const Bm<complex<T> >& b_m,  int_4 nph, r_8 phi0) const
 | 
|---|
 | 349 | {
 | 
|---|
 | 350 |   /*=======================================================================
 | 
|---|
 | 351 |      dataout(j) = sum_m datain(m) * exp(i*m*phi(j)) 
 | 
|---|
 | 352 |      with phi(j) = j*2pi/nph + kphi0*pi/nph and kphi0 =0 or 1
 | 
|---|
 | 353 | 
 | 
|---|
 | 354 |      as the set of frequencies {m} is larger than nph, 
 | 
|---|
 | 355 |      we wrap frequencies within {0..nph-1}
 | 
|---|
 | 356 |      ie  m = k*nph + m' with m' in {0..nph-1}
 | 
|---|
 | 357 |      then
 | 
|---|
 | 358 |      noting bw(m') = exp(i*m'*phi0) 
 | 
|---|
 | 359 |                    * sum_k (datain(k*nph+m') exp(i*k*pi*kphi0))
 | 
|---|
 | 360 |         with bw(nph-m') = CONJ(bw(m')) (if datain(-m) = CONJ(datain(m)))
 | 
|---|
 | 361 |      dataout(j) = sum_m' [ bw(m') exp (i*j*m'*2pi/nph) ]
 | 
|---|
 | 362 |                 = Fourier Transform of bw
 | 
|---|
 | 363 |         is real
 | 
|---|
 | 364 | 
 | 
|---|
 | 365 |          NB nph is not necessarily a power of 2
 | 
|---|
 | 366 | 
 | 
|---|
 | 367 | =======================================================================*/
 | 
|---|
 | 368 |   //**********************************************************************
 | 
|---|
 | 369 |   // pour une valeur de phi (indexee par j) la temperature est la transformee 
 | 
|---|
 | 370 |   // de Fourier de bm (somme sur m de -nmax a +nmmax de bm*exp(i*m*phi)).
 | 
|---|
 | 371 |   // on demande nph (nombre de pixels sur la tranche) valeurs de transformees, pour nph valeurs de phi, regulierement reparties sur 2*pi. On a:
 | 
|---|
 | 372 |   //      DT/T(j) = sum_m b(m) * exp(i*m*phi(j)) 
 | 
|---|
 | 373 |   // sommation de -infini a +infini, en fait limitee a -nmamx, +nmmax
 | 
|---|
 | 374 |   // On pose m=k*nph + m', avec m' compris entre 0 et nph-1. Alors :
 | 
|---|
 | 375 |   // DT/T(j) = somme_k somme_m'  b(k*nph + m')*exp(i*(k*nph + m')*phi(j))
 | 
|---|
 | 376 |   // somme_k : de -infini a +infini
 | 
|---|
 | 377 |   // somme_m' : de 0 a nph-1
 | 
|---|
 | 378 |   // On echange les sommations :
 | 
|---|
 | 379 |   // DT/T(j) = somme_k (exp(i*m'*phi(j)) somme_m' b(k*nph + m')*exp(i*(k*nph*phi(j))
 | 
|---|
 | 380 |   // mais phi(j) est un multiple entier de 2*pi/nph, la seconde exponentielle 
 | 
|---|
 | 381 |   // vaut 1.
 | 
|---|
 | 382 |   // Il reste a calculer les transformees de Fourier de somme_m' b(k*nph + m')
 | 
|---|
 | 383 |   // si phi0 n'est pas nul, il y a juste un decalage a faire.
 | 
|---|
 | 384 |   //**********************************************************************
 | 
|---|
 | 385 |   TVector< complex<T> > bw(nph);
 | 
|---|
 | 386 |   TVector< complex<T> > dataout(nph);
 | 
|---|
 | 387 |   TVector< complex<T> > data(nph/2+1);
 | 
|---|
 | 388 | 
 | 
|---|
 | 389 | 
 | 
|---|
 | 390 |   for (int kk=0; kk<bw.NElts(); kk++) bw(kk)=(T)0.;
 | 
|---|
| [833] | 391 |   int m;
 | 
|---|
 | 392 |   for (m=-b_m.Mmax();m<=-1;m++)
 | 
|---|
| [729] | 393 |     {
 | 
|---|
 | 394 |       int maux=m;
 | 
|---|
 | 395 |       while (maux<0) maux+=nph;
 | 
|---|
 | 396 |       int iw=maux%nph;
 | 
|---|
 | 397 |       double aux=(m-iw)*phi0;
 | 
|---|
 | 398 |       bw(iw) += b_m(m) * complex<T>( (T)cos(aux),(T)sin(aux) )  ;
 | 
|---|
 | 399 |     }
 | 
|---|
| [833] | 400 |   for (m=0;m<=b_m.Mmax();m++)
 | 
|---|
| [729] | 401 |     {
 | 
|---|
 | 402 |       //      int iw=((m % nph) +nph) % nph; //between 0 and nph = m'
 | 
|---|
 | 403 |       int iw=m%nph;
 | 
|---|
 | 404 |       double aux=(m-iw)*phi0;
 | 
|---|
 | 405 |       bw(iw)+=b_m(m) * complex<T>( (T)cos(aux),(T)sin(aux) );
 | 
|---|
 | 406 |     }
 | 
|---|
 | 407 | 
 | 
|---|
 | 408 |   //     applies the shift in position <-> phase factor in Fourier space
 | 
|---|
 | 409 |   for (int mprime=0; mprime <= nph/2; mprime++)
 | 
|---|
 | 410 |     {
 | 
|---|
 | 411 |       complex<double> aux(cos(mprime*phi0),sin(mprime*phi0));
 | 
|---|
 | 412 |       data(mprime)=bw(mprime)*
 | 
|---|
 | 413 |                        (complex<T>)(complex<double>(cos(mprime*phi0),sin(mprime*phi0)));
 | 
|---|
 | 414 |     }
 | 
|---|
 | 415 | 
 | 
|---|
 | 416 |   TVector<T> sortie;
 | 
|---|
 | 417 |   fftIntfPtr_-> FFTBackward(data, sortie);
 | 
|---|
 | 418 |   
 | 
|---|
 | 419 |   return sortie;
 | 
|---|
 | 420 | }
 | 
|---|
 | 421 | //*******************************************
 | 
|---|
 | 422 | 
 | 
|---|
| [1218] | 423 |  /*! \fn  Alm<T> SOPHYA::SphericalTransformServer::DecomposeToAlm(const SphericalMap<T>& map, int_4 nlmax, r_8 cos_theta_cut) const
 | 
|---|
 | 424 | 
 | 
|---|
| [1756] | 425 | \return the Alm coefficients from analysis of a temperature map. 
 | 
|---|
| [1218] | 426 | 
 | 
|---|
 | 427 |     \param<nlmax> : maximum value of the l index
 | 
|---|
 | 428 | 
 | 
|---|
 | 429 |      \param<cos_theta_cut> : cosinus of the symmetric cut EULER angle theta : cos_theta_cut=0 means no cut ; cos_theta_cut=1 all the sphere is cut.
 | 
|---|
| [1683] | 430 | 
 | 
|---|
| [1756] | 431 |  */ 
 | 
|---|
| [729] | 432 | template<class T>
 | 
|---|
| [1756] | 433 | void SphericalTransformServer<T>::DecomposeToAlm(const SphericalMap<T>& map, Alm<T>& alm, int_4 nlmax, r_8 cos_theta_cut) const
 | 
|---|
 | 434 | {
 | 
|---|
 | 435 |   DecomposeToAlm(const_cast< SphericalMap<T>& >(map), alm, nlmax, cos_theta_cut, 0);
 | 
|---|
 | 436 | }
 | 
|---|
 | 437 | //*******************************************
 | 
|---|
 | 438 | 
 | 
|---|
 | 439 |  /*! \fn  Alm<T> SOPHYA::SphericalTransformServer::DecomposeToAlm(const SphericalMap<T>& map, int_4 nlmax, r_8 cos_theta_cut, int iterationOrder) const
 | 
|---|
 | 440 | 
 | 
|---|
 | 441 | \return the Alm coefficients from analysis of a temperature map. THE MAP CAN BE MODIFIED (if iterationOrder >0)
 | 
|---|
 | 442 | 
 | 
|---|
 | 443 |     \param<nlmax> : maximum value of the l index
 | 
|---|
 | 444 | 
 | 
|---|
 | 445 |      \param<cos_theta_cut> : cosinus of the symmetric cut EULER angle theta : cos_theta_cut=0 means no cut ; cos_theta_cut=1 all the sphere is cut.
