[2615] | 1 | #include "sopnamsp.h"
|
---|
[729] | 2 | #include "machdefs.h"
|
---|
[2322] | 3 | #include <iostream>
|
---|
[729] | 4 | #include <math.h>
|
---|
| 5 | #include <complex>
|
---|
| 6 | #include "sphericaltransformserver.h"
|
---|
| 7 | #include "tvector.h"
|
---|
| 8 | #include "nbrandom.h"
|
---|
| 9 | #include "nbmath.h"
|
---|
[1683] | 10 | #include "timing.h"
|
---|
| 11 | //#include "spherehealpix.h"
|
---|
[729] | 12 |
|
---|
[1683] | 13 |
|
---|
[1218] | 14 | /*! \class SOPHYA::SphericalTransformServer
|
---|
[729] | 15 |
|
---|
[1218] | 16 | Class for performing analysis and synthesis of sky maps using spin-0 or spin-2 spherical harmonics.
|
---|
| 17 |
|
---|
| 18 | Maps must be SOPHYA SphericalMaps (SphereGorski or SphereThetaPhi).
|
---|
| 19 |
|
---|
| 20 | Temperature and polarization (Stokes parameters) can be developped on spherical harmonics :
|
---|
| 21 | \f[
|
---|
| 22 | \frac{\Delta T}{T}(\hat{n})=\sum_{lm}a_{lm}^TY_l^m(\hat{n})
|
---|
| 23 | \f]
|
---|
| 24 | \f[
|
---|
| 25 | Q(\hat{n})=\frac{1}{\sqrt{2}}\sum_{lm}N_l\left(a_{lm}^EW_{lm}(\hat{n})+a_{lm}^BX_{lm}(\hat{n})\right)
|
---|
| 26 | \f]
|
---|
| 27 | \f[
|
---|
| 28 | U(\hat{n})=-\frac{1}{\sqrt{2}}\sum_{lm}N_l\left(a_{lm}^EX_{lm}(\hat{n})-a_{lm}^BW_{lm}(\hat{n})\right)
|
---|
| 29 | \f]
|
---|
| 30 | \f[
|
---|
| 31 | \left(Q \pm iU\right)(\hat{n})=\sum_{lm}a_{\pm 2lm}\, _{\pm 2}Y_l^m(\hat{n})
|
---|
| 32 | \f]
|
---|
| 33 |
|
---|
| 34 | \f[
|
---|
| 35 | Y_l^m(\hat{n})=\lambda_l^m(\theta)e^{im\phi}
|
---|
| 36 | \f]
|
---|
| 37 | \f[
|
---|
| 38 | _{\pm}Y_l^m(\hat{n})=_{\pm}\lambda_l^m(\theta)e^{im\phi}
|
---|
| 39 | \f]
|
---|
| 40 | \f[
|
---|
| 41 | W_{lm}(\hat{n})=\frac{1}{N_l}\,_{w}\lambda_l^m(\theta)e^{im\phi}
|
---|
| 42 | \f]
|
---|
| 43 | \f[
|
---|
| 44 | X_{lm}(\hat{n})=\frac{-i}{N_l}\,_{x}\lambda_l^m(\theta)e^{im\phi}
|
---|
| 45 | \f]
|
---|
| 46 |
|
---|
| 47 | (see LambdaLMBuilder, LambdaPMBuilder, LambdaWXBuilder classes)
|
---|
| 48 |
|
---|
| 49 | power spectra :
|
---|
| 50 |
|
---|
| 51 | \f[
|
---|
| 52 | C_l^T=\frac{1}{2l+1}\sum_{m=0}^{+ \infty }\left|a_{lm}^T\right|^2=\langle\left|a_{lm}^T\right|^2\rangle
|
---|
| 53 | \f]
|
---|
| 54 | \f[
|
---|
| 55 | C_l^E=\frac{1}{2l+1}\sum_{m=0}^{+\infty}\left|a_{lm}^E\right|^2=\langle\left|a_{lm}^E\right|^2\rangle
|
---|
| 56 | \f]
|
---|
| 57 | \f[
|
---|
| 58 | C_l^B=\frac{1}{2l+1}\sum_{m=0}^{+\infty}\left|a_{lm}^B\right|^2=\langle\left|a_{lm}^B\right|^2\rangle
|
---|
| 59 | \f]
|
---|
| 60 |
|
---|
| 61 | \arg
|
---|
| 62 | \b Synthesis : Get temperature and polarization maps from \f$a_{lm}\f$ coefficients or from power spectra, (methods GenerateFrom...).
|
---|
| 63 |
|
---|
| 64 | \b Temperature:
|
---|
| 65 | \f[
|
---|
| 66 | \frac{\Delta T}{T}(\hat{n})=\sum_{lm}a_{lm}^TY_l^m(\hat{n}) = \sum_{-\infty}^{+\infty}b_m(\theta)e^{im\phi}
|
---|
| 67 | \f]
|
---|
| 68 |
|
---|
| 69 | with
|
---|
| 70 | \f[
|
---|
| 71 | b_m(\theta)=\sum_{l=\left|m\right|}^{+\infty}a_{lm}^T\lambda_l^m(\theta)
|
---|
| 72 | \f]
|
---|
| 73 |
|
---|
| 74 | \b Polarisation
|
---|
| 75 | \f[
|
---|
| 76 | Q \pm iU = \sum_{-\infty}^{+\infty}b_m^{\pm}(\theta)e^{im\phi}
|
---|
| 77 | \f]
|
---|
| 78 |
|
---|
| 79 | where :
|
---|
| 80 | \f[
|
---|
| 81 | b_m^{\pm}(\theta) = \sum_{l=\left|m\right|}^{+\infty}a_{\pm 2lm}\,_{\pm}\lambda_l^m(\theta)
|
---|
| 82 | \f]
|
---|
| 83 |
|
---|
| 84 | or :
|
---|
| 85 | \f[
|
---|
| 86 | Q = \sum_{-\infty}^{+\infty}b_m^{Q}(\theta)e^{im\phi}
|
---|
| 87 | \f]
|
---|
| 88 | \f[
|
---|
| 89 | U = \sum_{-\infty}^{+\infty}b_m^{U}(\theta)e^{im\phi}
|
---|
| 90 | \f]
|
---|
| 91 |
|
---|
| 92 | where:
|
---|
| 93 | \f[
|
---|
| 94 | b_m^{Q}(\theta) = \frac{1}{\sqrt{2}}\sum_{l=\left|m\right|}^{+\infty}\left(a_{lm}^E\,_{w}\lambda_l^m(\theta)-ia_{lm}^B\,_{x}\lambda_l^m(\theta)\right)
|
---|
| 95 | \f]
|
---|
| 96 | \f[
|
---|
| 97 | b_m^{U}(\theta) = \frac{1}{\sqrt{2}}\sum_{l=\left|m\right|}^{+\infty}\left(ia_{lm}^E\,_{x}\lambda_l^m(\theta)+a_{lm}^B\,_{w}\lambda_l^m(\theta)\right)
|
---|
| 98 | \f]
|
---|
| 99 |
|
---|
| 100 | Since the pixelization provides "slices" with constant \f$\theta\f$ and \f$\phi\f$ equally distributed on \f$2\pi\f$ \f$\frac{\Delta T}{T}\f$, \f$Q\f$,\f$U\f$ can be computed by FFT.
|
---|
| 101 |
|
---|
| 102 |
|
---|
| 103 | \arg
|
---|
| 104 | \b Analysis : Get \f$a_{lm}\f$ coefficients or power spectra from temperature and polarization maps (methods DecomposeTo...).
|
---|
| 105 |
|
---|
| 106 | \b Temperature:
|
---|
| 107 | \f[
|
---|
| 108 | a_{lm}^T=\int\frac{\Delta T}{T}(\hat{n})Y_l^{m*}(\hat{n})d\hat{n}
|
---|
| 109 | \f]
|
---|
| 110 |
|
---|
| 111 | approximated as :
|
---|
| 112 | \f[
|
---|
| 113 | a_{lm}^T=\sum_{\theta_k}\omega_kC_m(\theta_k)\lambda_l^m(\theta_k)
|
---|
| 114 | \f]
|
---|
| 115 | where :
|
---|
| 116 | \f[
|
---|
| 117 | C_m (\theta _k)=\sum_{\phi _{k\prime}}\frac{\Delta T}{T}(\theta _k,\phi_{k\prime})e^{-im\phi _{k\prime}}
|
---|
| 118 | \f]
|
---|
| 119 | Since the pixelization provides "slices" with constant \f$\theta\f$ and \f$\phi\f$ equally distributed on \f$2\pi\f$ (\f$\omega_k\f$ is the solid angle of each pixel of the slice \f$\theta_k\f$) \f$C_m\f$ can be computed by FFT.
|
---|
| 120 |
|
---|
| 121 | \b polarisation:
|
---|
| 122 |
|
---|
| 123 | \f[
|
---|
| 124 | a_{\pm 2lm}=\sum_{\theta_k}\omega_kC_m^{\pm}(\theta_k)\,_{\pm}\lambda_l^m(\theta_k)
|
---|
| 125 | \f]
|
---|
| 126 | where :
|
---|
| 127 | \f[
|
---|
| 128 | C_m^{\pm} (\theta _k)=\sum_{\phi _{k\prime}}\left(Q \pm iU\right)(\theta _k,\phi_{k\prime})e^{-im\phi _{k\prime}}
|
---|
| 129 | \f]
|
---|
| 130 | or :
|
---|
| 131 |
|
---|
| 132 | \f[
|
---|
| 133 | a_{lm}^E=\frac{1}{\sqrt{2}}\sum_{\theta_k}\omega_k\left(C_m^{Q}(\theta_k)\,_{w}\lambda_l^m(\theta_k)-iC_m^{U}(\theta_k)\,_{x}\lambda_l^m(\theta_k)\right)
|
---|
| 134 | \f]
|
---|
| 135 | \f[
|
---|
| 136 | a_{lm}^B=\frac{1}{\sqrt{2}}\sum_{\theta_k}\omega_k\left(iC_m^{Q}(\theta_k)\,_{x}\lambda_l^m(\theta_k)+C_m^{U}(\theta_k)\,_{w}\lambda_l^m(\theta_k)\right)
|
---|
| 137 | \f]
|
---|
| 138 |
|
---|
| 139 | where :
|
---|
| 140 | \f[
|
---|
| 141 | C_m^{Q} (\theta _k)=\sum_{\phi _{k\prime}}Q(\theta _k,\phi_{k\prime})e^{-im\phi _{k\prime}}
|
---|
| 142 | \f]
|
---|
| 143 | \f[
|
---|
| 144 | C_m^{U} (\theta _k)=\sum_{\phi _{k\prime}}U(\theta _k,\phi_{k\prime})e^{-im\phi _{k\prime}}
|
---|
| 145 | \f]
|
---|
| 146 |
|
---|
| 147 | */
|
---|
| 148 |
|
---|
| 149 | /*! \fn void SOPHYA::SphericalTransformServer::GenerateFromAlm( SphericalMap<T>& map, int_4 pixelSizeIndex, const Alm<T>& alm) const
|
---|
| 150 |
|
---|
| 151 | synthesis of a temperature map from Alm coefficients
|
---|
| 152 | */
|
---|
[729] | 153 | template<class T>
|
---|
| 154 | void SphericalTransformServer<T>::GenerateFromAlm( SphericalMap<T>& map, int_4 pixelSizeIndex, const Alm<T>& alm) const
|
---|
| 155 | {
|
---|
| 156 | /*=======================================================================
|
---|
[1756] | 157 | computes a map from its alm for the HEALPIX pixelisation
|
---|
[729] | 158 | map(theta,phi) = sum_l_m a_lm Y_lm(theta,phi)
|
---|
| 159 | = sum_m {e^(i*m*phi) sum_l a_lm*lambda_lm(theta)}
|
---|
| 160 |
|
---|
| 161 | where Y_lm(theta,phi) = lambda(theta) * e^(i*m*phi)
|
---|
| 162 |
|
---|
| 163 | * the recurrence of Ylm is the standard one (cf Num Rec)
|
---|
| 164 | * the sum over m is done by FFT
|
---|
| 165 |
|
---|
| 166 | =======================================================================*/
|
---|
| 167 | int_4 nlmax=alm.Lmax();
|
---|
| 168 | int_4 nmmax=nlmax;
|
---|
| 169 | int_4 nsmax=0;
|
---|
[1756] | 170 | // le Resize est suppose mettre a zero
|
---|
[729] | 171 | map.Resize(pixelSizeIndex);
|
---|
[2291] | 172 | string sphere_type=map.TypeOfMap();
|
---|
[1756] | 173 | int premiereTranche = 0;
|
---|
| 174 | int derniereTranche = map.NbThetaSlices()-1;
|
---|
[2291] | 175 | if (sphere_type.substr(0,4) == "RING")
|
---|
[1756] | 176 | {
|
---|
| 177 | nsmax=map.SizeIndex();
|
---|
| 178 | }
|
---|
[729] | 179 | else
|
---|
[1756] | 180 | {
|
---|
[729] | 181 | // pour une sphere Gorski le nombre de pixels est 12*nsmax**2
|
---|
| 182 | // on calcule une quantite equivalente a nsmax pour la sphere-theta-phi
|
---|
| 183 | // en vue de l'application du critere Healpix : nlmax<=3*nsmax-1
|
---|
| 184 | // c'est approximatif ; a raffiner.