 | 
|---|
 | 446 | 
 | 
|---|
 | 447 | \param<iterationOrder> : 1,2,3,4.... order of an iterative analysis. (Default : 0 -> standard analysis). If iterationOrder is not null, the method works with SphereHEALPix but NOT WITH SphereThetaPhi maps !  */ 
 | 
|---|
 | 448 | template<class T>
 | 
|---|
| [1683] | 449 | void SphericalTransformServer<T>::DecomposeToAlm(SphericalMap<T>& map, Alm<T>& alm, int_4 nlmax, r_8 cos_theta_cut, int iterationOrder) const
 | 
|---|
| [729] | 450 | {
 | 
|---|
| [1683] | 451 |   int_4  nmmax = nlmax;
 | 
|---|
 | 452 |   //  PrtTim("appel  carteVersAlm");
 | 
|---|
 | 453 |   carteVersAlm(map, nlmax, cos_theta_cut, alm);
 | 
|---|
 | 454 |   //  PrtTim("retour  carteVersAlm");
 | 
|---|
 | 455 |   if (iterationOrder > 0)
 | 
|---|
 | 456 |     {
 | 
|---|
 | 457 |       TVector<int_4> fact(iterationOrder+2);
 | 
|---|
 | 458 |       fact(0) = 1;
 | 
|---|
| [1715] | 459 |       int k;
 | 
|---|
 | 460 |       for (k=1; k <= iterationOrder+1; k++)
 | 
|---|
| [1683] | 461 |         {
 | 
|---|
 | 462 |           fact(k) = fact(k-1)*k;
 | 
|---|
 | 463 |         }
 | 
|---|
 | 464 |       Alm<T> alm2(alm);
 | 
|---|
 | 465 |       T Tzero = (T)0.;
 | 
|---|
 | 466 |       complex<T> complexZero = complex<T>(Tzero, Tzero);
 | 
|---|
 | 467 |       alm = complexZero;
 | 
|---|
 | 468 |       int signe = 1;
 | 
|---|
 | 469 |       int nbIteration = iterationOrder+1;
 | 
|---|
| [1715] | 470 |       for (k=1; k <= nbIteration; k++)
 | 
|---|
| [1683] | 471 |         {
 | 
|---|
 | 472 |           T facMult = (T)(0.5*signe*fact(iterationOrder)*(2*nbIteration-k)/(fact(k)*fact(nbIteration-k)));
 | 
|---|
 | 473 |           for (int m = 0; m <= nmmax; m++)
 | 
|---|
 | 474 |             {
 | 
|---|
 | 475 |               for (int l = m; l<= nlmax; l++)
 | 
|---|
 | 476 |                 {
 | 
|---|
 | 477 |                   alm(l,m) += facMult*alm2(l,m); 
 | 
|---|
 | 478 |                 }
 | 
|---|
 | 479 |             }
 | 
|---|
 | 480 |           if (k == nbIteration) break;
 | 
|---|
 | 481 |           signe = -signe;
 | 
|---|
 | 482 |           for (int k=0; k< map.NbPixels(); k++) map(k) = (T)0.;
 | 
|---|
 | 483 |           //        synthetize a map from the estimated alm
 | 
|---|
 | 484 |           //      PrtTim("appel  GenerateFromAlm");
 | 
|---|
 | 485 |           GenerateFromAlm( map, map.SizeIndex(), alm2);
 | 
|---|
 | 486 |           //      PrtTim("retour  GenerateFromAlm");
 | 
|---|
 | 487 |           alm2 = complexZero;
 | 
|---|
 | 488 |           //        analyse the new map
 | 
|---|
 | 489 |           //      PrtTim("appel  carteVersAlm");
 | 
|---|
 | 490 |           carteVersAlm(map, nlmax, cos_theta_cut, alm2);
 | 
|---|
 | 491 |           //      PrtTim("retour  carteVersAlm");
 | 
|---|
 | 492 |         }
 | 
|---|
 | 493 |     }
 | 
|---|
 | 494 | }
 | 
|---|
 | 495 | 
 | 
|---|
 | 496 | template<class T>
 | 
|---|
 | 497 |  void SphericalTransformServer<T>::carteVersAlm(const SphericalMap<T>& map, int_4 nlmax, r_8 cos_theta_cut, Alm<T>& alm) const
 | 
|---|
 | 498 | {
 | 
|---|
| [729] | 499 |   
 | 
|---|
 | 500 |   /*-----------------------------------------------------------------------
 | 
|---|
 | 501 |     computes the integral in phi : phas_m(theta)
 | 
|---|
 | 502 |     for each parallele from north to south pole
 | 
|---|
 | 503 |     -----------------------------------------------------------------------*/
 | 
|---|
 | 504 |   TVector<T> data;
 | 
|---|
 | 505 |   TVector<int_4> pixNumber;
 | 
|---|
 | 506 |   int_4  nmmax = nlmax;
 | 
|---|
 | 507 |   TVector< complex<T> > phase(nmmax+1);
 | 
|---|
| [1683] | 508 |   
 | 
|---|
| [729] | 509 |   alm.ReSizeToLmax(nlmax);
 | 
|---|
| [746] | 510 |   for (int_4 ith = 0; ith < map.NbThetaSlices(); ith++)
 | 
|---|
| [729] | 511 |     {
 | 
|---|
 | 512 |       r_8 phi0;
 | 
|---|
 | 513 |       r_8 theta;
 | 
|---|
| [1683] | 514 |       //  PrtTim("debut 1ere tranche ");
 | 
|---|
| [729] | 515 |       map.GetThetaSlice(ith,theta,phi0,pixNumber ,data);
 | 
|---|
| [1683] | 516 |       phase = complex<T>((T)0.,(T)0.);
 | 
|---|
| [729] | 517 |       double cth = cos(theta);
 | 
|---|
 | 518 |       
 | 
|---|
 | 519 |       //part of the sky out of the symetric cut
 | 
|---|
| [1428] | 520 |       bool keep_it = (fabs(cth) >= cos_theta_cut); 
 | 
|---|
| [1683] | 521 | 
 | 
|---|
 | 522 |       //    PrtTim("fin 1ere tranche ");
 | 
|---|
 | 523 |   
 | 
|---|
| [729] | 524 |       if (keep_it)
 | 
|---|
 | 525 |         {
 | 
|---|
| [1683] | 526 |           //      phase = CFromFourierAnalysis(nmmax,data,phi0);
 | 
|---|
 | 527 |           //      PrtTim("avant Fourier ");
 | 
|---|
 | 528 |           CFromFourierAnalysis(nmmax,data,phase, phi0);
 | 
|---|
 | 529 |           //      PrtTim("apres Fourier ");
 | 
|---|
| [729] | 530 | 
 | 
|---|
 | 531 |         }
 | 
|---|
 | 532 |       
 | 
|---|
| [1683] | 533 | //      ---------------------------------------------------------------------
 | 
|---|
 | 534 | //      computes the a_lm by integrating over theta
 | 
|---|
 | 535 | //      lambda_lm(theta) * phas_m(theta)
 | 
|---|
 | 536 | //      for each m and l
 | 
|---|
 | 537 | //      -----------------------------------------------------------------------
 | 
|---|
 | 538 |       //        PrtTim("avant instanciation LM ");
 | 
|---|
| [729] | 539 |       LambdaLMBuilder lb(theta,nlmax,nmmax);
 | 
|---|
| [1683] | 540 |       //        PrtTim("apres instanciation LM ");
 | 
|---|
| [729] | 541 |       r_8 domega=map.PixSolAngle(map.PixIndexSph(theta,phi0));
 | 
|---|
| [1683] | 542 | 
 | 
|---|
 | 543 |       //   PrtTim("avant mise a jour Alm ");
 | 
|---|
 | 544 |       complex<T> fi;
 | 
|---|
 | 545 |       T facteur;
 | 
|---|
 | 546 |       int index;
 | 
|---|
| [729] | 547 |       for (int m = 0; m <= nmmax; m++)
 | 
|---|
 | 548 |         {
 | 
|---|
| [1683] | 549 |           fi = phase(m);
 | 
|---|
 | 550 |           for (int l = m; l<= nlmax; l++)
 | 
|---|
| [729] | 551 |             {
 | 
|---|
| [1683] | 552 |                  index = alm.indexOfElement(l,m);
 | 
|---|
 | 553 |                  //  facteur = (T)(lb.lamlm(l,m) * domega);
 | 
|---|
 | 554 |                     facteur = (T)(lb.lamlm(index) * domega);
 | 
|---|
 | 555 |                   // alm(l,m) += facteur * fi ; 
 | 
|---|
 | 556 |                       alm(index) += facteur * fi ; 
 | 
|---|
| [729] | 557 |             }
 | 
|---|
 | 558 |         }
 | 
|---|
| [1683] | 559 |       
 | 
|---|
 | 560 | 
 | 
|---|
 | 561 |       
 | 
|---|
 | 562 |       //
 | 
|---|
 | 563 |       //
 | 
|---|
 | 564 |       //       PrtTim("apres mise a jour Alm ");
 | 
|---|
| [729] | 565 |     }
 | 
|---|
 | 566 | }
 | 
|---|
| [1218] | 567 |   /*! \fn TVector< complex<T> > SOPHYA::SphericalTransformServer::CFromFourierAnalysis(int_4 nmmax, const TVector<complex<T> >datain, r_8 phi0) const
 | 
|---|
 | 568 | 
 | 
|---|
 | 569 | \return a vector with mmax elements  which are  sums :
 | 
|---|
 | 570 | \f$\sum_{k=0}^{nphi}datain(\theta,\varphi_k)e^{im\varphi_k}\f$ for (mmax+1) values of \f$m\f$ from 0 to mmax.
 | 
|---|
 | 571 |    */
 | 
|---|
| [729] | 572 | template<class T>
 | 
|---|
| [746] | 573 | TVector< complex<T> > SphericalTransformServer<T>::CFromFourierAnalysis(int_4 nmmax, const TVector<complex<T> >datain, r_8 phi0) const
 | 
|---|
| [729] | 574 | {
 | 
|---|
 | 575 |   /*=======================================================================
 | 
|---|
 | 576 |     integrates (data * phi-dependence-of-Ylm) over phi
 | 
|---|
 | 577 |     --> function of m can be computed by FFT
 | 
|---|
 | 578 |     
 | 
|---|
 | 579 |     datain est modifie
 | 
|---|
 | 580 |     =======================================================================*/
 | 
|---|
 | 581 |   int_4 nph=datain.NElts();
 | 
|---|
 | 582 |   if (nph <= 0) 
 | 
|---|
 | 583 |     {
 | 
|---|
 | 584 |       throw PException("bizarre : vecteur datain de longueur nulle (CFromFourierAnalysis)");
 | 
|---|
 | 585 |     }
 | 
|---|
 | 586 |   TVector<complex<T> > transformedData(nph);
 | 
|---|
 | 587 |   fftIntfPtr_-> FFTForward(datain, transformedData);
 | 
|---|
 | 588 | 
 | 
|---|
 | 589 |   TVector< complex<T> > dataout(nmmax+1);
 | 
|---|
 | 590 | 
 | 
|---|
 | 591 |   int im_max=min(nph,nmmax+1);
 | 
|---|
| [833] | 592 |   int i;
 | 
|---|
| [1683] | 593 |   dataout = complex<T>((T)0.,(T)0.);
 | 
|---|
 | 594 |   //  for (i=0;i< dataout.NElts();i++) dataout(i)=complex<T>((T)0.,(T)0.);
 | 
|---|
| [833] | 595 |   for (i=0;i<im_max;i++) dataout(i)=transformedData(i);
 | 
|---|
| [729] | 596 | 
 | 
|---|
 | 597 | 
 | 
|---|
 | 598 |   for (int kk=nph; kk<dataout.NElts(); kk++) dataout(kk)=dataout(kk%nph);
 | 
|---|
| [833] | 599 |   for (i = 0;i <dataout.NElts();i++){
 | 
|---|
| [729] | 600 |     dataout(i)*= (complex<T>)(complex<double>(cos(-i*phi0),sin(-i*phi0)));
 | 
|---|
 | 601 |   }
 | 
|---|
 | 602 |   return dataout;
 | 
|---|
 | 603 | }
 | 
|---|
 | 604 | 
 | 
|---|
 | 605 | //&&&&&&&&& nouvelle version
 | 
|---|
| [1218] | 606 | /* \fn TVector< complex<T> > SOPHYA::SphericalTransformServer::CFromFourierAnalysis(int_4 nmmax, const TVector<T> datain, r_8 phi0) const
 | 
|---|
 | 607 | 
 | 
|---|
 | 608 | same as previous one, but with a "datain" which is real (not complex) */
 | 
|---|
| [729] | 609 | template<class T>
 | 
|---|
| [1683] | 610 | void SphericalTransformServer<T>::CFromFourierAnalysis(int_4 nmmax, const TVector<T> datain, TVector< complex<T> >& dataout, r_8 phi0) const
 | 
|---|
| [729] | 611 | {
 | 
|---|
 | 612 |   //=======================================================================
 | 
|---|
 | 613 |   //    integrates (data * phi-dependence-of-Ylm) over phi
 | 
|---|
 | 614 |   //    --> function of m can be computed by FFT
 | 
|---|
 | 615 |   //   !     with  0<= m <= npoints/2 (: Nyquist)
 | 
|---|
 | 616 |   //   !     because the data is real the negative m are the conjugate of the 
 | 
|---|
 | 617 |   //   !     positive ones
 | 
|---|
 | 618 |     
 | 
|---|
 | 619 |   //    datain est modifie
 | 
|---|
 | 620 |   //    
 | 
|---|
 | 621 |   //    =======================================================================
 | 
|---|
 | 622 |   int_4 nph=datain.NElts();
 | 
|---|
 | 623 |   if (nph <= 0) 
 | 
|---|
 | 624 |     {
 | 
|---|
 | 625 |       throw PException("bizarre : vecteur datain de longueur nulle (CFromFourierAnalysis)");
 | 
|---|
 | 626 |     }
 | 
|---|
| [1756] | 627 |   // if (nph%2 != 0 )
 | 
|---|
 | 628 |   //  {
 | 
|---|
 | 629 |       //  throw PException("SphericalTransformServer<T>::CFromFourierAnalysis : longueur de datain impair ?");
 | 
|---|
 | 630 |   //  }
 | 
|---|
| [729] | 631 |   TVector<complex<T> > transformedData;
 | 
|---|
 | 632 | 
 | 
|---|
| [1683] | 633 |   // la taille du vecteur complexe retourne est nph/2+1 (si la taille 
 | 
|---|
 | 634 |   // du vecteur reel entre est nph)
 | 
|---|
| [1756] | 635 |   //   cout << " longueur de datain  = " << nph << endl;
 | 
|---|
| [729] | 636 |   fftIntfPtr_-> FFTForward(datain, transformedData);
 | 
|---|
| [1756] | 637 |   //  cout <<  " taille de la transformee " << transformedData.Size() << endl;
 | 
|---|
| [1683] | 638 |   //  TVector< complex<T> > dataout(nmmax+1);
 | 
|---|
 | 639 |   dataout.ReSize(nmmax+1);
 | 
|---|
| [729] | 640 | 
 | 
|---|
 | 641 |   // on transfere le resultat de la fft dans dataout.
 | 
|---|
| [1683] | 642 | 
 | 
|---|
 | 643 |   int maxFreqAccessiblesParFFT = min(nph/2,nmmax);
 | 
|---|
| [833] | 644 |   int i;
 | 
|---|
| [1683] | 645 |   for (i=0;i<=maxFreqAccessiblesParFFT;i++) dataout(i)=transformedData(i);
 | 
|---|
| [729] | 646 | 
 | 
|---|
 | 647 | 
 | 
|---|
| [1683] | 648 |   // si dataout n'est pas plein, on complete jusqu'a  nph+1 valeurs (a moins 
 | 
|---|
| [729] | 649 |   // que dataout ne soit plein avant d'atteindre nph)
 | 
|---|
| [1683] | 650 |   if (maxFreqAccessiblesParFFT != nmmax )
 | 
|---|
| [729] | 651 |     {
 | 
|---|
| [1683] | 652 |       int maxMfft = min(nph,nmmax);
 | 
|---|
 | 653 |       for (i=maxFreqAccessiblesParFFT+1; i<=maxMfft; i++)
 | 
|---|
| [729] | 654 |         {
 | 
|---|
 | 655 |           dataout(i) = conj(dataout(nph-i) );
 | 
|---|
 | 656 |         }
 | 
|---|
 | 657 |       // on conplete, si necessaire, par periodicite
 | 
|---|
| [1683] | 658 |       if ( maxMfft != nmmax )
 | 
|---|
| [729] | 659 |         {
 | 
|---|
| [1683] | 660 |           for (int kk=nph+1; kk <= nmmax; kk++) 
 | 
|---|
 | 661 |             {
 | 
|---|
 | 662 |               dataout(kk)=dataout(kk%nph);
 | 
|---|
 | 663 |             }
 | 
|---|
| [729] | 664 |         }
 | 
|---|
 | 665 |     }
 | 
|---|
| [1683] | 666 |   for (i = 0;i <dataout.NElts();i++)
 | 
|---|
 | 667 |     {
 | 
|---|
 | 668 |       dataout(i)*= (complex<T>)(complex<double>(cos(-i*phi0),sin(-i*phi0)));
 | 
|---|
 | 669 |     }
 | 
|---|
 | 670 |   //  return dataout;
 | 
|---|
| [729] | 671 | }
 | 
|---|
 | 672 | 
 | 
|---|
| [1218] | 673 |  /*! \fn void SOPHYA::SphericalTransformServer::GenerateFromAlm(SphericalMap<T>& mapq,
 | 
|---|
 | 674 |                                                SphericalMap<T>& mapu, 
 | 
|---|
 | 675 |                                                int_4 pixelSizeIndex,
 | 
|---|
 | 676 |                                                const Alm<T>& alme,
 | 
|---|
 | 677 |                                                const Alm<T>& almb) const
 | 
|---|
 | 678 | 
 | 
|---|
 | 679 | synthesis of a polarization map from  Alm coefficients. The spheres mapq and mapu contain respectively the Stokes parameters. */
 | 
|---|
| [729] | 680 | template<class T>
 | 
|---|
 | 681 | void SphericalTransformServer<T>::GenerateFromAlm(SphericalMap<T>& mapq,
 | 
|---|
 | 682 |                                                SphericalMap<T>& mapu, 
 | 
|---|
 | 683 |                                                int_4 pixelSizeIndex,
 | 
|---|
 | 684 |                                                const Alm<T>& alme,
 | 
|---|
 | 685 |                                                const Alm<T>& almb) const
 | 
|---|
 | 686 | {
 | 
|---|
 | 687 |   /*=======================================================================
 | 
|---|
 | 688 |     computes a map form its alm for the HEALPIX pixelisation
 | 
|---|
 | 689 |     map(theta,phi) = sum_l_m a_lm Y_lm(theta,phi)
 | 
|---|
 | 690 |     = sum_m {e^(i*m*phi) sum_l a_lm*lambda_lm(theta)}
 | 
|---|
 | 691 |     
 | 
|---|
 | 692 |     where Y_lm(theta,phi) = lambda(theta) * e^(i*m*phi)
 | 
|---|
 | 693 |     
 | 
|---|
 | 694 |     * the recurrence of Ylm is the standard one (cf Num Rec)
 | 
|---|
 | 695 |     * the sum over m is done by FFT
 | 
|---|
 | 696 |     
 | 
|---|
 | 697 |     =======================================================================*/
 | 
|---|
 | 698 |   int_4 nlmax=alme.Lmax();
 | 
|---|
 | 699 |   if (nlmax != almb.Lmax())
 | 
|---|
 | 700 |     {
 | 
|---|
 | 701 |       cout << " SphericalTransformServer: les deux tableaux alm n'ont pas la meme taille" << endl;
 | 
|---|
 | 702 |       throw SzMismatchError("SphericalTransformServer: les deux tableaux alm n'ont pas la meme taille");
 | 
|---|
 | 703 |     }
 | 
|---|
 | 704 |   int_4 nmmax=nlmax;
 | 
|---|
 | 705 |   int_4 nsmax=0;
 | 
|---|
 | 706 |   mapq.Resize(pixelSizeIndex);
 | 
|---|
 | 707 |   mapu.Resize(pixelSizeIndex);
 | 
|---|
 | 708 |   char* sphere_type=mapq.TypeOfMap();
 | 
|---|
 | 709 |   if (strncmp(sphere_type,mapu.TypeOfMap(),4) != 0)
 | 
|---|
 | 710 |     {
 | 
|---|
 | 711 |       cout <<  " SphericalTransformServer: les deux spheres ne sont pas de meme type" << endl;
 | 
|---|
 | 712 |       cout << " type 1 " << sphere_type << endl;
 | 
|---|
 | 713 |       cout << " type 2 " << mapu.TypeOfMap() << endl;
 | 
|---|
 | 714 |       throw SzMismatchError("SphericalTransformServer: les deux spheres ne sont pas de meme type");
 | 
|---|
 | 715 |       
 | 
|---|
 | 716 |     }
 | 
|---|
 | 717 |   if (strncmp(sphere_type,"RING",4) == 0)
 | 
|---|
 | 718 |     {
 | 
|---|
 | 719 |       nsmax=mapq.SizeIndex();
 | 
|---|
 | 720 |     }
 | 
|---|
 | 721 |   else
 | 
|---|
 | 722 |     // pour une sphere Gorski le nombre de pixels est 12*nsmax**2
 | 
|---|
 | 723 |     // on calcule une quantite equivalente a nsmax pour la sphere-theta-phi
 | 
|---|
 | 724 |     // en vue de l'application du critere Healpix : nlmax<=3*nsmax-1
 | 
|---|
 | 725 |     // c'est approximatif ; a raffiner.