|
---|
[2291] | 185 | if (sphere_type.substr(0,6) == "TETAFI")
|
---|
[1756] | 186 | {
|
---|
| 187 | nsmax=(int_4)sqrt(map.NbPixels()/12.);
|
---|
| 188 | premiereTranche++;
|
---|
| 189 | derniereTranche--;
|
---|
| 190 | }
|
---|
[729] | 191 | else
|
---|
[1756] | 192 | {
|
---|
| 193 | cout << " unknown type of sphere : " << sphere_type << endl;
|
---|
| 194 | throw IOExc(" unknown type of sphere: " + (string)sphere_type );
|
---|
| 195 | }
|
---|
[1683] | 196 | // cout << "GenerateFromAlm: the sphere is of type : " << sphere_type << endl;
|
---|
| 197 | // cout << "GenerateFromAlm: size index (nside) of the sphere= " << nsmax << endl;
|
---|
| 198 | // cout << "GenerateFromAlm: nlmax (from Alm) = " << nlmax << endl;
|
---|
[1756] | 199 | // if (nlmax>3*nsmax-1)
|
---|
| 200 | // {
|
---|
[1683] | 201 | // cout << "GenerateFromAlm: nlmax should be <= 3*nside-1" << endl;
|
---|
[1756] | 202 | // if (strncmp(sphere_type,"TETAFI",6) == 0)
|
---|
| 203 | // {
|
---|
| 204 | // cout << "GenerateFromAlm: nlmax should be <= 3*nside-1" << endl;
|
---|
| 205 | // cout << " (for this criterium, nsmax is computed as sqrt(nbPixels/12))" << endl;
|
---|
| 206 | // }
|
---|
| 207 | //}
|
---|
| 208 | }
|
---|
[729] | 209 | Bm<complex<T> > b_m_theta(nmmax);
|
---|
| 210 |
|
---|
| 211 | // map.Resize(nsmax);
|
---|
| 212 |
|
---|
| 213 |
|
---|
| 214 | // pour chaque tranche en theta
|
---|
[1756] | 215 | for (int_4 ith = premiereTranche; ith <= derniereTranche;ith++)
|
---|
[729] | 216 | {
|
---|
| 217 | int_4 nph;
|
---|
| 218 | r_8 phi0;
|
---|
| 219 | r_8 theta;
|
---|
| 220 | TVector<int_4> pixNumber;
|
---|
| 221 | TVector<T> datan;
|
---|
| 222 |
|
---|
| 223 | map.GetThetaSlice(ith,theta,phi0, pixNumber,datan);
|
---|
| 224 | nph = pixNumber.NElts();
|
---|
| 225 |
|
---|
| 226 | // -----------------------------------------------------
|
---|
| 227 | // for each theta, and each m, computes
|
---|
| 228 | // b(m,theta) = sum_over_l>m (lambda_l_m(theta) * a_l_m)
|
---|
| 229 | // ------------------------------------------------------
|
---|
| 230 | LambdaLMBuilder lb(theta,nlmax,nmmax);
|
---|
| 231 | // somme sur m de 0 a l'infini
|
---|
[833] | 232 | int m;
|
---|
| 233 | for (m = 0; m <= nmmax; m++)
|
---|
[729] | 234 | {
|
---|
| 235 | b_m_theta(m) = (T)( lb.lamlm(m,m) ) * alm(m,m);
|
---|
| 236 | for (int l = m+1; l<= nlmax; l++)
|
---|
| 237 | {
|
---|
| 238 | b_m_theta(m) += (T)( lb.lamlm(l,m) ) * alm(l,m);
|
---|
| 239 | }
|
---|
| 240 | }
|
---|
| 241 | // obtains the negative m of b(m,theta) (= complex conjugate)
|
---|
| 242 |
|
---|
[833] | 243 | for (m=1;m<=nmmax;m++)
|
---|
[729] | 244 | {
|
---|
| 245 | b_m_theta(-m) = conj(b_m_theta(m));
|
---|
| 246 | }
|
---|
| 247 | // ---------------------------------------------------------------
|
---|
| 248 | // sum_m b(m,theta)*exp(i*m*phi) -> f(phi,theta)
|
---|
| 249 | // ---------------------------------------------------------------*/
|
---|
[2313] | 250 |
|
---|
| 251 |
|
---|
| 252 | if (sphere_type.substr(0,4) == "RING")
|
---|
[729] | 253 | {
|
---|
[2313] | 254 | TVector<T> Temp = RfourierSynthesisFromB(b_m_theta,nph,phi0);
|
---|
| 255 | for (int i=0;i< nph;i++) map(pixNumber(i))=Temp(i);
|
---|
[729] | 256 | }
|
---|
[2313] | 257 | else
|
---|
| 258 | // pour des pixelisations quelconques (autres que HEALPix
|
---|
| 259 | // nph n'est pas toujours pair
|
---|
| 260 | // ca fait des problemes pour les transformees de Fourier
|
---|
| 261 | // car le server de TF ajuste la longueur du vecteur reel
|
---|
| 262 | // en sortie de TF, bref, la securite veut qu'on prenne une
|
---|
| 263 | // TF complexe
|
---|
| 264 | {
|
---|
| 265 | TVector<complex<T> > Temp = fourierSynthesisFromB(b_m_theta,nph,phi0);
|
---|
| 266 | for (int i=0;i< nph;i++) map(pixNumber(i))=Temp(i).real();
|
---|
| 267 | }
|
---|
[729] | 268 | }
|
---|
| 269 | }
|
---|
| 270 |
|
---|
| 271 |
|
---|
| 272 |
|
---|
[1218] | 273 | /*! \fn TVector< complex<T> > SOPHYA::SphericalTransformServer::fourierSynthesisFromB(const Bm<complex<T> >& b_m, int_4 nph, r_8 phi0) const
|
---|
| 274 |
|
---|
| 275 | \return a vector with nph elements which are sums :\f$\sum_{m=-mmax}^{mmax}b_m(\theta)e^{im\varphi}\f$ for nph values of \f$\varphi\f$ regularly distributed in \f$[0,\pi]\f$ ( calculated by FFT)
|
---|
| 276 |
|
---|
| 277 | The object b_m (\f$b_m\f$) of the class Bm is a special vector which index goes from -mmax to mmax.
|
---|
| 278 | */
|
---|
[729] | 279 | template<class T>
|
---|
| 280 | TVector< complex<T> > SphericalTransformServer<T>::fourierSynthesisFromB(const Bm<complex<T> >& b_m, int_4 nph, r_8 phi0) const
|
---|
| 281 | {
|
---|
| 282 | /*=======================================================================
|
---|
| 283 | dataout(j) = sum_m datain(m) * exp(i*m*phi(j))
|
---|
| 284 | with phi(j) = j*2pi/nph + kphi0*pi/nph and kphi0 =0 or 1
|
---|
| 285 |
|
---|
| 286 | as the set of frequencies {m} is larger than nph,
|
---|
| 287 | we wrap frequencies within {0..nph-1}
|
---|
| 288 | ie m = k*nph + m' with m' in {0..nph-1}
|
---|
| 289 | then
|
---|
| 290 | noting bw(m') = exp(i*m'*phi0)
|
---|
| 291 | * sum_k (datain(k*nph+m') exp(i*k*pi*kphi0))
|
---|
| 292 | with bw(nph-m') = CONJ(bw(m')) (if datain(-m) = CONJ(datain(m)))
|
---|
| 293 | dataout(j) = sum_m' [ bw(m') exp (i*j*m'*2pi/nph) ]
|
---|
| 294 | = Fourier Transform of bw
|
---|
| 295 | is real
|
---|
| 296 |
|
---|
| 297 | NB nph is not necessarily a power of 2
|
---|
| 298 |
|
---|
| 299 | =======================================================================*/
|
---|
| 300 | //**********************************************************************
|
---|
| 301 | // pour une valeur de phi (indexee par j) la temperature est la transformee
|
---|
| 302 | // de Fourier de bm (somme sur m de -nmax a +nmmax de bm*exp(i*m*phi)).
|
---|
| 303 | // on demande nph (nombre de pixels sur la tranche) valeurs de transformees, pour nph valeurs de phi, regulierement reparties sur 2*pi. On a:
|
---|
| 304 | // DT/T(j) = sum_m b(m) * exp(i*m*phi(j))
|
---|
| 305 | // sommation de -infini a +infini, en fait limitee a -nmamx, +nmmax
|
---|
| 306 | // On pose m=k*nph + m', avec m' compris entre 0 et nph-1. Alors :
|
---|
| 307 | // DT/T(j) = somme_k somme_m' b(k*nph + m')*exp(i*(k*nph + m')*phi(j))
|
---|
| 308 | // somme_k : de -infini a +infini
|
---|
| 309 | // somme_m' : de 0 a nph-1
|
---|
| 310 | // On echange les sommations :
|
---|
[2625] | 311 | // DT/T(j) = somme_m' (exp(i*m'*phi(j)) somme_k b(k*nph + m')*exp(i*(k*nph*phi(j))
|
---|
[729] | 312 | // mais phi(j) est un multiple entier de 2*pi/nph, la seconde exponentielle
|
---|
| 313 | // vaut 1.
|
---|
| 314 | // Il reste a calculer les transformees de Fourier de somme_m' b(k*nph + m')
|
---|
| 315 | // si phi0 n'est pas nul, il y a juste un decalage a faire.