 | 
|---|
 | 726 |     if (strncmp(sphere_type,"TETAFI",6) == 0)
 | 
|---|
 | 727 |       {
 | 
|---|
 | 728 |         nsmax=(int_4)sqrt(mapq.NbPixels()/12.);
 | 
|---|
 | 729 |       }
 | 
|---|
 | 730 |     else
 | 
|---|
 | 731 |       {
 | 
|---|
 | 732 |         cout << " unknown type of sphere : " << sphere_type << endl;
 | 
|---|
 | 733 |         throw IOExc(" unknown type of sphere ");
 | 
|---|
 | 734 |       }
 | 
|---|
 | 735 |   cout << "GenerateFromAlm: the spheres are of type : " << sphere_type << endl;
 | 
|---|
 | 736 |   cout << "GenerateFromAlm: size indices (nside) of  spheres= " << nsmax << endl;
 | 
|---|
 | 737 |   cout << "GenerateFromAlm: nlmax (from Alm) = " << nlmax << endl;
 | 
|---|
 | 738 |   if (nlmax>3*nsmax-1) 
 | 
|---|
 | 739 |     {
 | 
|---|
 | 740 |       cout << "GenerateFromAlm: nlmax should be <= 3*nside-1" << endl;
 | 
|---|
 | 741 |       if (strncmp(sphere_type,"TETAFI",6) == 0)
 | 
|---|
 | 742 |         {
 | 
|---|
 | 743 |           cout << " (for this criterium, nsmax is computed as sqrt(nbPixels/12))" << endl;
 | 
|---|
 | 744 |         }
 | 
|---|
 | 745 |     }
 | 
|---|
 | 746 |   if (alme.Lmax()!=almb.Lmax())
 | 
|---|
 | 747 |     {
 | 
|---|
 | 748 |       cout << "GenerateFromAlm: arrays Alme and Almb have not the same size ? " << endl; 
 | 
|---|
 | 749 |       throw SzMismatchError("SphericalTransformServer: arrays Alme and Almb have not the same size ?  ");
 | 
|---|
 | 750 |     }
 | 
|---|
 | 751 |     mapFromWX(nlmax, nmmax, mapq, mapu, alme, almb);
 | 
|---|
 | 752 |     // mapFromPM(nlmax, nmmax, mapq, mapu, alme, almb);
 | 
|---|
 | 753 | }
 | 
|---|
| [1756] | 754 |  /*! \fn void SOPHYA::SphericalTransformServer::DecomposeToAlm(const SphericalMap<T>& mapq,
 | 
|---|
 | 755 |                                               const SphericalMap<T>& mapu,
 | 
|---|
 | 756 |                                               Alm<T>& alme,
 | 
|---|
 | 757 |                                               Alm<T>& almb,
 | 
|---|
 | 758 |                                               int_4 nlmax,
 | 
|---|
 | 759 |                                               r_8 cos_theta_cut) const
 | 
|---|
| [729] | 760 | 
 | 
|---|
| [1756] | 761 | analysis of a polarization map into Alm coefficients.
 | 
|---|
| [729] | 762 | 
 | 
|---|
| [1756] | 763 |  The spheres \c mapq and \c mapu contain respectively the Stokes parameters. 
 | 
|---|
 | 764 | 
 | 
|---|
 | 765 |  \c a2lme and \c a2lmb will receive respectively electric and magnetic Alm's
 | 
|---|
 | 766 |     nlmax : maximum value of the l index
 | 
|---|
 | 767 | 
 | 
|---|
 | 768 |  \c cos_theta_cut : cosinus of the symmetric cut EULER angle theta : cos_theta_cut=0 means no cut ; cos_theta_cut=1 all the sphere is cut.
 | 
|---|
 | 769 | 
 | 
|---|
 | 770 | 
 | 
|---|
 | 771 |  */ 
 | 
|---|
 | 772 | template<class T>
 | 
|---|
 | 773 | void SphericalTransformServer<T>::DecomposeToAlm(const SphericalMap<T>& mapq,
 | 
|---|
| [1218] | 774 |                                               const SphericalMap<T>& mapu,
 | 
|---|
 | 775 |                                               Alm<T>& alme,
 | 
|---|
 | 776 |                                               Alm<T>& almb,
 | 
|---|
 | 777 |                                               int_4 nlmax,
 | 
|---|
 | 778 |                                               r_8 cos_theta_cut) const
 | 
|---|
| [1756] | 779 | {
 | 
|---|
 | 780 |   DecomposeToAlm(const_cast< SphericalMap<T>& >(mapq), const_cast< SphericalMap<T>& >(mapu), alme, almb, nlmax, cos_theta_cut);
 | 
|---|
 | 781 | }
 | 
|---|
| [1218] | 782 | 
 | 
|---|
| [1756] | 783 |  /*! \fn void SOPHYA::SphericalTransformServer::DecomposeToAlm(const SphericalMap<T>& mapq,
 | 
|---|
 | 784 |                                               const SphericalMap<T>& mapu,
 | 
|---|
 | 785 |                                               Alm<T>& alme,
 | 
|---|
 | 786 |                                               Alm<T>& almb,
 | 
|---|
 | 787 |                                               int_4 nlmax,
 | 
|---|
 | 788 |                                               r_8 cos_theta_cut,
 | 
|---|
 | 789 |                                               int iterationOrder) const
 | 
|---|
 | 790 | 
 | 
|---|
| [1218] | 791 | analysis of a polarization map into Alm coefficients.
 | 
|---|
 | 792 | 
 | 
|---|
 | 793 |  The spheres \c mapq and \c mapu contain respectively the Stokes parameters. 
 | 
|---|
 | 794 | 
 | 
|---|
 | 795 |  \c a2lme and \c a2lmb will receive respectively electric and magnetic Alm's
 | 
|---|
 | 796 |     nlmax : maximum value of the l index
 | 
|---|
 | 797 | 
 | 
|---|
 | 798 |  \c cos_theta_cut : cosinus of the symmetric cut EULER angle theta : cos_theta_cut=0 means no cut ; cos_theta_cut=1 all the sphere is cut.
 | 
|---|
| [1756] | 799 | 
 | 
|---|
 | 800 | \param<iterationOrder> : 1,2,3,4.... order of an iterative analysis. (Default : 0 -> standard analysis). If iterationOrder is not null, the method works with SphereHEALPix but NOT WITH SphereThetaPhi maps !
 | 
|---|
 | 801 | 
 | 
|---|
 | 802 | THE INPUT MAPS CAN BE MODIFIED (only if iterationOrder >0)
 | 
|---|
 | 803 | 
 | 
|---|
| [1218] | 804 |  */ 
 | 
|---|
| [729] | 805 | template<class T>
 | 
|---|
| [1683] | 806 | void SphericalTransformServer<T>::DecomposeToAlm(SphericalMap<T>& mapq,
 | 
|---|
 | 807 |                                               SphericalMap<T>& mapu,
 | 
|---|
 | 808 |                                               Alm<T>& alme,
 | 
|---|
 | 809 |                                               Alm<T>& almb,
 | 
|---|
 | 810 |                                               int_4 nlmax,
 | 
|---|
 | 811 |                                               r_8 cos_theta_cut, 
 | 
|---|
 | 812 |                                               int iterationOrder) const
 | 
|---|
 | 813 | {
 | 
|---|
 | 814 |   int_4  nmmax = nlmax;
 | 
|---|
 | 815 |   carteVersAlm(mapq, mapu, alme, almb, nlmax, cos_theta_cut);
 | 
|---|
 | 816 |   if (iterationOrder > 0)
 | 
|---|
 | 817 |     {
 | 
|---|
 | 818 |       TVector<int_4> fact(iterationOrder+2);
 | 
|---|
 | 819 |       fact(0) = 1;
 | 
|---|
| [1715] | 820 |       int k;
 | 
|---|
 | 821 |       for (k=1; k <= iterationOrder+1; k++)
 | 
|---|
| [1683] | 822 |         {
 | 
|---|
 | 823 |           fact(k) = fact(k-1)*k;
 | 
|---|
 | 824 |         }
 | 
|---|
 | 825 |       Alm<T> alme2(alme);
 | 
|---|
 | 826 |       Alm<T> almb2(almb);
 | 
|---|
 | 827 |       T Tzero = (T)0.;
 | 
|---|
 | 828 |       complex<T> complexZero = complex<T>(Tzero, Tzero);
 | 
|---|
 | 829 |       alme = complexZero;
 | 
|---|
 | 830 |       almb = complexZero;
 | 
|---|
 | 831 |       int signe = 1;
 | 
|---|
 | 832 |       int nbIteration = iterationOrder+1;
 | 
|---|
| [1715] | 833 |       for (k=1; k <= nbIteration; k++)
 | 
|---|
| [1683] | 834 |         {
 | 
|---|
 | 835 |           T facMult = (T)(0.5*signe*fact(iterationOrder)*(2*nbIteration-k)/(fact(k)*fact(nbIteration-k)));
 | 
|---|
 | 836 |           for (int m = 0; m <= nmmax; m++)
 | 
|---|
 | 837 |             {
 | 
|---|
 | 838 |               for (int l = m; l<= nlmax; l++)
 | 
|---|
 | 839 |                 {
 | 
|---|
 | 840 |                   alme(l,m) += facMult*alme2(l,m); 
 | 
|---|
 | 841 |                   almb(l,m) += facMult*almb2(l,m); 
 | 
|---|
 | 842 |                 }
 | 
|---|
 | 843 |             }
 | 
|---|
 | 844 |           if (k == nbIteration) break;
 | 
|---|
 | 845 |           signe = -signe;
 | 
|---|
 | 846 |           for (int k=0; k< mapq.NbPixels(); k++)
 | 
|---|
 | 847 |             {
 | 
|---|
 | 848 |               mapq(k) = (T)0.;
 | 
|---|
 | 849 |               mapu(k) = (T)0.;
 | 
|---|
 | 850 |             }
 | 
|---|
 | 851 |           //        synthetize a map from the estimated alm
 | 
|---|
 | 852 |           GenerateFromAlm(mapq,mapu,mapq.SizeIndex(),alme2,almb2); 
 | 
|---|
 | 853 |           alme2 = complexZero;
 | 
|---|
 | 854 |           almb2 = complexZero;
 | 
|---|
 | 855 |           //        analyse the new map
 | 
|---|
 | 856 |           carteVersAlm(mapq, mapu, alme2, almb2, nlmax, cos_theta_cut);
 | 
|---|
 | 857 |         }
 | 
|---|
 | 858 |     }
 | 
|---|
 | 859 | }
 | 
|---|
 | 860 | 
 | 
|---|
 | 861 | template<class T>
 | 
|---|
 | 862 | void SphericalTransformServer<T>::carteVersAlm(const SphericalMap<T>& mapq,
 | 
|---|
| [729] | 863 |                                               const SphericalMap<T>& mapu,
 | 
|---|
 | 864 |                                               Alm<T>& alme,
 | 
|---|
 | 865 |                                               Alm<T>& almb,
 | 
|---|
 | 866 |                                               int_4 nlmax,
 | 
|---|
 | 867 |                                               r_8 cos_theta_cut) const
 | 
|---|
 | 868 | {
 | 
|---|
 | 869 |   int_4  nmmax = nlmax;
 | 
|---|
 | 870 |   // resize et remise a zero
 | 
|---|
 | 871 |   alme.ReSizeToLmax(nlmax);
 | 
|---|
 | 872 |   almb.ReSizeToLmax(nlmax);
 | 
|---|
 | 873 | 
 | 
|---|
 | 874 |   
 | 
|---|
 | 875 |   TVector<T> dataq;
 | 
|---|
 | 876 |   TVector<T> datau;
 | 
|---|
 | 877 |   TVector<int_4> pixNumber;
 | 
|---|
 | 878 | 
 | 
|---|
 | 879 |   char* sphere_type=mapq.TypeOfMap();
 | 
|---|
 | 880 |   if (strncmp(sphere_type,mapu.TypeOfMap(),4) != 0)
 | 
|---|
 | 881 |     {
 | 
|---|
 | 882 |       cout <<  " SphericalTransformServer: les deux spheres ne sont pas de meme type" << endl;
 | 
|---|
 | 883 |       cout << " type 1 " << sphere_type << endl;
 | 
|---|
 | 884 |       cout << " type 2 " << mapu.TypeOfMap() << endl;
 | 
|---|
 | 885 |       throw SzMismatchError("SphericalTransformServer: les deux spheres ne sont pas de meme type");
 | 
|---|
 | 886 |       
 | 
|---|
 | 887 |     }
 | 
|---|
 | 888 |   if (mapq.NbPixels()!=mapu.NbPixels())
 | 
|---|
 | 889 |     {
 | 
|---|
 | 890 |       cout << " DecomposeToAlm: map Q and map U have not same size ?" << endl;
 | 
|---|
 | 891 |       throw SzMismatchError("SphericalTransformServer::DecomposeToAlm: map Q and map U have not same size ");
 | 
|---|
 | 892 |     }
 | 
|---|
| [746] | 893 |   for (int_4 ith = 0; ith < mapq.NbThetaSlices(); ith++)
 | 
|---|
| [729] | 894 |     {
 | 
|---|
 | 895 |       r_8 phi0;
 | 
|---|
 | 896 |       r_8 theta;
 | 
|---|
 | 897 |       mapq.GetThetaSlice(ith,theta,phi0, pixNumber,dataq);
 | 
|---|
 | 898 |       mapu.GetThetaSlice(ith,theta,phi0, pixNumber,datau);
 | 
|---|
 | 899 |       if (dataq.NElts() != datau.NElts() ) 
 | 
|---|
 | 900 |         {
 | 
|---|
 | 901 |           throw  SzMismatchError("the spheres have not the same pixelization");
 | 
|---|
 | 902 |         }
 | 
|---|
 | 903 |       r_8 domega=mapq.PixSolAngle(mapq.PixIndexSph(theta,phi0));
 | 
|---|
 | 904 |       double cth = cos(theta);
 | 
|---|
 | 905 |       //part of the sky out of the symetric cut
 | 
|---|
| [1428] | 906 |       bool keep_it = (fabs(cth) >= cos_theta_cut); 
 | 
|---|
| [729] | 907 |       if (keep_it)
 | 
|---|
 | 908 |         {
 | 
|---|
| [1328] | 909 |           //  almFromPM(pixNumber.NElts(), nlmax, nmmax, phi0, domega, theta, dataq, datau, alme, almb); 
 | 
|---|
| [746] | 910 |           almFromWX(nlmax, nmmax, phi0, domega, theta, dataq, datau, alme, almb); 
 | 
|---|
| [729] | 911 |         }
 | 
|---|
 | 912 |     }
 | 
|---|
 | 913 | }
 | 
|---|
 | 914 | 
 | 
|---|
 | 915 | 
 | 
|---|
| [1218] | 916 |  /*! \fn void SOPHYA::SphericalTransformServer::almFromWX(int_4 nlmax, int_4 nmmax,
 | 
|---|
 | 917 |                                          r_8 phi0, r_8 domega, 
 | 
|---|
 | 918 |                                          r_8 theta, 
 | 
|---|
 | 919 |                                          const TVector<T>& dataq, 
 | 
|---|
 | 920 |                                          const TVector<T>& datau,
 | 
|---|
 | 921 |                                          Alm<T>& alme,
 | 
|---|
 | 922 |                                          Alm<T>& almb) const
 | 
|---|
 | 923 | 
 | 
|---|
 | 924 | Compute polarized Alm's as : 
 | 
|---|
 | 925 | \f[
 | 
|---|
 | 926 | a_{lm}^E=\frac{1}{\sqrt{2}}\sum_{slices}{\omega_{pix}\left(\,_{w}\lambda_l^m\tilde{Q}-i\,_{x}\lambda_l^m\tilde{U}\right)}
 | 
|---|
 | 927 | \f]
 | 
|---|
 | 928 | \f[
 | 
|---|
 | 929 | a_{lm}^B=\frac{1}{\sqrt{2}}\sum_{slices}{\omega_{pix}\left(i\,_{x}\lambda_l^m\tilde{Q}+\,_{w}\lambda_l^m\tilde{U}\right)}
 | 
|---|
 | 930 | \f]
 | 
|---|
 | 931 | 
 | 
|---|
 | 932 | where \f$\tilde{Q}\f$ and \f$\tilde{U}\f$ are C-coefficients computed by FFT (method CFromFourierAnalysis, called by present method) from the Stokes parameters.
 | 
|---|
 | 933 | 
 | 
|---|
 | 934 | \f$\omega_{pix}\f$ are solid angle of each pixel.
 | 
|---|
 | 935 | 
 | 
|---|
 | 936 | dataq, datau : Stokes parameters.
 | 
|---|
 | 937 | 
 | 
|---|
 | 938 |   */
 | 
|---|
| [729] | 939 | template<class T>
 | 
|---|
| [746] | 940 | void SphericalTransformServer<T>::almFromWX(int_4 nlmax, int_4 nmmax,
 | 
|---|
| [729] | 941 |                                          r_8 phi0, r_8 domega, 
 | 
|---|
 | 942 |                                          r_8 theta, 
 | 
|---|
 | 943 |                                          const TVector<T>& dataq, 
 | 
|---|
 | 944 |                                          const TVector<T>& datau,
 | 
|---|
 | 945 |                                          Alm<T>& alme,
 | 
|---|
 | 946 |                                          Alm<T>& almb) const
 | 
|---|
 | 947 | {
 | 
|---|
 | 948 |   TVector< complex<T> > phaseq(nmmax+1);
 | 
|---|
 | 949 |   TVector< complex<T> > phaseu(nmmax+1);
 | 
|---|
 | 950 |   //  TVector<complex<T> > datain(nph);
 | 
|---|
 | 951 |   for (int i=0;i< nmmax+1;i++)
 | 
|---|
 | 952 |     {
 | 
|---|
 | 953 |       phaseq(i)=0; 
 | 
|---|
 | 954 |       phaseu(i)=0; 
 | 
|---|
 | 955 |     }
 | 
|---|
 | 956 |   //  for(int kk=0; kk<nph; kk++) datain(kk)=complex<T>(dataq(kk),0.);
 | 
|---|
 | 957 | 
 | 
|---|
| [1683] | 958 |   //  phaseq = CFromFourierAnalysis(nmmax,dataq,phi0); 
 | 
|---|
 | 959 |   CFromFourierAnalysis(nmmax,dataq,phaseq, phi0); 
 | 
|---|
| [729] | 960 | 
 | 
|---|
| [1683] | 961 |   //  phaseu=  CFromFourierAnalysis(nmmax,datau,phi0); 
 | 
|---|
 | 962 |   CFromFourierAnalysis(nmmax,datau,phaseu, phi0); 
 | 
|---|
| [729] | 963 | 
 | 
|---|
 | 964 |   LambdaWXBuilder lwxb(theta,nlmax,nmmax);
 | 
|---|
 | 965 | 
 | 
|---|
 | 966 |   r_8 sqr2inv=1/Rac2;
 | 
|---|
 | 967 |   for (int m = 0; m <= nmmax; m++)
 | 
|---|
 | 968 |     {
 | 
|---|
 | 969 |       r_8 lambda_w=0.;
 | 
|---|
 | 970 |       r_8 lambda_x=0.;
 | 
|---|
 | 971 |       lwxb.lam_wx(m, m, lambda_w, lambda_x);
 | 
|---|
 | 972 |       complex<T>  zi_lam_x((T)0., (T)lambda_x);
 | 
|---|
 | 973 |       alme(m,m) +=  ( (T)(lambda_w)*phaseq(m)-zi_lam_x*phaseu(m) )*(T)(domega*sqr2inv);
 | 
|---|
 | 974 |       almb(m,m) +=  ( (T)(lambda_w)*phaseu(m)+zi_lam_x*phaseq(m) )*(T)(domega*sqr2inv);
 | 
|---|
 | 975 |       
 | 
|---|
 | 976 |       for (int l = m+1; l<= nlmax; l++)
 | 
|---|
 | 977 |         {
 | 
|---|
 | 978 |           lwxb.lam_wx(l, m, lambda_w, lambda_x);
 | 
|---|
 | 979 |           zi_lam_x = complex<T>((T)0., (T)lambda_x);
 | 
|---|
 | 980 |           alme(l,m) +=  ( (T)(lambda_w)*phaseq(m)-zi_lam_x*phaseu(m) )*(T)(domega*sqr2inv);
 | 
|---|
 | 981 |           almb(l,m) +=  ( (T)(lambda_w)*phaseu(m)+zi_lam_x*phaseq(m) )*(T)(domega*sqr2inv);
 | 
|---|
 | 982 |         }
 | 
|---|
 | 983 |     }
 | 
|---|
 | 984 | }
 | 
|---|
 | 985 | 
 | 
|---|
 | 986 | 
 | 
|---|
| [1218] | 987 |  /*! \fn void SOPHYA::SphericalTransformServer::almFromPM(int_4 nph, int_4 nlmax, 
 | 
|---|
 | 988 |                                          int_4 nmmax,
 | 
|---|
 | 989 |                                          r_8 phi0, r_8 domega,  
 | 
|---|
 | 990 |                                          r_8 theta, 
 | 
|---|
 | 991 |                                          const TVector<T>& dataq, 
 | 
|---|
 | 992 |                                          const TVector<T>& datau,
 | 
|---|
 | 993 |                                          Alm<T>& alme,
 | 
|---|
 | 994 |                                          Alm<T>& almb) const
 | 
|---|
 | 995 | 
 | 
|---|
 | 996 | Compute polarized Alm's as : 
 | 
|---|
 | 997 | \f[
 | 
|---|
 | 998 | a_{lm}^E=-\frac{1}{2}\sum_{slices}{\omega_{pix}\left(\,_{+}\lambda_l^m\tilde{P^+}+\,_{-}\lambda_l^m\tilde{P^-}\right)}
 | 
|---|
 | 999 | \f]
 | 
|---|
 | 1000 | \f[
 | 
|---|
 | 1001 | a_{lm}^B=\frac{i}{2}\sum_{slices}{\omega_{pix}\left(\,_{+}\lambda_l^m\tilde{P^+}-\,_{-}\lambda_l^m\tilde{P^-}\right)}
 | 
|---|
 | 1002 | \f]
 | 
|---|
 | 1003 | 
 | 
|---|
 | 1004 | where \f$\tilde{P^{\pm}}=\tilde{Q}\pm\tilde{U}\f$  computed by FFT (method CFromFourierAnalysis, called by present method) from the Stokes parameters,\f$Q\f$ and \f$U\f$ .