|
---|
| 316 | //**********************************************************************
|
---|
| 317 |
|
---|
| 318 | TVector< complex<T> > bw(nph);
|
---|
| 319 | TVector< complex<T> > dataout(nph);
|
---|
| 320 | TVector< complex<T> > data(nph);
|
---|
| 321 |
|
---|
| 322 |
|
---|
| 323 | for (int kk=0; kk<bw.NElts(); kk++) bw(kk)=(T)0.;
|
---|
[833] | 324 | int m;
|
---|
| 325 | for (m=-b_m.Mmax();m<=-1;m++)
|
---|
[729] | 326 | {
|
---|
| 327 | int maux=m;
|
---|
| 328 | while (maux<0) maux+=nph;
|
---|
| 329 | int iw=maux%nph;
|
---|
| 330 | double aux=(m-iw)*phi0;
|
---|
| 331 | bw(iw) += b_m(m) * complex<T>( (T)cos(aux),(T)sin(aux) ) ;
|
---|
| 332 | }
|
---|
[833] | 333 | for (m=0;m<=b_m.Mmax();m++)
|
---|
[729] | 334 | {
|
---|
| 335 | // int iw=((m % nph) +nph) % nph; //between 0 and nph = m'
|
---|
| 336 | int iw=m%nph;
|
---|
| 337 | double aux=(m-iw)*phi0;
|
---|
| 338 | bw(iw)+=b_m(m) * complex<T>( (T)cos(aux),(T)sin(aux) );
|
---|
| 339 | }
|
---|
| 340 |
|
---|
| 341 | // applies the shift in position <-> phase factor in Fourier space
|
---|
| 342 | for (int mprime=0; mprime < nph; mprime++)
|
---|
| 343 | {
|
---|
| 344 | complex<double> aux(cos(mprime*phi0),sin(mprime*phi0));
|
---|
| 345 | data(mprime)=bw(mprime)*
|
---|
| 346 | (complex<T>)(complex<double>(cos(mprime*phi0),sin(mprime*phi0)));
|
---|
| 347 | }
|
---|
| 348 |
|
---|
| 349 | //sortie.ReSize(nph);
|
---|
| 350 | TVector< complex<T> > sortie(nph);
|
---|
| 351 |
|
---|
| 352 | fftIntfPtr_-> FFTBackward(data, sortie);
|
---|
| 353 |
|
---|
| 354 | return sortie;
|
---|
| 355 | }
|
---|
| 356 |
|
---|
| 357 | //********************************************
|
---|
[1218] | 358 | /*! \fn TVector<T> SOPHYA::SphericalTransformServer::RfourierSynthesisFromB(const Bm<complex<T> >& b_m, int_4 nph, r_8 phi0) const
|
---|
| 359 |
|
---|
| 360 | same as fourierSynthesisFromB, but return a real vector, taking into account the fact that b(-m) is conjugate of b(m) */
|
---|
[729] | 361 | template<class T>
|
---|
| 362 | TVector<T> SphericalTransformServer<T>::RfourierSynthesisFromB(const Bm<complex<T> >& b_m, int_4 nph, r_8 phi0) const
|
---|
| 363 | {
|
---|
| 364 | /*=======================================================================
|
---|
| 365 | dataout(j) = sum_m datain(m) * exp(i*m*phi(j))
|
---|
| 366 | with phi(j) = j*2pi/nph + kphi0*pi/nph and kphi0 =0 or 1
|
---|
| 367 |
|
---|
| 368 | as the set of frequencies {m} is larger than nph,
|
---|
| 369 | we wrap frequencies within {0..nph-1}
|
---|
| 370 | ie m = k*nph + m' with m' in {0..nph-1}
|
---|
| 371 | then
|
---|
| 372 | noting bw(m') = exp(i*m'*phi0)
|
---|
| 373 | * sum_k (datain(k*nph+m') exp(i*k*pi*kphi0))
|
---|
| 374 | with bw(nph-m') = CONJ(bw(m')) (if datain(-m) = CONJ(datain(m)))
|
---|
| 375 | dataout(j) = sum_m' [ bw(m') exp (i*j*m'*2pi/nph) ]
|
---|
| 376 | = Fourier Transform of bw
|
---|
| 377 | is real
|
---|
| 378 |
|
---|
| 379 | NB nph is not necessarily a power of 2
|
---|
| 380 |
|
---|
| 381 | =======================================================================*/
|
---|
| 382 | //**********************************************************************
|
---|
| 383 | // pour une valeur de phi (indexee par j) la temperature est la transformee
|
---|
| 384 | // de Fourier de bm (somme sur m de -nmax a +nmmax de bm*exp(i*m*phi)).
|
---|
| 385 | // on demande nph (nombre de pixels sur la tranche) valeurs de transformees, pour nph valeurs de phi, regulierement reparties sur 2*pi. On a:
|
---|
| 386 | // DT/T(j) = sum_m b(m) * exp(i*m*phi(j))
|
---|
| 387 | // sommation de -infini a +infini, en fait limitee a -nmamx, +nmmax
|
---|
| 388 | // On pose m=k*nph + m', avec m' compris entre 0 et nph-1. Alors :
|
---|
| 389 | // DT/T(j) = somme_k somme_m' b(k*nph + m')*exp(i*(k*nph + m')*phi(j))
|
---|
| 390 | // somme_k : de -infini a +infini
|
---|
| 391 | // somme_m' : de 0 a nph-1
|
---|
| 392 | // On echange les sommations :
|
---|
[2313] | 393 | // DT/T(j) = somme_m' (exp(i*m'*phi(j)) somme_k b(k*nph + m')*exp(i*(k*nph*phi(j))
|
---|
[729] | 394 | // mais phi(j) est un multiple entier de 2*pi/nph, la seconde exponentielle
|
---|
| 395 | // vaut 1.
|
---|
[2313] | 396 | // Il reste a calculer les transformees de Fourier de somme_k b(k*nph + m')
|
---|
[729] | 397 | // si phi0 n'est pas nul, il y a juste un decalage a faire.
|
---|
| 398 | //**********************************************************************
|
---|
| 399 | TVector< complex<T> > bw(nph);
|
---|
| 400 | TVector< complex<T> > dataout(nph);
|
---|
| 401 | TVector< complex<T> > data(nph/2+1);
|
---|
| 402 |
|
---|
| 403 |
|
---|
| 404 | for (int kk=0; kk<bw.NElts(); kk++) bw(kk)=(T)0.;
|
---|
[833] | 405 | int m;
|
---|
| 406 | for (m=-b_m.Mmax();m<=-1;m++)
|
---|
[729] | 407 | {
|
---|
| 408 | int maux=m;
|
---|
| 409 | while (maux<0) maux+=nph;
|
---|
| 410 | int iw=maux%nph;
|
---|
| 411 | double aux=(m-iw)*phi0;
|
---|
| 412 | bw(iw) += b_m(m) * complex<T>( (T)cos(aux),(T)sin(aux) ) ;
|
---|
| 413 | }
|
---|
[833] | 414 | for (m=0;m<=b_m.Mmax();m++)
|
---|
[729] | 415 | {
|
---|
| 416 | // int iw=((m % nph) +nph) % nph; //between 0 and nph = m'
|
---|
| 417 | int iw=m%nph;
|
---|
| 418 | double aux=(m-iw)*phi0;
|
---|
| 419 | bw(iw)+=b_m(m) * complex<T>( (T)cos(aux),(T)sin(aux) );
|
---|
| 420 | }
|
---|
| 421 |
|
---|
| 422 | // applies the shift in position <-> phase factor in Fourier space
|
---|
[2313] | 423 | // cout << " TF : nph= " << nph << " vec. entree " << data.Size() << endl;
|
---|
[729] | 424 | for (int mprime=0; mprime <= nph/2; mprime++)
|
---|
| 425 | {
|
---|
| 426 | complex<double> aux(cos(mprime*phi0),sin(mprime*phi0));
|
---|
| 427 | data(mprime)=bw(mprime)*
|
---|
| 428 | (complex<T>)(complex<double>(cos(mprime*phi0),sin(mprime*phi0)));
|
---|
| 429 | }
|
---|
| 430 |
|
---|
| 431 | TVector<T> sortie;
|
---|
| 432 | fftIntfPtr_-> FFTBackward(data, sortie);
|
---|
| 433 |
|
---|
| 434 | return sortie;
|
---|
| 435 | }
|
---|
| 436 | //*******************************************
|
---|
| 437 |
|
---|
[1218] | 438 | /*! \fn Alm<T> SOPHYA::SphericalTransformServer::DecomposeToAlm(const SphericalMap<T>& map, int_4 nlmax, r_8 cos_theta_cut) const
|
---|
| 439 |
|
---|
[1756] | 440 | \return the Alm coefficients from analysis of a temperature map.
|
---|
[1218] | 441 |
|
---|
| 442 | \param<nlmax> : maximum value of the l index
|
---|
| 443 |
|
---|
| 444 | \param<cos_theta_cut> : cosinus of the symmetric cut EULER angle theta : cos_theta_cut=0 means no cut ; cos_theta_cut=1 all the sphere is cut.
|
---|
[1683] | 445 |
|
---|
[1756] | 446 | */
|
---|
[729] | 447 | template<class T>
|
---|
[1756] | 448 | void SphericalTransformServer<T>::DecomposeToAlm(const SphericalMap<T>& map, Alm<T>& alm, int_4 nlmax, r_8 cos_theta_cut) const
|
---|
| 449 | {
|
---|
| 450 | DecomposeToAlm(const_cast< SphericalMap<T>& >(map), alm, nlmax, cos_theta_cut, 0);
|
---|
| 451 | }
|
---|
| 452 | //*******************************************
|
---|
| 453 |
|
---|
| 454 | /*! \fn Alm<T> SOPHYA::SphericalTransformServer::DecomposeToAlm(const SphericalMap<T>& map, int_4 nlmax, r_8 cos_theta_cut, int iterationOrder) const
|
---|
| 455 |
|
---|
| 456 | \return the Alm coefficients from analysis of a temperature map. THE MAP CAN BE MODIFIED (if iterationOrder >0)
|
---|
| 457 |
|
---|
| 458 | \param<nlmax> : maximum value of the l index
|
---|
| 459 |
|
---|
| 460 | \param<cos_theta_cut> : cosinus of the symmetric cut EULER angle theta : cos_theta_cut=0 means no cut ; cos_theta_cut=1 all the sphere is cut.