 | 
|---|
 | 1005 | 
 | 
|---|
 | 1006 | \f$\omega_{pix}\f$ are solid angle of each pixel.
 | 
|---|
 | 1007 | 
 | 
|---|
 | 1008 | dataq, datau : Stokes parameters.
 | 
|---|
 | 1009 | 
 | 
|---|
 | 1010 |   */
 | 
|---|
| [729] | 1011 | template<class T>
 | 
|---|
| [1218] | 1012 | void SphericalTransformServer<T>::almFromPM(int_4 nph, int_4 nlmax, 
 | 
|---|
 | 1013 |                                          int_4 nmmax,
 | 
|---|
| [729] | 1014 |                                          r_8 phi0, r_8 domega,  
 | 
|---|
 | 1015 |                                          r_8 theta, 
 | 
|---|
 | 1016 |                                          const TVector<T>& dataq, 
 | 
|---|
 | 1017 |                                          const TVector<T>& datau,
 | 
|---|
 | 1018 |                                          Alm<T>& alme,
 | 
|---|
 | 1019 |                                          Alm<T>& almb) const
 | 
|---|
 | 1020 | {
 | 
|---|
 | 1021 |   TVector< complex<T> > phasep(nmmax+1);
 | 
|---|
 | 1022 |   TVector< complex<T> > phasem(nmmax+1);
 | 
|---|
 | 1023 |   TVector<complex<T> > datain(nph);
 | 
|---|
 | 1024 |   for (int i=0;i< nmmax+1;i++)
 | 
|---|
 | 1025 |     {
 | 
|---|
 | 1026 |       phasep(i)=0; 
 | 
|---|
 | 1027 |       phasem(i)=0; 
 | 
|---|
 | 1028 |     }
 | 
|---|
| [833] | 1029 |   int kk;
 | 
|---|
 | 1030 |   for(kk=0; kk<nph; kk++) datain(kk)=complex<T>(dataq(kk),datau(kk));
 | 
|---|
| [729] | 1031 | 
 | 
|---|
| [746] | 1032 |   phasep = CFromFourierAnalysis(nmmax,datain,phi0); 
 | 
|---|
| [729] | 1033 | 
 | 
|---|
| [833] | 1034 |   for(kk=0; kk<nph; kk++) datain(kk)=complex<T>(dataq(kk),-datau(kk));
 | 
|---|
| [746] | 1035 |   phasem = CFromFourierAnalysis(nmmax,datain,phi0); 
 | 
|---|
| [729] | 1036 |   LambdaPMBuilder lpmb(theta,nlmax,nmmax);
 | 
|---|
 | 1037 |           
 | 
|---|
 | 1038 |   for (int m = 0; m <= nmmax; m++)
 | 
|---|
 | 1039 |     {
 | 
|---|
 | 1040 |       r_8 lambda_p=0.;
 | 
|---|
 | 1041 |       r_8 lambda_m=0.;
 | 
|---|
 | 1042 |       complex<T> im((T)0.,(T)1.);
 | 
|---|
 | 1043 |       lpmb.lam_pm(m, m, lambda_p, lambda_m);
 | 
|---|
 | 1044 |               
 | 
|---|
 | 1045 |       alme(m,m) +=   -( (T)(lambda_p)*phasep(m) + (T)(lambda_m)*phasem(m)  )*(T)(domega*0.5);
 | 
|---|
 | 1046 |       almb(m,m) +=  im*( (T)(lambda_p)*phasep(m) - (T)(lambda_m)*phasem(m) )*(T)(domega*0.5);
 | 
|---|
 | 1047 |       for (int l = m+1; l<= nlmax; l++)
 | 
|---|
 | 1048 |         {
 | 
|---|
 | 1049 |           lpmb.lam_pm(l, m, lambda_p, lambda_m);
 | 
|---|
 | 1050 |           alme(l,m) +=  -( (T)(lambda_p)*phasep(m) + (T)(lambda_m)*phasem(m)  )*(T)(domega*0.5);
 | 
|---|
 | 1051 |           almb(l,m) += im* ( (T)(lambda_p)*phasep(m) - (T)(lambda_m)*phasem(m) )*(T)(domega*0.5);
 | 
|---|
 | 1052 |         }
 | 
|---|
 | 1053 |     }
 | 
|---|
 | 1054 | }
 | 
|---|
 | 1055 | 
 | 
|---|
 | 1056 | 
 | 
|---|
| [1218] | 1057 | /*! \fn void SOPHYA::SphericalTransformServer::mapFromWX(int_4 nlmax, int_4 nmmax,
 | 
|---|
 | 1058 |                                          SphericalMap<T>& mapq,
 | 
|---|
 | 1059 |                                          SphericalMap<T>& mapu, 
 | 
|---|
 | 1060 |                                          const Alm<T>& alme,
 | 
|---|
 | 1061 |                                          const Alm<T>& almb) const
 | 
|---|
 | 1062 | 
 | 
|---|
 | 1063 | synthesis of Stokes parameters following formulae : 
 | 
|---|
 | 1064 | 
 | 
|---|
 | 1065 | \f[
 | 
|---|
 | 1066 | Q=\sum_{m=-mmax}^{mmax}b_m^qe^{im\varphi}
 | 
|---|
 | 1067 | \f]
 | 
|---|
 | 1068 | \f[
 | 
|---|
 | 1069 | U=\sum_{m=-mmax}^{mmax}b_m^ue^{im\varphi}
 | 
|---|
 | 1070 | \f]
 | 
|---|
 | 1071 | 
 | 
|---|
 | 1072 | computed by FFT (method fourierSynthesisFromB called by the present one)
 | 
|---|
 | 1073 | 
 | 
|---|
 | 1074 | with :
 | 
|---|
 | 1075 | 
 | 
|---|
 | 1076 | \f[
 | 
|---|
 | 1077 | b_m^q=-\frac{1}{\sqrt{2}}\sum_{l=|m|}^{lmax}{\left(\,_{w}\lambda_l^ma_{lm}^E-i\,_{x}\lambda_l^ma_{lm}^B\right) }
 | 
|---|
 | 1078 | \f]
 | 
|---|
 | 1079 | \f[
 | 
|---|
 | 1080 | b_m^u=\frac{1}{\sqrt{2}}\sum_{l=|m|}^{lmax}{\left(i\,_{x}\lambda_l^ma_{lm}^E+\,_{w}\lambda_l^ma_{lm}^B\right) }
 | 
|---|
 | 1081 | \f]
 | 
|---|
 | 1082 |  */
 | 
|---|
| [729] | 1083 | template<class T>
 | 
|---|
 | 1084 | void SphericalTransformServer<T>::mapFromWX(int_4 nlmax, int_4 nmmax,
 | 
|---|
 | 1085 |                                          SphericalMap<T>& mapq,
 | 
|---|
 | 1086 |                                          SphericalMap<T>& mapu, 
 | 
|---|
 | 1087 |                                          const Alm<T>& alme,
 | 
|---|
 | 1088 |                                          const Alm<T>& almb) const
 | 
|---|
 | 1089 | {
 | 
|---|
 | 1090 |   Bm<complex<T> > b_m_theta_q(nmmax);
 | 
|---|
 | 1091 |   Bm<complex<T> > b_m_theta_u(nmmax);
 | 
|---|
 | 1092 | 
 | 
|---|
| [746] | 1093 |   for (int_4 ith = 0; ith < mapq.NbThetaSlices();ith++)
 | 
|---|
| [729] | 1094 |     {
 | 
|---|
 | 1095 |       int_4 nph;
 | 
|---|
 | 1096 |       r_8 phi0;
 | 
|---|
 | 1097 |       r_8 theta;
 | 
|---|
 | 1098 |       TVector<int_4>  pixNumber; 
 | 
|---|
 | 1099 |       TVector<T> datan;
 | 
|---|
 | 1100 |       
 | 
|---|
 | 1101 |       mapq.GetThetaSlice(ith,theta,phi0, pixNumber,datan);
 | 
|---|
 | 1102 |       nph =  pixNumber.NElts();
 | 
|---|
 | 1103 |       //       -----------------------------------------------------
 | 
|---|
 | 1104 |       //              for each theta, and each m, computes
 | 
|---|
 | 1105 |       //              b(m,theta) = sum_over_l>m (lambda_l_m(theta) * a_l_m) 
 | 
|---|
 | 1106 |       //              ------------------------------------------------------
 | 
|---|
 | 1107 |       LambdaWXBuilder lwxb(theta,nlmax,nmmax);
 | 
|---|
 | 1108 |       //      LambdaPMBuilder lpmb(theta,nlmax,nmmax);
 | 
|---|
 | 1109 |       r_8 sqr2inv=1/Rac2;
 | 
|---|
| [833] | 1110 |       int m;
 | 
|---|
 | 1111 |       for (m = 0; m <= nmmax; m++)
 | 
|---|
| [729] | 1112 |         {
 | 
|---|
 | 1113 |           r_8 lambda_w=0.;
 | 
|---|
 | 1114 |           r_8 lambda_x=0.;
 | 
|---|
 | 1115 |           lwxb.lam_wx(m, m, lambda_w, lambda_x);
 | 
|---|
 | 1116 |           complex<T>  zi_lam_x((T)0., (T)lambda_x);
 | 
|---|
 | 1117 |           
 | 
|---|
 | 1118 |           b_m_theta_q(m) =  ( (T)(lambda_w) * alme(m,m) - zi_lam_x * almb(m,m))*(T)sqr2inv ;
 | 
|---|
 | 1119 |           b_m_theta_u(m) =  ( (T)(lambda_w) * almb(m,m) + zi_lam_x * alme(m,m))*(T)sqr2inv;
 | 
|---|
 | 1120 |           
 | 
|---|
 | 1121 |           
 | 
|---|
 | 1122 |           for (int l = m+1; l<= nlmax; l++)
 | 
|---|
 | 1123 |             {
 | 
|---|
 | 1124 |               
 | 
|---|
 | 1125 |               lwxb.lam_wx(l, m, lambda_w, lambda_x);
 | 
|---|
 | 1126 |               zi_lam_x= complex<T>((T)0., (T)lambda_x);
 | 
|---|
 | 1127 |               
 | 
|---|
 | 1128 |               b_m_theta_q(m) += ((T)(lambda_w)*alme(l,m)-zi_lam_x *almb(l,m))*(T)sqr2inv;
 | 
|---|