|
---|
| 461 |
|
---|
| 462 | \param<iterationOrder> : 1,2,3,4.... order of an iterative analysis. (Default : 0 -> standard analysis). If iterationOrder is not null, the method works with SphereHEALPix but NOT WITH SphereThetaPhi maps ! */
|
---|
| 463 | template<class T>
|
---|
[1683] | 464 | void SphericalTransformServer<T>::DecomposeToAlm(SphericalMap<T>& map, Alm<T>& alm, int_4 nlmax, r_8 cos_theta_cut, int iterationOrder) const
|
---|
[729] | 465 | {
|
---|
[1683] | 466 | int_4 nmmax = nlmax;
|
---|
| 467 | // PrtTim("appel carteVersAlm");
|
---|
| 468 | carteVersAlm(map, nlmax, cos_theta_cut, alm);
|
---|
| 469 | // PrtTim("retour carteVersAlm");
|
---|
| 470 | if (iterationOrder > 0)
|
---|
| 471 | {
|
---|
| 472 | TVector<int_4> fact(iterationOrder+2);
|
---|
| 473 | fact(0) = 1;
|
---|
[1715] | 474 | int k;
|
---|
| 475 | for (k=1; k <= iterationOrder+1; k++)
|
---|
[1683] | 476 | {
|
---|
| 477 | fact(k) = fact(k-1)*k;
|
---|
| 478 | }
|
---|
| 479 | Alm<T> alm2(alm);
|
---|
| 480 | T Tzero = (T)0.;
|
---|
| 481 | complex<T> complexZero = complex<T>(Tzero, Tzero);
|
---|
| 482 | alm = complexZero;
|
---|
| 483 | int signe = 1;
|
---|
| 484 | int nbIteration = iterationOrder+1;
|
---|
[1715] | 485 | for (k=1; k <= nbIteration; k++)
|
---|
[1683] | 486 | {
|
---|
| 487 | T facMult = (T)(0.5*signe*fact(iterationOrder)*(2*nbIteration-k)/(fact(k)*fact(nbIteration-k)));
|
---|
| 488 | for (int m = 0; m <= nmmax; m++)
|
---|
| 489 | {
|
---|
| 490 | for (int l = m; l<= nlmax; l++)
|
---|
| 491 | {
|
---|
| 492 | alm(l,m) += facMult*alm2(l,m);
|
---|
| 493 | }
|
---|
| 494 | }
|
---|
| 495 | if (k == nbIteration) break;
|
---|
| 496 | signe = -signe;
|
---|
| 497 | for (int k=0; k< map.NbPixels(); k++) map(k) = (T)0.;
|
---|
| 498 | // synthetize a map from the estimated alm
|
---|
| 499 | // PrtTim("appel GenerateFromAlm");
|
---|
| 500 | GenerateFromAlm( map, map.SizeIndex(), alm2);
|
---|
| 501 | // PrtTim("retour GenerateFromAlm");
|
---|
| 502 | alm2 = complexZero;
|
---|
| 503 | // analyse the new map
|
---|
| 504 | // PrtTim("appel carteVersAlm");
|
---|
| 505 | carteVersAlm(map, nlmax, cos_theta_cut, alm2);
|
---|
| 506 | // PrtTim("retour carteVersAlm");
|
---|
| 507 | }
|
---|
| 508 | }
|
---|
| 509 | }
|
---|
| 510 |
|
---|
| 511 | template<class T>
|
---|
| 512 | void SphericalTransformServer<T>::carteVersAlm(const SphericalMap<T>& map, int_4 nlmax, r_8 cos_theta_cut, Alm<T>& alm) const
|
---|
| 513 | {
|
---|
[729] | 514 |
|
---|
| 515 | /*-----------------------------------------------------------------------
|
---|
| 516 | computes the integral in phi : phas_m(theta)
|
---|
| 517 | for each parallele from north to south pole
|
---|
| 518 | -----------------------------------------------------------------------*/
|
---|
| 519 | TVector<T> data;
|
---|
| 520 | TVector<int_4> pixNumber;
|
---|
| 521 | int_4 nmmax = nlmax;
|
---|
| 522 | TVector< complex<T> > phase(nmmax+1);
|
---|
[1683] | 523 |
|
---|
[729] | 524 | alm.ReSizeToLmax(nlmax);
|
---|
[746] | 525 | for (int_4 ith = 0; ith < map.NbThetaSlices(); ith++)
|
---|
[729] | 526 | {
|
---|
| 527 | r_8 phi0;
|
---|
| 528 | r_8 theta;
|
---|
[1683] | 529 | // PrtTim("debut 1ere tranche ");
|
---|
[729] | 530 | map.GetThetaSlice(ith,theta,phi0,pixNumber ,data);
|
---|
[1683] | 531 | phase = complex<T>((T)0.,(T)0.);
|
---|
[729] | 532 | double cth = cos(theta);
|
---|
| 533 |
|
---|
| 534 | //part of the sky out of the symetric cut
|
---|
[1428] | 535 | bool keep_it = (fabs(cth) >= cos_theta_cut);
|
---|
[1683] | 536 |
|
---|
| 537 | // PrtTim("fin 1ere tranche ");
|
---|
| 538 |
|
---|
[729] | 539 | if (keep_it)
|
---|
| 540 | {
|
---|
[1683] | 541 | // phase = CFromFourierAnalysis(nmmax,data,phi0);
|
---|
| 542 | // PrtTim("avant Fourier ");
|
---|
| 543 | CFromFourierAnalysis(nmmax,data,phase, phi0);
|
---|
| 544 | // PrtTim("apres Fourier ");
|
---|
[729] | 545 |
|
---|
| 546 | }
|
---|
| 547 |
|
---|
[1683] | 548 | // ---------------------------------------------------------------------
|
---|
| 549 | // computes the a_lm by integrating over theta
|
---|
| 550 | // lambda_lm(theta) * phas_m(theta)
|
---|
| 551 | // for each m and l
|
---|
| 552 | // -----------------------------------------------------------------------
|
---|
| 553 | // PrtTim("avant instanciation LM ");
|
---|
[729] | 554 | LambdaLMBuilder lb(theta,nlmax,nmmax);
|
---|
[1683] | 555 | // PrtTim("apres instanciation LM ");
|
---|
[729] | 556 | r_8 domega=map.PixSolAngle(map.PixIndexSph(theta,phi0));
|
---|
[1683] | 557 |
|
---|
| 558 | // PrtTim("avant mise a jour Alm ");
|
---|
| 559 | complex<T> fi;
|
---|
| 560 | T facteur;
|
---|
| 561 | int index;
|
---|
[729] | 562 | for (int m = 0; m <= nmmax; m++)
|
---|
| 563 | {
|
---|
[1683] | 564 | fi = phase(m);
|
---|
| 565 | for (int l = m; l<= nlmax; l++)
|
---|
[729] | 566 | {
|
---|
[1683] | 567 | index = alm.indexOfElement(l,m);
|
---|
| 568 | // facteur = (T)(lb.lamlm(l,m) * domega);
|
---|
| 569 | facteur = (T)(lb.lamlm(index) * domega);
|
---|
| 570 | // alm(l,m) += facteur * fi ;
|
---|
| 571 | alm(index) += facteur * fi ;
|
---|
[729] | 572 | }
|
---|
| 573 | }
|
---|
[1683] | 574 |
|
---|
| 575 |
|
---|
| 576 |
|
---|
| 577 | //
|
---|
| 578 | //
|
---|
| 579 | // PrtTim("apres mise a jour Alm ");
|
---|
[729] | 580 | }
|
---|
| 581 | }
|
---|
[1218] | 582 | /*! \fn TVector< complex<T> > SOPHYA::SphericalTransformServer::CFromFourierAnalysis(int_4 nmmax, const TVector<complex<T> >datain, r_8 phi0) const
|
---|
| 583 |
|
---|
| 584 | \return a vector with mmax elements which are sums :
|
---|
| 585 | \f$\sum_{k=0}^{nphi}datain(\theta,\varphi_k)e^{im\varphi_k}\f$ for (mmax+1) values of \f$m\f$ from 0 to mmax.
|
---|
| 586 | */
|
---|
[729] | 587 | template<class T>
|
---|
[746] | 588 | TVector< complex<T> > SphericalTransformServer<T>::CFromFourierAnalysis(int_4 nmmax, const TVector<complex<T> >datain, r_8 phi0) const
|
---|
[729] | 589 | {
|
---|
| 590 | /*=======================================================================
|
---|
| 591 | integrates (data * phi-dependence-of-Ylm) over phi
|
---|
| 592 | --> function of m can be computed by FFT
|
---|
| 593 |
|
---|
| 594 | datain est modifie
|
---|
| 595 | =======================================================================*/
|
---|
| 596 | int_4 nph=datain.NElts();
|
---|
| 597 | if (nph <= 0)
|
---|
| 598 | {
|
---|
| 599 | throw PException("bizarre : vecteur datain de longueur nulle (CFromFourierAnalysis)");
|
---|
| 600 | }
|
---|
| 601 | TVector<complex<T> > transformedData(nph);
|
---|
| 602 | fftIntfPtr_-> FFTForward(datain, transformedData);
|
---|
| 603 |
|
---|
| 604 | TVector< complex<T> > dataout(nmmax+1);
|
---|
| 605 |
|
---|
| 606 | int im_max=min(nph,nmmax+1);
|
---|
[833] | 607 | int i;
|
---|
[1683] | 608 | dataout = complex<T>((T)0.,(T)0.);
|
---|
| 609 | // for (i=0;i< dataout.NElts();i++) dataout(i)=complex<T>((T)0.,(T)0.);
|
---|
[833] | 610 | for (i=0;i<im_max;i++) dataout(i)=transformedData(i);
|
---|
[729] | 611 |
|
---|
| 612 |
|
---|
| 613 | for (int kk=nph; kk<dataout.NElts(); kk++) dataout(kk)=dataout(kk%nph);
|
---|
[833] | 614 | for (i = 0;i <dataout.NElts();i++){
|
---|
[729] | 615 | dataout(i)*= (complex<T>)(complex<double>(cos(-i*phi0),sin(-i*phi0)));
|
---|
| 616 | }
|
---|
| 617 | return dataout;
|
---|
| 618 | }
|
---|
| 619 |
|
---|
| 620 | //&&&&&&&&& nouvelle version
|
---|
[1218] | 621 | /* \fn TVector< complex<T> > SOPHYA::SphericalTransformServer::CFromFourierAnalysis(int_4 nmmax, const TVector<T> datain, r_8 phi0) const
|
---|
| 622 |
|
---|
| 623 | same as previous one, but with a "datain" which is real (not complex) */
|
---|
[729] | 624 | template<class T>
|
---|
[1683] | 625 | void SphericalTransformServer<T>::CFromFourierAnalysis(int_4 nmmax, const TVector<T> datain, TVector< complex<T> >& dataout, r_8 phi0) const
|
---|
[729] | 626 | {
|
---|
| 627 | //=======================================================================
|
---|
| 628 | // integrates (data * phi-dependence-of-Ylm) over phi
|
---|
| 629 | // --> function of m can be computed by FFT
|
---|
| 630 | // ! with 0<= m <= npoints/2 (: Nyquist)
|
---|
| 631 | // ! because the data is real the negative m are the conjugate of the
|
---|
| 632 | // ! positive ones
|
---|
| 633 |
|
---|
| 634 | // datain est modifie
|
---|
| 635 | //
|
---|
| 636 | // =======================================================================
|
---|
| 637 | int_4 nph=datain.NElts();
|
---|
| 638 | if (nph <= 0)
|
---|
| 639 | {
|
---|
| 640 | throw PException("bizarre : vecteur datain de longueur nulle (CFromFourierAnalysis)");
|
---|
| 641 | }
|
---|
[1756] | 642 | // if (nph%2 != 0 )
|
---|
| 643 | // {
|
---|
| 644 | // throw PException("SphericalTransformServer<T>::CFromFourierAnalysis : longueur de datain impair ?");
|
---|
| 645 | // }
|
---|
[729] | 646 | TVector<complex<T> > transformedData;
|
---|
| 647 |
|
---|
[1683] | 648 | // la taille du vecteur complexe retourne est nph/2+1 (si la taille
|
---|
| 649 | // du vecteur reel entre est nph)
|
---|
[1756] | 650 | // cout << " longueur de datain = " << nph << endl;
|
---|
[729] | 651 | fftIntfPtr_-> FFTForward(datain, transformedData);
|
---|
[1756] | 652 | // cout << " taille de la transformee " << transformedData.Size() << endl;
|
---|
[1683] | 653 | // TVector< complex<T> > dataout(nmmax+1);
|
---|
| 654 | dataout.ReSize(nmmax+1);
|
---|
[729] | 655 |
|
---|
| 656 | // on transfere le resultat de la fft dans dataout.
|
---|
[1683] | 657 |
|
---|
| 658 | int maxFreqAccessiblesParFFT = min(nph/2,nmmax);
|
---|
[833] | 659 | int i;
|
---|
[1683] | 660 | for (i=0;i<=maxFreqAccessiblesParFFT;i++) dataout(i)=transformedData(i);
|
---|
[729] | 661 |
|
---|
| 662 |
|
---|
[1683] | 663 | // si dataout n'est pas plein, on complete jusqu'a nph+1 valeurs (a moins
|
---|
[729] | 664 | // que dataout ne soit plein avant d'atteindre nph)
|
---|
[1683] | 665 | if (maxFreqAccessiblesParFFT != nmmax )
|
---|
[729] | 666 | {
|
---|
[1683] | 667 | int maxMfft = min(nph,nmmax);
|
---|
| 668 | for (i=maxFreqAccessiblesParFFT+1; i<=maxMfft; i++)
|
---|
[729] | 669 | {
|
---|
| 670 | dataout(i) = conj(dataout(nph-i) );
|
---|
| 671 | }
|
---|
| 672 | // on conplete, si necessaire, par periodicite
|
---|
[1683] | 673 | if ( maxMfft != nmmax )
|
---|
[729] | 674 | {
|
---|
[1683] | 675 | for (int kk=nph+1; kk <= nmmax; kk++)
|
---|
| 676 | {
|
---|
| 677 | dataout(kk)=dataout(kk%nph);
|
---|
| 678 | }
|
---|
[729] | 679 | }
|
---|
| 680 | }
|
---|
[1683] | 681 | for (i = 0;i <dataout.NElts();i++)
|
---|
| 682 | {
|
---|
| 683 | dataout(i)*= (complex<T>)(complex<double>(cos(-i*phi0),sin(-i*phi0)));
|
---|
| 684 | }
|
---|
| 685 | // return dataout;
|
---|
[729] | 686 | }
|
---|
| 687 |
|
---|
[1218] | 688 | /*! \fn void SOPHYA::SphericalTransformServer::GenerateFromAlm(SphericalMap<T>& mapq,
|
---|
| 689 | SphericalMap<T>& mapu,
|
---|
| 690 | int_4 pixelSizeIndex,
|
---|
| 691 | const Alm<T>& alme,
|
---|
| 692 | const Alm<T>& almb) const
|
---|
| 693 |
|
---|
| 694 | synthesis of a polarization map from Alm coefficients. The spheres mapq and mapu contain respectively the Stokes parameters. */
|
---|
[729] | 695 | template<class T>
|
---|
| 696 | void SphericalTransformServer<T>::GenerateFromAlm(SphericalMap<T>& mapq,
|
---|
| 697 | SphericalMap<T>& mapu,
|
---|
| 698 | int_4 pixelSizeIndex,
|
---|
| 699 | const Alm<T>& alme,
|
---|
| 700 | const Alm<T>& almb) const
|
---|
| 701 | {
|
---|
| 702 | /*=======================================================================
|
---|
| 703 | computes a map form its alm for the HEALPIX pixelisation
|
---|
| 704 | map(theta,phi) = sum_l_m a_lm Y_lm(theta,phi)
|
---|
| 705 | = sum_m {e^(i*m*phi) sum_l a_lm*lambda_lm(theta)}
|
---|
| 706 |
|
---|
| 707 | where Y_lm(theta,phi) = lambda(theta) * e^(i*m*phi)
|
---|
| 708 |
|
---|
| 709 | * the recurrence of Ylm is the standard one (cf Num Rec)
|
---|
| 710 | * the sum over m is done by FFT
|
---|
| 711 |
|
---|
| 712 | =======================================================================*/
|
---|
| 713 | int_4 nlmax=alme.Lmax();
|
---|
| 714 | if (nlmax != almb.Lmax())
|
---|
| 715 | {
|
---|
| 716 | cout << " SphericalTransformServer: les deux tableaux alm n'ont pas la meme taille" << endl;
|
---|
| 717 | throw SzMismatchError("SphericalTransformServer: les deux tableaux alm n'ont pas la meme taille");
|
---|
| 718 | }
|
---|
| 719 | int_4 nmmax=nlmax;
|
---|
| 720 | int_4 nsmax=0;
|
---|
| 721 | mapq.Resize(pixelSizeIndex);
|
---|
| 722 | mapu.Resize(pixelSizeIndex);
|
---|
[2291] | 723 | string sphere_type=mapq.TypeOfMap();
|
---|
| 724 | if (sphere_type != mapu.TypeOfMap())
|
---|
[729] | 725 | {
|
---|
| 726 | cout << " SphericalTransformServer: les deux spheres ne sont pas de meme type" << endl;
|
---|
| 727 | cout << " type 1 " << sphere_type << endl;
|
---|
| 728 | cout << " type 2 " << mapu.TypeOfMap() << endl;
|
---|
| 729 | throw SzMismatchError("SphericalTransformServer: les deux spheres ne sont pas de meme type");
|
---|
| 730 |
|
---|
| 731 | }
|
---|
[2313] | 732 | bool healpix = true;
|
---|
[2291] | 733 | if (sphere_type.substr(0,4) == "RING")
|
---|
[729] | 734 | {
|
---|
| 735 | nsmax=mapq.SizeIndex();
|
---|
| 736 | }
|
---|
| 737 | else
|
---|
| 738 | // pour une sphere Gorski le nombre de pixels est 12*nsmax**2
|
---|
| 739 | // on calcule une quantite equivalente a nsmax pour la sphere-theta-phi
|
---|
| 740 | // en vue de l'application du critere Healpix : nlmax<=3*nsmax-1
|
---|
| 741 | // c'est approximatif ; a raffiner.
|
---|
[2313] | 742 | healpix = false;
|
---|
[2291] | 743 | if (sphere_type.substr(0,6) == "TETAFI")
|
---|
[729] | 744 | {
|
---|
| 745 | nsmax=(int_4)sqrt(mapq.NbPixels()/12.);
|
---|
| 746 | }
|
---|
| 747 | else
|
---|
| 748 | {
|
---|
| 749 | cout << " unknown type of sphere : " << sphere_type << endl;
|
---|
| 750 | throw IOExc(" unknown type of sphere ");
|
---|
| 751 | }
|
---|
| 752 | cout << "GenerateFromAlm: the spheres are of type : " << sphere_type << endl;
|
---|
| 753 | cout << "GenerateFromAlm: size indices (nside) of spheres= " << nsmax << endl;
|
---|
| 754 | cout << "GenerateFromAlm: nlmax (from Alm) = " << nlmax << endl;
|
---|
| 755 | if (nlmax>3*nsmax-1)
|
---|
| 756 | {
|
---|
| 757 | cout << "GenerateFromAlm: nlmax should be <= 3*nside-1" << endl;
|
---|
[2291] | 758 | if (sphere_type.substr(0,6) == "TETAFI")
|
---|
[729] | 759 | {
|
---|
| 760 | cout << " (for this criterium, nsmax is computed as sqrt(nbPixels/12))" << endl;
|
---|
| 761 | }
|
---|
| 762 | }
|
---|
| 763 | if (alme.Lmax()!=almb.Lmax())
|
---|
| 764 | {
|
---|
| 765 | cout << "GenerateFromAlm: arrays Alme and Almb have not the same size ? " << endl;
|
---|
| 766 | throw SzMismatchError("SphericalTransformServer: arrays Alme and Almb have not the same size ? ");
|
---|
| 767 | }
|
---|
[2313] | 768 | mapFromWX(nlmax, nmmax, mapq, mapu, alme, almb, healpix);
|
---|
[729] | 769 | // mapFromPM(nlmax, nmmax, mapq, mapu, alme, almb);
|
---|
| 770 | }
|
---|
[1756] | 771 | /*! \fn void SOPHYA::SphericalTransformServer::DecomposeToAlm(const SphericalMap<T>& mapq,
|
---|
| 772 | const SphericalMap<T>& mapu,
|
---|
| 773 | Alm<T>& alme,
|
---|
| 774 | Alm<T>& almb,
|
---|
| 775 | int_4 nlmax,
|
---|
| 776 | r_8 cos_theta_cut) const
|
---|
[729] | 777 |
|
---|
[1756] | 778 | analysis of a polarization map into Alm coefficients.
|
---|
[729] | 779 |
|
---|
[1756] | 780 | The spheres \c mapq and \c mapu contain respectively the Stokes parameters.
|
---|
| 781 |
|
---|
| 782 | \c a2lme and \c a2lmb will receive respectively electric and magnetic Alm's
|
---|
| 783 | nlmax : maximum value of the l index
|
---|
| 784 |
|
---|
| 785 | \c cos_theta_cut : cosinus of the symmetric cut EULER angle theta : cos_theta_cut=0 means no cut ; cos_theta_cut=1 all the sphere is cut.
|
---|
| 786 |
|
---|
| 787 |
|
---|
| 788 | */
|
---|
| 789 | template<class T>
|
---|
| 790 | void SphericalTransformServer<T>::DecomposeToAlm(const SphericalMap<T>& mapq,
|
---|
[1218] | 791 | const SphericalMap<T>& mapu,
|
---|
| 792 | Alm<T>& alme,
|
---|
| 793 | Alm<T>& almb,
|
---|
| 794 | int_4 nlmax,
|
---|
| 795 | r_8 cos_theta_cut) const
|
---|
[1756] | 796 | {
|
---|
| 797 | DecomposeToAlm(const_cast< SphericalMap<T>& >(mapq), const_cast< SphericalMap<T>& >(mapu), alme, almb, nlmax, cos_theta_cut);
|
---|
| 798 | }
|
---|
[1218] | 799 |
|
---|
[1756] | 800 | /*! \fn void SOPHYA::SphericalTransformServer::DecomposeToAlm(const SphericalMap<T>& mapq,
|
---|
| 801 | const SphericalMap<T>& mapu,
|
---|
| 802 | Alm<T>& alme,
|
---|
| 803 | Alm<T>& almb,
|
---|
| 804 | int_4 nlmax,
|
---|
| 805 | r_8 cos_theta_cut,
|
---|
| 806 | int iterationOrder) const
|
---|
| 807 |
|
---|
[1218] | 808 | analysis of a polarization map into Alm coefficients.
|
---|
| 809 |
|
---|
| 810 | The spheres \c mapq and \c mapu contain respectively the Stokes parameters.
|
---|
| 811 |
|
---|
| 812 | \c a2lme and \c a2lmb will receive respectively electric and magnetic Alm's
|
---|
| 813 | nlmax : maximum value of the l index
|
---|
| 814 |
|
---|
| 815 | \c cos_theta_cut : cosinus of the symmetric cut EULER angle theta : cos_theta_cut=0 means no cut ; cos_theta_cut=1 all the sphere is cut.
|
---|
[1756] | 816 |
|
---|
| 817 | \param<iterationOrder> : 1,2,3,4.... order of an iterative analysis. (Default : 0 -> standard analysis). If iterationOrder is not null, the method works with SphereHEALPix but NOT WITH SphereThetaPhi maps !