 | 1129 |               b_m_theta_u(m) += ((T)(lambda_w)*almb(l,m)+zi_lam_x *alme(l,m))*(T)sqr2inv;
 | 
|---|
 | 1130 |               
 | 
|---|
 | 1131 |             } 
 | 
|---|
 | 1132 |         }
 | 
|---|
 | 1133 |       //        obtains the negative m of b(m,theta) (= complex conjugate)
 | 
|---|
| [833] | 1134 |       for (m=1;m<=nmmax;m++)
 | 
|---|
| [729] | 1135 |         {
 | 
|---|
 | 1136 |           b_m_theta_q(-m) = conj(b_m_theta_q(m));
 | 
|---|
 | 1137 |           b_m_theta_u(-m) = conj(b_m_theta_u(m));
 | 
|---|
 | 1138 |         }
 | 
|---|
 | 1139 | 
 | 
|---|
 | 1140 |       //    TVector<complex<T> > Tempq = fourierSynthesisFromB(b_m_theta_q,nph,phi0);  
 | 
|---|
 | 1141 |       //     TVector<complex<T> > Tempu = fourierSynthesisFromB(b_m_theta_u,nph,phi0); 
 | 
|---|
 | 1142 |       TVector<T> Tempq = RfourierSynthesisFromB(b_m_theta_q,nph,phi0);  
 | 
|---|
 | 1143 |       TVector<T> Tempu = RfourierSynthesisFromB(b_m_theta_u,nph,phi0); 
 | 
|---|
 | 1144 |       for (int i=0;i< nph;i++)
 | 
|---|
 | 1145 |         {
 | 
|---|
 | 1146 |           //      mapq(pixNumber(i))=Tempq(i).real();
 | 
|---|
 | 1147 |           //      mapu(pixNumber(i))=Tempu(i).real();
 | 
|---|
 | 1148 |           mapq(pixNumber(i))=Tempq(i);
 | 
|---|
 | 1149 |           mapu(pixNumber(i))=Tempu(i);
 | 
|---|
 | 1150 |           
 | 
|---|
 | 1151 |         }
 | 
|---|
 | 1152 |     } 
 | 
|---|
 | 1153 | }
 | 
|---|
| [1218] | 1154 | /*! \fn void SOPHYA::SphericalTransformServer::mapFromPM(int_4 nlmax, int_4 nmmax,
 | 
|---|
 | 1155 |                                          SphericalMap<T>& mapq,
 | 
|---|
 | 1156 |                                          SphericalMap<T>& mapu, 
 | 
|---|
 | 1157 |                                          const Alm<T>& alme,
 | 
|---|
 | 1158 |                                          const Alm<T>& almb) const
 | 
|---|
 | 1159 | 
 | 
|---|
 | 1160 | synthesis of polarizations following formulae : 
 | 
|---|
 | 1161 | 
 | 
|---|
 | 1162 | \f[
 | 
|---|
 | 1163 | P^+ = \sum_{m=-mmax}^{mmax} {b_m^+e^{im\varphi} }
 | 
|---|
 | 1164 | \f]
 | 
|---|
 | 1165 | \f[
 | 
|---|
 | 1166 | P^- = \sum_{m=-mmax}^{mmax} {b_m^-e^{im\varphi} }
 | 
|---|
 | 1167 | \f]
 | 
|---|
 | 1168 | 
 | 
|---|
 | 1169 | computed by FFT (method fourierSynthesisFromB called by the present one)
 | 
|---|
 | 1170 | 
 | 
|---|
 | 1171 | with :
 | 
|---|
 | 1172 | 
 | 
|---|
 | 1173 | \f[
 | 
|---|
 | 1174 | b_m^+=-\sum_{l=|m|}^{lmax}{\,_{+}\lambda_l^m \left( a_{lm}^E+ia_{lm}^B \right) }
 | 
|---|
 | 1175 | \f]
 | 
|---|
 | 1176 | \f[
 | 
|---|
 | 1177 | b_m^-=-\sum_{l=|m|}^{lmax}{\,_{+}\lambda_l^m \left( a_{lm}^E-ia_{lm}^B \right) }
 | 
|---|
 | 1178 | \f]
 | 
|---|
 | 1179 |  */
 | 
|---|
| [729] | 1180 | template<class T>
 | 
|---|
 | 1181 | void SphericalTransformServer<T>::mapFromPM(int_4 nlmax, int_4 nmmax,
 | 
|---|
 | 1182 |                                          SphericalMap<T>& mapq,
 | 
|---|
 | 1183 |                                          SphericalMap<T>& mapu, 
 | 
|---|
 | 1184 |                                          const Alm<T>& alme,
 | 
|---|
 | 1185 |                                          const Alm<T>& almb) const
 | 
|---|
 | 1186 | {
 | 
|---|
 | 1187 |   Bm<complex<T> > b_m_theta_p(nmmax);
 | 
|---|
 | 1188 |   Bm<complex<T> > b_m_theta_m(nmmax);
 | 
|---|
| [746] | 1189 |   for (int_4 ith = 0; ith < mapq.NbThetaSlices();ith++)
 | 
|---|
| [729] | 1190 |     {
 | 
|---|
 | 1191 |       int_4 nph;
 | 
|---|
 | 1192 |       r_8 phi0;
 | 
|---|
 | 1193 |       r_8 theta;
 | 
|---|
 | 1194 |       TVector<int_4> pixNumber; 
 | 
|---|
 | 1195 |       TVector<T> datan;
 | 
|---|
 | 1196 |       
 | 
|---|
 | 1197 |       mapq.GetThetaSlice(ith,theta,phi0, pixNumber,datan);
 | 
|---|
 | 1198 |       nph =  pixNumber.NElts();
 | 
|---|
 | 1199 | 
 | 
|---|
 | 1200 |       //       -----------------------------------------------------
 | 
|---|
 | 1201 |       //              for each theta, and each m, computes
 | 
|---|
 | 1202 |       //              b(m,theta) = sum_over_l>m (lambda_l_m(theta) * a_l_m) 
 | 
|---|
 | 1203 |       //------------------------------------------------------
 | 
|---|
 | 1204 | 
 | 
|---|
 | 1205 |       LambdaPMBuilder lpmb(theta,nlmax,nmmax);
 | 
|---|
| [833] | 1206 |       int m;
 | 
|---|
 | 1207 |       for (m = 0; m <= nmmax; m++)
 | 
|---|
| [729] | 1208 |         {
 | 
|---|
 | 1209 |           r_8 lambda_p=0.;
 | 
|---|
 | 1210 |           r_8 lambda_m=0.;
 | 
|---|
 | 1211 |           lpmb.lam_pm(m, m, lambda_p, lambda_m);
 | 
|---|
 | 1212 |           complex<T> im((T)0.,(T)1.);
 | 
|---|
 | 1213 |           
 | 
|---|
 | 1214 |           b_m_theta_p(m) =  (T)(lambda_p )* (-alme(m,m) - im * almb(m,m));
 | 
|---|
 | 1215 |           b_m_theta_m(m) =  (T)(lambda_m) * (-alme(m,m) + im * almb(m,m));
 | 
|---|
 | 1216 |           
 | 
|---|
 | 1217 |           
 | 
|---|
 | 1218 |           for (int l = m+1; l<= nlmax; l++)
 | 
|---|
 | 1219 |             {
 | 
|---|
 | 1220 |               lpmb.lam_pm(l, m, lambda_p, lambda_m);
 | 
|---|
 | 1221 |               b_m_theta_p(m) +=  (T)(lambda_p)*(-alme(l,m)-im *almb(l,m));
 | 
|---|
 | 1222 |               b_m_theta_m(m) +=  (T)(lambda_m)*(-alme(l,m)+im *almb(l,m));
 | 
|---|
 | 1223 |             }
 | 
|---|
 | 1224 |         }
 | 
|---|
 | 1225 |       
 | 
|---|
 | 1226 |       //        obtains the negative m of b(m,theta) (= complex conjugate)
 | 
|---|
| [833] | 1227 |       for (m=1;m<=nmmax;m++)
 | 
|---|
| [729] | 1228 |         {
 | 
|---|
 | 1229 |           b_m_theta_p(-m) = conj(b_m_theta_m(m));
 | 
|---|
 | 1230 |           b_m_theta_m(-m) = conj(b_m_theta_p(m));
 | 
|---|
 | 1231 |         }
 | 
|---|
 | 1232 | 
 | 
|---|
 | 1233 |       TVector<complex<T> > Tempp = fourierSynthesisFromB(b_m_theta_p,nph,phi0);  
 | 
|---|
 | 1234 |       TVector<complex<T> > Tempm = fourierSynthesisFromB(b_m_theta_m,nph,phi0); 
 | 
|---|
 | 1235 | 
 | 
|---|
 | 1236 |       for (int i=0;i< nph;i++)
 | 
|---|
 | 1237 |         {
 | 
|---|
 | 1238 |                   mapq(pixNumber(i))=0.5*(Tempp(i)+Tempm(i)).real();
 | 
|---|
 | 1239 |                   mapu(pixNumber(i))=0.5*(Tempp(i)-Tempm(i)).imag();
 | 
|---|
 | 1240 |         }
 | 
|---|
 | 1241 |     }
 | 
|---|
 | 1242 | }
 | 
|---|
 | 1243 | 
 | 
|---|
 | 1244 | 
 | 
|---|
| [1218] | 1245 |   /*! \fn void SOPHYA::SphericalTransformServer::GenerateFromCl(SphericalMap<T>& sphq, 
 | 
|---|
 | 1246 |                                               SphericalMap<T>& sphu, 
 | 
|---|
 | 1247 |                                               int_4 pixelSizeIndex,
 | 
|---|
 | 1248 |                                               const TVector<T>& Cle, 
 | 
|---|
 | 1249 |                                               const TVector<T>& Clb, 
 | 
|---|
 | 1250 |                                               const r_8 fwhm) const
 | 
|---|
 | 1251 | 
 | 
|---|
 | 1252 | synthesis of a polarization  map from  power spectra electric-Cl and magnetic-Cl (Alm's are generated randomly, following a gaussian distribution). 