|
---|
| 818 |
|
---|
| 819 | THE INPUT MAPS CAN BE MODIFIED (only if iterationOrder >0)
|
---|
| 820 |
|
---|
[1218] | 821 | */
|
---|
[729] | 822 | template<class T>
|
---|
[1683] | 823 | void SphericalTransformServer<T>::DecomposeToAlm(SphericalMap<T>& mapq,
|
---|
| 824 | SphericalMap<T>& mapu,
|
---|
| 825 | Alm<T>& alme,
|
---|
| 826 | Alm<T>& almb,
|
---|
| 827 | int_4 nlmax,
|
---|
| 828 | r_8 cos_theta_cut,
|
---|
| 829 | int iterationOrder) const
|
---|
| 830 | {
|
---|
| 831 | int_4 nmmax = nlmax;
|
---|
| 832 | carteVersAlm(mapq, mapu, alme, almb, nlmax, cos_theta_cut);
|
---|
| 833 | if (iterationOrder > 0)
|
---|
| 834 | {
|
---|
| 835 | TVector<int_4> fact(iterationOrder+2);
|
---|
| 836 | fact(0) = 1;
|
---|
[1715] | 837 | int k;
|
---|
| 838 | for (k=1; k <= iterationOrder+1; k++)
|
---|
[1683] | 839 | {
|
---|
| 840 | fact(k) = fact(k-1)*k;
|
---|
| 841 | }
|
---|
| 842 | Alm<T> alme2(alme);
|
---|
| 843 | Alm<T> almb2(almb);
|
---|
| 844 | T Tzero = (T)0.;
|
---|
| 845 | complex<T> complexZero = complex<T>(Tzero, Tzero);
|
---|
| 846 | alme = complexZero;
|
---|
| 847 | almb = complexZero;
|
---|
| 848 | int signe = 1;
|
---|
| 849 | int nbIteration = iterationOrder+1;
|
---|
[1715] | 850 | for (k=1; k <= nbIteration; k++)
|
---|
[1683] | 851 | {
|
---|
| 852 | T facMult = (T)(0.5*signe*fact(iterationOrder)*(2*nbIteration-k)/(fact(k)*fact(nbIteration-k)));
|
---|
| 853 | for (int m = 0; m <= nmmax; m++)
|
---|
| 854 | {
|
---|
| 855 | for (int l = m; l<= nlmax; l++)
|
---|
| 856 | {
|
---|
| 857 | alme(l,m) += facMult*alme2(l,m);
|
---|
| 858 | almb(l,m) += facMult*almb2(l,m);
|
---|
| 859 | }
|
---|
| 860 | }
|
---|
| 861 | if (k == nbIteration) break;
|
---|
| 862 | signe = -signe;
|
---|
| 863 | for (int k=0; k< mapq.NbPixels(); k++)
|
---|
| 864 | {
|
---|
| 865 | mapq(k) = (T)0.;
|
---|
| 866 | mapu(k) = (T)0.;
|
---|
| 867 | }
|
---|
| 868 | // synthetize a map from the estimated alm
|
---|
| 869 | GenerateFromAlm(mapq,mapu,mapq.SizeIndex(),alme2,almb2);
|
---|
| 870 | alme2 = complexZero;
|
---|
| 871 | almb2 = complexZero;
|
---|
| 872 | // analyse the new map
|
---|
| 873 | carteVersAlm(mapq, mapu, alme2, almb2, nlmax, cos_theta_cut);
|
---|
| 874 | }
|
---|
| 875 | }
|
---|
| 876 | }
|
---|
| 877 |
|
---|
| 878 | template<class T>
|
---|
| 879 | void SphericalTransformServer<T>::carteVersAlm(const SphericalMap<T>& mapq,
|
---|
[729] | 880 | const SphericalMap<T>& mapu,
|
---|
| 881 | Alm<T>& alme,
|
---|
| 882 | Alm<T>& almb,
|
---|
| 883 | int_4 nlmax,
|
---|
| 884 | r_8 cos_theta_cut) const
|
---|
| 885 | {
|
---|
| 886 | int_4 nmmax = nlmax;
|
---|
| 887 | // resize et remise a zero
|
---|
| 888 | alme.ReSizeToLmax(nlmax);
|
---|
| 889 | almb.ReSizeToLmax(nlmax);
|
---|
| 890 |
|
---|
| 891 |
|
---|
| 892 | TVector<T> dataq;
|
---|
| 893 | TVector<T> datau;
|
---|
| 894 | TVector<int_4> pixNumber;
|
---|
| 895 |
|
---|
[2291] | 896 | string sphere_type=mapq.TypeOfMap();
|
---|
| 897 | if (sphere_type != mapu.TypeOfMap())
|
---|
[729] | 898 | {
|
---|
| 899 | cout << " SphericalTransformServer: les deux spheres ne sont pas de meme type" << endl;
|
---|
| 900 | cout << " type 1 " << sphere_type << endl;
|
---|
| 901 | cout << " type 2 " << mapu.TypeOfMap() << endl;
|
---|
| 902 | throw SzMismatchError("SphericalTransformServer: les deux spheres ne sont pas de meme type");
|
---|
| 903 |
|
---|
| 904 | }
|
---|
| 905 | if (mapq.NbPixels()!=mapu.NbPixels())
|
---|
| 906 | {
|
---|
| 907 | cout << " DecomposeToAlm: map Q and map U have not same size ?" << endl;
|
---|
| 908 | throw SzMismatchError("SphericalTransformServer::DecomposeToAlm: map Q and map U have not same size ");
|
---|
| 909 | }
|
---|
[746] | 910 | for (int_4 ith = 0; ith < mapq.NbThetaSlices(); ith++)
|
---|
[729] | 911 | {
|
---|
| 912 | r_8 phi0;
|
---|
| 913 | r_8 theta;
|
---|
| 914 | mapq.GetThetaSlice(ith,theta,phi0, pixNumber,dataq);
|
---|
| 915 | mapu.GetThetaSlice(ith,theta,phi0, pixNumber,datau);
|
---|
| 916 | if (dataq.NElts() != datau.NElts() )
|
---|
| 917 | {
|
---|
| 918 | throw SzMismatchError("the spheres have not the same pixelization");
|
---|
| 919 | }
|
---|
| 920 | r_8 domega=mapq.PixSolAngle(mapq.PixIndexSph(theta,phi0));
|
---|
| 921 | double cth = cos(theta);
|
---|
| 922 | //part of the sky out of the symetric cut
|
---|
[1428] | 923 | bool keep_it = (fabs(cth) >= cos_theta_cut);
|
---|
[729] | 924 | if (keep_it)
|
---|
| 925 | {
|
---|
[1328] | 926 | // almFromPM(pixNumber.NElts(), nlmax, nmmax, phi0, domega, theta, dataq, datau, alme, almb);
|
---|
[746] | 927 | almFromWX(nlmax, nmmax, phi0, domega, theta, dataq, datau, alme, almb);
|
---|
[729] | 928 | }
|
---|
| 929 | }
|
---|
| 930 | }
|
---|
| 931 |
|
---|
| 932 |
|
---|
[1218] | 933 | /*! \fn void SOPHYA::SphericalTransformServer::almFromWX(int_4 nlmax, int_4 nmmax,
|
---|
| 934 | r_8 phi0, r_8 domega,
|
---|
| 935 | r_8 theta,
|
---|
| 936 | const TVector<T>& dataq,
|
---|
| 937 | const TVector<T>& datau,
|
---|
| 938 | Alm<T>& alme,
|
---|
| 939 | Alm<T>& almb) const
|
---|
| 940 |
|
---|
| 941 | Compute polarized Alm's as :
|
---|
| 942 | \f[
|
---|
| 943 | a_{lm}^E=\frac{1}{\sqrt{2}}\sum_{slices}{\omega_{pix}\left(\,_{w}\lambda_l^m\tilde{Q}-i\,_{x}\lambda_l^m\tilde{U}\right)}
|
---|
| 944 | \f]
|
---|
| 945 | \f[
|
---|
| 946 | a_{lm}^B=\frac{1}{\sqrt{2}}\sum_{slices}{\omega_{pix}\left(i\,_{x}\lambda_l^m\tilde{Q}+\,_{w}\lambda_l^m\tilde{U}\right)}
|
---|
| 947 | \f]
|
---|
| 948 |
|
---|
| 949 | where \f$\tilde{Q}\f$ and \f$\tilde{U}\f$ are C-coefficients computed by FFT (method CFromFourierAnalysis, called by present method) from the Stokes parameters.
|
---|
| 950 |
|
---|
| 951 | \f$\omega_{pix}\f$ are solid angle of each pixel.
|
---|
| 952 |
|
---|
| 953 | dataq, datau : Stokes parameters.
|
---|
| 954 |
|
---|
| 955 | */
|
---|
[729] | 956 | template<class T>
|
---|
[746] | 957 | void SphericalTransformServer<T>::almFromWX(int_4 nlmax, int_4 nmmax,
|
---|
[729] | 958 | r_8 phi0, r_8 domega,
|
---|
| 959 | r_8 theta,
|
---|
| 960 | const TVector<T>& dataq,
|
---|
| 961 | const TVector<T>& datau,
|
---|
| 962 | Alm<T>& alme,
|
---|
| 963 | Alm<T>& almb) const
|
---|
| 964 | {
|
---|
| 965 | TVector< complex<T> > phaseq(nmmax+1);
|
---|
| 966 | TVector< complex<T> > phaseu(nmmax+1);
|
---|
| 967 | // TVector<complex<T> > datain(nph);
|
---|
| 968 | for (int i=0;i< nmmax+1;i++)
|
---|
| 969 | {
|
---|
| 970 | phaseq(i)=0;
|
---|
| 971 | phaseu(i)=0;
|
---|
| 972 | }
|
---|
| 973 | // for(int kk=0; kk<nph; kk++) datain(kk)=complex<T>(dataq(kk),0.);
|
---|
| 974 |
|
---|
[1683] | 975 | // phaseq = CFromFourierAnalysis(nmmax,dataq,phi0);
|
---|
| 976 | CFromFourierAnalysis(nmmax,dataq,phaseq, phi0);
|
---|
[729] | 977 |
|
---|
[1683] | 978 | // phaseu= CFromFourierAnalysis(nmmax,datau,phi0);
|
---|
| 979 | CFromFourierAnalysis(nmmax,datau,phaseu, phi0);
|
---|
[729] | 980 |
|
---|
| 981 | LambdaWXBuilder lwxb(theta,nlmax,nmmax);
|
---|
| 982 |
|
---|
| 983 | r_8 sqr2inv=1/Rac2;
|
---|
| 984 | for (int m = 0; m <= nmmax; m++)
|
---|
| 985 | {
|
---|
| 986 | r_8 lambda_w=0.;
|
---|
| 987 | r_8 lambda_x=0.;
|
---|
| 988 | lwxb.lam_wx(m, m, lambda_w, lambda_x);
|
---|
| 989 | complex<T> zi_lam_x((T)0., (T)lambda_x);
|
---|
| 990 | alme(m,m) += ( (T)(lambda_w)*phaseq(m)-zi_lam_x*phaseu(m) )*(T)(domega*sqr2inv);
|
---|
| 991 | almb(m,m) += ( (T)(lambda_w)*phaseu(m)+zi_lam_x*phaseq(m) )*(T)(domega*sqr2inv);
|
---|
| 992 |
|
---|
| 993 | for (int l = m+1; l<= nlmax; l++)
|
---|
| 994 | {
|
---|
| 995 | lwxb.lam_wx(l, m, lambda_w, lambda_x);
|
---|
| 996 | zi_lam_x = complex<T>((T)0., (T)lambda_x);
|
---|
| 997 | alme(l,m) += ( (T)(lambda_w)*phaseq(m)-zi_lam_x*phaseu(m) )*(T)(domega*sqr2inv);
|
---|
| 998 | almb(l,m) += ( (T)(lambda_w)*phaseu(m)+zi_lam_x*phaseq(m) )*(T)(domega*sqr2inv);
|
---|
| 999 | }
|
---|
| 1000 | }
|
---|
| 1001 | }
|
---|
| 1002 |
|
---|
| 1003 |
|
---|
[1218] | 1004 | /*! \fn void SOPHYA::SphericalTransformServer::almFromPM(int_4 nph, int_4 nlmax,
|
---|
| 1005 | int_4 nmmax,
|
---|
| 1006 | r_8 phi0, r_8 domega,
|
---|
| 1007 | r_8 theta,
|
---|
| 1008 | const TVector<T>& dataq,
|
---|
| 1009 | const TVector<T>& datau,
|
---|
| 1010 | Alm<T>& alme,
|
---|
| 1011 | Alm<T>& almb) const
|
---|
| 1012 |
|
---|
| 1013 | Compute polarized Alm's as :
|
---|
| 1014 | \f[
|
---|
| 1015 | a_{lm}^E=-\frac{1}{2}\sum_{slices}{\omega_{pix}\left(\,_{+}\lambda_l^m\tilde{P^+}+\,_{-}\lambda_l^m\tilde{P^-}\right)}
|
---|
| 1016 | \f]
|
---|
| 1017 | \f[
|
---|
| 1018 | a_{lm}^B=\frac{i}{2}\sum_{slices}{\omega_{pix}\left(\,_{+}\lambda_l^m\tilde{P^+}-\,_{-}\lambda_l^m\tilde{P^-}\right)}
|
---|
| 1019 | \f]
|
---|
| 1020 |
|
---|
| 1021 | where \f$\tilde{P^{\pm}}=\tilde{Q}\pm\tilde{U}\f$ computed by FFT (method CFromFourierAnalysis, called by present method) from the Stokes parameters,\f$Q\f$ and \f$U\f$ .
|
---|
| 1022 |
|
---|
| 1023 | \f$\omega_{pix}\f$ are solid angle of each pixel.
|
---|
| 1024 |
|
---|
| 1025 | dataq, datau : Stokes parameters.
|
---|
| 1026 |
|
---|
| 1027 | */
|
---|
[729] | 1028 | template<class T>
|
---|
[1218] | 1029 | void SphericalTransformServer<T>::almFromPM(int_4 nph, int_4 nlmax,
|
---|
| 1030 | int_4 nmmax,
|
---|
[729] | 1031 | r_8 phi0, r_8 domega,
|
---|
| 1032 | r_8 theta,
|
---|
| 1033 | const TVector<T>& dataq,
|
---|
| 1034 | const TVector<T>& datau,
|
---|
| 1035 | Alm<T>& alme,
|
---|
| 1036 | Alm<T>& almb) const
|
---|
| 1037 | {
|
---|
| 1038 | TVector< complex<T> > phasep(nmmax+1);
|
---|
| 1039 | TVector< complex<T> > phasem(nmmax+1);
|
---|
| 1040 | TVector<complex<T> > datain(nph);
|
---|
| 1041 | for (int i=0;i< nmmax+1;i++)
|
---|
| 1042 | {
|
---|
| 1043 | phasep(i)=0;
|
---|
| 1044 | phasem(i)=0;
|
---|
| 1045 | }
|
---|
[833] | 1046 | int kk;
|
---|
| 1047 | for(kk=0; kk<nph; kk++) datain(kk)=complex<T>(dataq(kk),datau(kk));
|
---|
[729] | 1048 |
|
---|
[746] | 1049 | phasep = CFromFourierAnalysis(nmmax,datain,phi0);
|
---|
[729] | 1050 |
|
---|
[833] | 1051 | for(kk=0; kk<nph; kk++) datain(kk)=complex<T>(dataq(kk),-datau(kk));
|
---|
[746] | 1052 | phasem = CFromFourierAnalysis(nmmax,datain,phi0);
|
---|
[729] | 1053 | LambdaPMBuilder lpmb(theta,nlmax,nmmax);
|
---|
| 1054 |
|
---|
| 1055 | for (int m = 0; m <= nmmax; m++)
|
---|
| 1056 | {
|
---|
| 1057 | r_8 lambda_p=0.;
|
---|
| 1058 | r_8 lambda_m=0.;
|
---|
| 1059 | complex<T> im((T)0.,(T)1.);
|
---|
| 1060 | lpmb.lam_pm(m, m, lambda_p, lambda_m);
|
---|
| 1061 |
|
---|
| 1062 | alme(m,m) += -( (T)(lambda_p)*phasep(m) + (T)(lambda_m)*phasem(m) )*(T)(domega*0.5);
|
---|
| 1063 | almb(m,m) += im*( (T)(lambda_p)*phasep(m) - (T)(lambda_m)*phasem(m) )*(T)(domega*0.5);
|
---|
| 1064 | for (int l = m+1; l<= nlmax; l++)
|
---|
| 1065 | {
|
---|
| 1066 | lpmb.lam_pm(l, m, lambda_p, lambda_m);
|
---|
| 1067 | alme(l,m) += -( (T)(lambda_p)*phasep(m) + (T)(lambda_m)*phasem(m) )*(T)(domega*0.5);
|
---|
| 1068 | almb(l,m) += im* ( (T)(lambda_p)*phasep(m) - (T)(lambda_m)*phasem(m) )*(T)(domega*0.5);
|
---|
| 1069 | }
|
---|
| 1070 | }
|
---|
| 1071 | }
|
---|
| 1072 |
|
---|
| 1073 |
|
---|
[1218] | 1074 | /*! \fn void SOPHYA::SphericalTransformServer::mapFromWX(int_4 nlmax, int_4 nmmax,
|
---|
| 1075 | SphericalMap<T>& mapq,
|
---|
| 1076 | SphericalMap<T>& mapu,
|
---|
| 1077 | const Alm<T>& alme,
|
---|
[2313] | 1078 | const Alm<T>& almb, bool healpix) const
|
---|
[1218] | 1079 |
|
---|
| 1080 | synthesis of Stokes parameters following formulae :
|
---|
| 1081 |
|
---|
| 1082 | \f[
|
---|
| 1083 | Q=\sum_{m=-mmax}^{mmax}b_m^qe^{im\varphi}
|
---|
| 1084 | \f]
|
---|
| 1085 | \f[
|
---|
| 1086 | U=\sum_{m=-mmax}^{mmax}b_m^ue^{im\varphi}
|
---|
| 1087 | \f]
|
---|
| 1088 |
|
---|
| 1089 | computed by FFT (method fourierSynthesisFromB called by the present one)
|
---|
| 1090 |
|
---|
| 1091 | with :
|
---|
| 1092 |
|
---|
| 1093 | \f[
|
---|
| 1094 | b_m^q=-\frac{1}{\sqrt{2}}\sum_{l=|m|}^{lmax}{\left(\,_{w}\lambda_l^ma_{lm}^E-i\,_{x}\lambda_l^ma_{lm}^B\right) }
|
---|
| 1095 | \f]
|
---|
| 1096 | \f[
|
---|
| 1097 | b_m^u=\frac{1}{\sqrt{2}}\sum_{l=|m|}^{lmax}{\left(i\,_{x}\lambda_l^ma_{lm}^E+\,_{w}\lambda_l^ma_{lm}^B\right) }
|
---|
| 1098 | \f]
|
---|
| 1099 | */
|
---|
[729] | 1100 | template<class T>
|
---|
| 1101 | void SphericalTransformServer<T>::mapFromWX(int_4 nlmax, int_4 nmmax,
|
---|
| 1102 | SphericalMap<T>& mapq,
|
---|
| 1103 | SphericalMap<T>& mapu,
|
---|
| 1104 | const Alm<T>& alme,
|
---|
[2313] | 1105 | const Alm<T>& almb, bool healpix) const
|
---|
[729] | 1106 | {
|
---|
[2313] | 1107 | int i;
|
---|
| 1108 |
|
---|
[729] | 1109 | Bm<complex<T> > b_m_theta_q(nmmax);
|
---|
| 1110 | Bm<complex<T> > b_m_theta_u(nmmax);
|
---|
| 1111 |
|
---|
[746] | 1112 | for (int_4 ith = 0; ith < mapq.NbThetaSlices();ith++)
|
---|
[729] | 1113 | {
|
---|
| 1114 | int_4 nph;
|
---|
| 1115 | r_8 phi0;
|
---|
| 1116 | r_8 theta;
|
---|
| 1117 | TVector<int_4> pixNumber;
|
---|
| 1118 | TVector<T> datan;
|
---|
| 1119 |
|
---|
| 1120 | mapq.GetThetaSlice(ith,theta,phi0, pixNumber,datan);
|
---|
| 1121 | nph = pixNumber.NElts();
|
---|
| 1122 | // -----------------------------------------------------
|
---|
| 1123 | // for each theta, and each m, computes
|
---|
| 1124 | // b(m,theta) = sum_over_l>m (lambda_l_m(theta) * a_l_m)
|
---|
| 1125 | // ------------------------------------------------------
|
---|
| 1126 | LambdaWXBuilder lwxb(theta,nlmax,nmmax);
|
---|
| 1127 | // LambdaPMBuilder lpmb(theta,nlmax,nmmax);
|
---|
| 1128 | r_8 sqr2inv=1/Rac2;
|
---|
[833] | 1129 | int m;
|
---|
| 1130 | for (m = 0; m <= nmmax; m++)
|
---|
[729] | 1131 | {
|
---|
| 1132 | r_8 lambda_w=0.;
|
---|
| 1133 | r_8 lambda_x=0.;
|
---|
| 1134 | lwxb.lam_wx(m, m, lambda_w, lambda_x);
|
---|
| 1135 | complex<T> zi_lam_x((T)0., (T)lambda_x);
|
---|
| 1136 |
|
---|
| 1137 | b_m_theta_q(m) = ( (T)(lambda_w) * alme(m,m) - zi_lam_x * almb(m,m))*(T)sqr2inv ;
|
---|
| 1138 | b_m_theta_u(m) = ( (T)(lambda_w) * almb(m,m) + zi_lam_x * alme(m,m))*(T)sqr2inv;
|
---|
| 1139 |
|
---|
| 1140 |
|
---|
| 1141 | for (int l = m+1; l<= nlmax; l++)
|
---|
| 1142 | {
|
---|
| 1143 |
|
---|
| 1144 | lwxb.lam_wx(l, m, lambda_w, lambda_x);
|
---|
| 1145 | zi_lam_x= complex<T>((T)0., (T)lambda_x);
|
---|
| 1146 |
|
---|
| 1147 | b_m_theta_q(m) += ((T)(lambda_w)*alme(l,m)-zi_lam_x *almb(l,m))*(T)sqr2inv;
|
---|
| 1148 | b_m_theta_u(m) += ((T)(lambda_w)*almb(l,m)+zi_lam_x *alme(l,m))*(T)sqr2inv;
|
---|
| 1149 |
|
---|
| 1150 | }
|
---|
| 1151 | }
|
---|
| 1152 | // obtains the negative m of b(m,theta) (= complex conjugate)
|
---|
[833] | 1153 | for (m=1;m<=nmmax;m++)
|
---|
[729] | 1154 | {
|
---|
| 1155 | b_m_theta_q(-m) = conj(b_m_theta_q(m));
|
---|
| 1156 | b_m_theta_u(-m) = conj(b_m_theta_u(m));
|
---|
| 1157 | }
|
---|
[2313] | 1158 | if (healpix)
|
---|
[729] | 1159 | {
|
---|
[2313] | 1160 | TVector<T> Tempq = RfourierSynthesisFromB(b_m_theta_q,nph,phi0);
|
---|
| 1161 | TVector<T> Tempu = RfourierSynthesisFromB(b_m_theta_u,nph,phi0);
|
---|
| 1162 | for (i=0;i< nph;i++)
|
---|
| 1163 | {
|
---|
| 1164 | mapq(pixNumber(i))=Tempq(i);
|
---|
| 1165 | mapu(pixNumber(i))=Tempu(i);
|
---|
| 1166 | }
|
---|
[729] | 1167 | }
|
---|
[2313] | 1168 | else
|
---|
| 1169 | // pour des pixelisations quelconques (autres que HEALPix
|
---|
| 1170 | // nph n'est pas toujours pair
|
---|
| 1171 | // ca fait des problemes pour les transformees de Fourier
|
---|
| 1172 | // car le server de TF ajuste la longueur du vecteur reel
|
---|
| 1173 | // en sortie de TF, bref, la securite veut qu'on prenne une
|
---|
| 1174 | // TF complexe
|
---|
| 1175 | {
|
---|
| 1176 | TVector<complex<T> > Tempq = fourierSynthesisFromB(b_m_theta_q,nph,phi0);
|
---|
| 1177 | TVector<complex<T> > Tempu = fourierSynthesisFromB(b_m_theta_u,nph,phi0);
|
---|
| 1178 | for (i=0;i< nph;i++)
|
---|
| 1179 | {
|
---|
| 1180 | mapq(pixNumber(i))=Tempq(i).real();
|
---|
| 1181 | mapu(pixNumber(i))=Tempu(i).real();
|
---|
| 1182 | }
|
---|
| 1183 | }
|
---|
[729] | 1184 | }
|
---|
| 1185 | }
|
---|
[1218] | 1186 | /*! \fn void SOPHYA::SphericalTransformServer::mapFromPM(int_4 nlmax, int_4 nmmax,
|
---|
| 1187 | SphericalMap<T>& mapq,
|
---|
| 1188 | SphericalMap<T>& mapu,
|
---|
| 1189 | const Alm<T>& alme,
|
---|
| 1190 | const Alm<T>& almb) const
|
---|
| 1191 |
|
---|
| 1192 | synthesis of polarizations following formulae :
|
---|
| 1193 |
|
---|
| 1194 | \f[
|
---|
| 1195 | P^+ = \sum_{m=-mmax}^{mmax} {b_m^+e^{im\varphi} }
|
---|
| 1196 | \f]
|
---|
| 1197 | \f[
|
---|
| 1198 | P^- = \sum_{m=-mmax}^{mmax} {b_m^-e^{im\varphi} }
|
---|
| 1199 | \f]
|
---|
| 1200 |
|
---|
| 1201 | computed by FFT (method fourierSynthesisFromB called by the present one)
|
---|
| 1202 |
|
---|
| 1203 | with :
|
---|
| 1204 |
|
---|