 | 
|---|
 | 1253 |   \param fwhm FWHM in arcmin for random generation of Alm's (eg. 5) 
 | 
|---|
 | 1254 | */
 | 
|---|
| [729] | 1255 | template<class T>
 | 
|---|
 | 1256 | void SphericalTransformServer<T>::GenerateFromCl(SphericalMap<T>& sphq, 
 | 
|---|
 | 1257 |                                               SphericalMap<T>& sphu, 
 | 
|---|
 | 1258 |                                               int_4 pixelSizeIndex,
 | 
|---|
 | 1259 |                                               const TVector<T>& Cle, 
 | 
|---|
 | 1260 |                                               const TVector<T>& Clb, 
 | 
|---|
 | 1261 |                                               const r_8 fwhm) const
 | 
|---|
 | 1262 | {
 | 
|---|
 | 1263 |   if (Cle.NElts() != Clb.NElts())
 | 
|---|
 | 1264 |     {
 | 
|---|
 | 1265 |       cout << " SphericalTransformServer: les deux tableaux Cl n'ont pas la meme taille" << endl;
 | 
|---|
 | 1266 |       throw SzMismatchError("SphericalTransformServer::GenerateFromCl :  two Cl arrays have not same size");
 | 
|---|
 | 1267 |     }
 | 
|---|
 | 1268 | 
 | 
|---|
 | 1269 |   //  Alm<T> a2lme,a2lmb;
 | 
|---|
 | 1270 |   //  almFromCl(a2lme, Cle, fwhm); 
 | 
|---|
 | 1271 |   //  almFromCl(a2lmb, Clb, fwhm); 
 | 
|---|
 | 1272 |   //  Alm<T> a2lme = almFromCl(Cle, fwhm);
 | 
|---|
 | 1273 |   // Alm<T> a2lmb = almFromCl(Clb, fwhm);
 | 
|---|
 | 1274 |   Alm<T> a2lme(Cle, fwhm);
 | 
|---|
 | 1275 |   Alm<T> a2lmb(Clb, fwhm);
 | 
|---|
 | 1276 | 
 | 
|---|
 | 1277 |   GenerateFromAlm(sphq,sphu,pixelSizeIndex,a2lme,a2lmb); 
 | 
|---|
 | 1278 | }
 | 
|---|
| [1218] | 1279 |  /*! \fn void SOPHYA::SphericalTransformServer::GenerateFromCl(SphericalMap<T>& sph,
 | 
|---|
 | 1280 |                                                  int_4 pixelSizeIndex, 
 | 
|---|
 | 1281 |                                               const TVector<T>& Cl, 
 | 
|---|
 | 1282 |                                                  const r_8 fwhm)  const
 | 
|---|
 | 1283 | 
 | 
|---|
 | 1284 | synthesis of a temperature  map from  power spectrum Cl (Alm's are generated randomly, following a gaussian distribution). */
 | 
|---|
| [729] | 1285 | template<class T>
 | 
|---|
 | 1286 | void SphericalTransformServer<T>::GenerateFromCl(SphericalMap<T>& sph,
 | 
|---|
 | 1287 |                                                  int_4 pixelSizeIndex, 
 | 
|---|
 | 1288 |                                               const TVector<T>& Cl, 
 | 
|---|
 | 1289 |                                                  const r_8 fwhm)  const
 | 
|---|
 | 1290 | {
 | 
|---|
 | 1291 | 
 | 
|---|
 | 1292 |   Alm<T> alm(Cl, fwhm);
 | 
|---|
 | 1293 |   GenerateFromAlm(sph,pixelSizeIndex, alm ); 
 | 
|---|
 | 1294 | }
 | 
|---|
 | 1295 | 
 | 
|---|
 | 1296 | 
 | 
|---|
 | 1297 | 
 | 
|---|
| [1756] | 1298 | /*! \fn TVector<T>  SOPHYA::SphericalTransformServer::DecomposeToCl(SphericalMap<T>& sph, int_4 nlmax, r_8 cos_theta_cut, int iterationOrder) const
 | 
|---|
| [1218] | 1299 | 
 | 
|---|
| [1683] | 1300 | \return power spectrum from analysis of a temperature map. THE MAP CAN BE MODIFIED (if iterationOrder >0) 
 | 
|---|
| [1218] | 1301 | 
 | 
|---|
 | 1302 |      \param<nlmax> : maximum value of the l index
 | 
|---|
 | 1303 | 
 | 
|---|
 | 1304 |      \param<cos_theta_cut> : cosinus of the symmetric cut EULER angle theta : cos_theta_cut=0 means no cut ; cos_theta_cut=1 all the sphere is cut.
 | 
|---|
| [1683] | 1305 | 
 | 
|---|
| [1756] | 1306 | \param<iterationOrder> : 1,2,3,4.... order of an iterative analysis. If iterationOrder is not null, the method works with SphereHEALPix but NOT WITH SphereThetaPhi maps !
 | 
|---|
| [1683] | 1307 | 
 | 
|---|
| [1218] | 1308 |   */ 
 | 
|---|
| [729] | 1309 | template <class T>
 | 
|---|
| [1683] | 1310 | TVector<T>  SphericalTransformServer<T>::DecomposeToCl(SphericalMap<T>& sph, int_4 nlmax, r_8 cos_theta_cut, int iterationOrder) const
 | 
|---|
| [729] | 1311 | {
 | 
|---|
| [1683] | 1312 |   Alm<T> alm;
 | 
|---|
 | 1313 |   DecomposeToAlm( sph, alm, nlmax, cos_theta_cut, iterationOrder);
 | 
|---|
| [729] | 1314 |   // power spectrum
 | 
|---|
 | 1315 |      return  alm.powerSpectrum();
 | 
|---|
 | 1316 | }
 | 
|---|
 | 1317 | 
 | 
|---|
| [1756] | 1318 | 
 | 
|---|
 | 1319 | /*! \fn TVector<T>  SOPHYA::SphericalTransformServer::DecomposeToCl(const SphericalMap<T>& sph, int_4 nlmax, r_8 cos_theta_cut) const
 | 
|---|
 | 1320 | 
 | 
|---|
 | 1321 | \return power spectrum from analysis of a temperature map. 
 | 
|---|
 | 1322 | 
 | 
|---|
 | 1323 |      \param<nlmax> : maximum value of the l index
 | 
|---|
 | 1324 | 
 | 
|---|
 | 1325 |      \param<cos_theta_cut> : cosinus of the symmetric cut EULER angle theta : cos_theta_cut=0 means no cut ; cos_theta_cut=1 all the sphere is cut.
 | 
|---|
 | 1326 | 
 | 
|---|
 | 1327 | 
 | 
|---|
 | 1328 |   */ 
 | 
|---|
 | 1329 | 
 | 
|---|
 | 1330 | 
 | 
|---|
 | 1331 | template <class T>
 | 
|---|
 | 1332 | TVector<T>  SphericalTransformServer<T>::DecomposeToCl(const SphericalMap<T>& sph, int_4 nlmax, r_8 cos_theta_cut) const
 | 
|---|
 | 1333 | {
 | 
|---|
 | 1334 |   Alm<T> alm;
 | 
|---|
 | 1335 |   DecomposeToAlm( sph, alm, nlmax, cos_theta_cut);
 | 
|---|
 | 1336 |   // power spectrum
 | 
|---|
 | 1337 |      return  alm.powerSpectrum();
 | 
|---|
 | 1338 | }
 | 
|---|
 | 1339 | 
 | 
|---|
| [729] | 1340 | #ifdef __CXX_PRAGMA_TEMPLATES__
 | 
|---|
 | 1341 | #pragma define_template SphericalTransformServer<r_8>
 | 
|---|
 | 1342 | #pragma define_template SphericalTransformServer<r_4>
 | 
|---|
 | 1343 | #endif
 | 
|---|
 | 1344 | #if defined(ANSI_TEMPLATES) || defined(GNU_TEMPLATES)
 | 
|---|
 | 1345 | template class SphericalTransformServer<r_8>;
 | 
|---|
 | 1346 | template class SphericalTransformServer<r_4>;
 | 
|---|
 | 1347 | #endif
 | 
|---|