| 1205 | \f[
|
---|
| 1206 | b_m^+=-\sum_{l=|m|}^{lmax}{\,_{+}\lambda_l^m \left( a_{lm}^E+ia_{lm}^B \right) }
|
---|
| 1207 | \f]
|
---|
| 1208 | \f[
|
---|
| 1209 | b_m^-=-\sum_{l=|m|}^{lmax}{\,_{+}\lambda_l^m \left( a_{lm}^E-ia_{lm}^B \right) }
|
---|
| 1210 | \f]
|
---|
| 1211 | */
|
---|
[729] | 1212 | template<class T>
|
---|
| 1213 | void SphericalTransformServer<T>::mapFromPM(int_4 nlmax, int_4 nmmax,
|
---|
| 1214 | SphericalMap<T>& mapq,
|
---|
| 1215 | SphericalMap<T>& mapu,
|
---|
| 1216 | const Alm<T>& alme,
|
---|
| 1217 | const Alm<T>& almb) const
|
---|
| 1218 | {
|
---|
| 1219 | Bm<complex<T> > b_m_theta_p(nmmax);
|
---|
| 1220 | Bm<complex<T> > b_m_theta_m(nmmax);
|
---|
[746] | 1221 | for (int_4 ith = 0; ith < mapq.NbThetaSlices();ith++)
|
---|
[729] | 1222 | {
|
---|
| 1223 | int_4 nph;
|
---|
| 1224 | r_8 phi0;
|
---|
| 1225 | r_8 theta;
|
---|
| 1226 | TVector<int_4> pixNumber;
|
---|
| 1227 | TVector<T> datan;
|
---|
| 1228 |
|
---|
| 1229 | mapq.GetThetaSlice(ith,theta,phi0, pixNumber,datan);
|
---|
| 1230 | nph = pixNumber.NElts();
|
---|
| 1231 |
|
---|
| 1232 | // -----------------------------------------------------
|
---|
| 1233 | // for each theta, and each m, computes
|
---|
| 1234 | // b(m,theta) = sum_over_l>m (lambda_l_m(theta) * a_l_m)
|
---|
| 1235 | //------------------------------------------------------
|
---|
| 1236 |
|
---|
| 1237 | LambdaPMBuilder lpmb(theta,nlmax,nmmax);
|
---|
[833] | 1238 | int m;
|
---|
| 1239 | for (m = 0; m <= nmmax; m++)
|
---|
[729] | 1240 | {
|
---|
| 1241 | r_8 lambda_p=0.;
|
---|
| 1242 | r_8 lambda_m=0.;
|
---|
| 1243 | lpmb.lam_pm(m, m, lambda_p, lambda_m);
|
---|
| 1244 | complex<T> im((T)0.,(T)1.);
|
---|
| 1245 |
|
---|
| 1246 | b_m_theta_p(m) = (T)(lambda_p )* (-alme(m,m) - im * almb(m,m));
|
---|
| 1247 | b_m_theta_m(m) = (T)(lambda_m) * (-alme(m,m) + im * almb(m,m));
|
---|
| 1248 |
|
---|
| 1249 |
|
---|
| 1250 | for (int l = m+1; l<= nlmax; l++)
|
---|
| 1251 | {
|
---|
| 1252 | lpmb.lam_pm(l, m, lambda_p, lambda_m);
|
---|
| 1253 | b_m_theta_p(m) += (T)(lambda_p)*(-alme(l,m)-im *almb(l,m));
|
---|
| 1254 | b_m_theta_m(m) += (T)(lambda_m)*(-alme(l,m)+im *almb(l,m));
|
---|
| 1255 | }
|
---|
| 1256 | }
|
---|
| 1257 |
|
---|
| 1258 | // obtains the negative m of b(m,theta) (= complex conjugate)
|
---|
[833] | 1259 | for (m=1;m<=nmmax;m++)
|
---|
[729] | 1260 | {
|
---|
| 1261 | b_m_theta_p(-m) = conj(b_m_theta_m(m));
|
---|
| 1262 | b_m_theta_m(-m) = conj(b_m_theta_p(m));
|
---|
| 1263 | }
|
---|
| 1264 |
|
---|
| 1265 | TVector<complex<T> > Tempp = fourierSynthesisFromB(b_m_theta_p,nph,phi0);
|
---|
| 1266 | TVector<complex<T> > Tempm = fourierSynthesisFromB(b_m_theta_m,nph,phi0);
|
---|
| 1267 |
|
---|
| 1268 | for (int i=0;i< nph;i++)
|
---|
| 1269 | {
|
---|
| 1270 | mapq(pixNumber(i))=0.5*(Tempp(i)+Tempm(i)).real();
|
---|
| 1271 | mapu(pixNumber(i))=0.5*(Tempp(i)-Tempm(i)).imag();
|
---|
| 1272 | }
|
---|
| 1273 | }
|
---|
| 1274 | }
|
---|
| 1275 |
|
---|
| 1276 |
|
---|
[1218] | 1277 | /*! \fn void SOPHYA::SphericalTransformServer::GenerateFromCl(SphericalMap<T>& sphq,
|
---|
| 1278 | SphericalMap<T>& sphu,
|
---|
| 1279 | int_4 pixelSizeIndex,
|
---|
| 1280 | const TVector<T>& Cle,
|
---|
| 1281 | const TVector<T>& Clb,
|
---|
| 1282 | const r_8 fwhm) const
|
---|
| 1283 |
|
---|
| 1284 | synthesis of a polarization map from power spectra electric-Cl and magnetic-Cl (Alm's are generated randomly, following a gaussian distribution).
|
---|
| 1285 | \param fwhm FWHM in arcmin for random generation of Alm's (eg. 5)
|
---|
| 1286 | */
|
---|
[729] | 1287 | template<class T>
|
---|
| 1288 | void SphericalTransformServer<T>::GenerateFromCl(SphericalMap<T>& sphq,
|
---|
| 1289 | SphericalMap<T>& sphu,
|
---|
| 1290 | int_4 pixelSizeIndex,
|
---|
| 1291 | const TVector<T>& Cle,
|
---|
| 1292 | const TVector<T>& Clb,
|
---|
| 1293 | const r_8 fwhm) const
|
---|
| 1294 | {
|
---|
| 1295 | if (Cle.NElts() != Clb.NElts())
|
---|
| 1296 | {
|
---|
| 1297 | cout << " SphericalTransformServer: les deux tableaux Cl n'ont pas la meme taille" << endl;
|
---|
| 1298 | throw SzMismatchError("SphericalTransformServer::GenerateFromCl : two Cl arrays have not same size");
|
---|
| 1299 | }
|
---|
| 1300 |
|
---|
| 1301 | // Alm<T> a2lme,a2lmb;
|
---|
| 1302 | // almFromCl(a2lme, Cle, fwhm);
|
---|
| 1303 | // almFromCl(a2lmb, Clb, fwhm);
|
---|
| 1304 | // Alm<T> a2lme = almFromCl(Cle, fwhm);
|
---|
| 1305 | // Alm<T> a2lmb = almFromCl(Clb, fwhm);
|
---|
| 1306 | Alm<T> a2lme(Cle, fwhm);
|
---|
| 1307 | Alm<T> a2lmb(Clb, fwhm);
|
---|
| 1308 |
|
---|
| 1309 | GenerateFromAlm(sphq,sphu,pixelSizeIndex,a2lme,a2lmb);
|
---|
| 1310 | }
|
---|
[1218] | 1311 | /*! \fn void SOPHYA::SphericalTransformServer::GenerateFromCl(SphericalMap<T>& sph,
|
---|
| 1312 | int_4 pixelSizeIndex,
|
---|
| 1313 | const TVector<T>& Cl,
|
---|
| 1314 | const r_8 fwhm) const
|
---|
| 1315 |
|
---|
| 1316 | synthesis of a temperature map from power spectrum Cl (Alm's are generated randomly, following a gaussian distribution). */
|
---|
[729] | 1317 | template<class T>
|
---|
| 1318 | void SphericalTransformServer<T>::GenerateFromCl(SphericalMap<T>& sph,
|
---|
| 1319 | int_4 pixelSizeIndex,
|
---|
| 1320 | const TVector<T>& Cl,
|
---|
| 1321 | const r_8 fwhm) const
|
---|
| 1322 | {
|
---|
| 1323 |
|
---|
| 1324 | Alm<T> alm(Cl, fwhm);
|
---|
| 1325 | GenerateFromAlm(sph,pixelSizeIndex, alm );
|
---|
| 1326 | }
|
---|
| 1327 |
|
---|
| 1328 |
|
---|
| 1329 |
|
---|
[1756] | 1330 | /*! \fn TVector<T> SOPHYA::SphericalTransformServer::DecomposeToCl(SphericalMap<T>& sph, int_4 nlmax, r_8 cos_theta_cut, int iterationOrder) const
|
---|
[1218] | 1331 |
|
---|
[1683] | 1332 | \return power spectrum from analysis of a temperature map. THE MAP CAN BE MODIFIED (if iterationOrder >0)
|
---|
[1218] | 1333 |
|
---|
| 1334 | \param<nlmax> : maximum value of the l index
|
---|
| 1335 |
|
---|
| 1336 | \param<cos_theta_cut> : cosinus of the symmetric cut EULER angle theta : cos_theta_cut=0 means no cut ; cos_theta_cut=1 all the sphere is cut.
|
---|
[1683] | 1337 |
|
---|
[1756] | 1338 | \param<iterationOrder> : 1,2,3,4.... order of an iterative analysis. If iterationOrder is not null, the method works with SphereHEALPix but NOT WITH SphereThetaPhi maps !
|
---|
[1683] | 1339 |
|
---|
[1218] | 1340 | */
|
---|
[729] | 1341 | template <class T>
|
---|
[1683] | 1342 | TVector<T> SphericalTransformServer<T>::DecomposeToCl(SphericalMap<T>& sph, int_4 nlmax, r_8 cos_theta_cut, int iterationOrder) const
|
---|
[729] | 1343 | {
|
---|
[1683] | 1344 | Alm<T> alm;
|
---|
| 1345 | DecomposeToAlm( sph, alm, nlmax, cos_theta_cut, iterationOrder);
|
---|
[729] | 1346 | // power spectrum
|
---|
| 1347 | return alm.powerSpectrum();
|
---|
| 1348 | }
|
---|
| 1349 |
|
---|
[1756] | 1350 |
|
---|
| 1351 | /*! \fn TVector<T> SOPHYA::SphericalTransformServer::DecomposeToCl(const SphericalMap<T>& sph, int_4 nlmax, r_8 cos_theta_cut) const
|
---|
| 1352 |
|
---|
| 1353 | \return power spectrum from analysis of a temperature map.
|
---|
| 1354 |
|
---|
| 1355 | \param<nlmax> : maximum value of the l index
|
---|
| 1356 |
|
---|
| 1357 | \param<cos_theta_cut> : cosinus of the symmetric cut EULER angle theta : cos_theta_cut=0 means no cut ; cos_theta_cut=1 all the sphere is cut.
|
---|
| 1358 |
|
---|
| 1359 |
|
---|
| 1360 | */
|
---|
| 1361 |
|
---|
| 1362 |
|
---|
| 1363 | template <class T>
|
---|
| 1364 | TVector<T> SphericalTransformServer<T>::DecomposeToCl(const SphericalMap<T>& sph, int_4 nlmax, r_8 cos_theta_cut) const
|
---|
| 1365 | {
|
---|
| 1366 | Alm<T> alm;
|
---|
| 1367 | DecomposeToAlm( sph, alm, nlmax, cos_theta_cut);
|
---|
| 1368 | // power spectrum
|
---|
| 1369 | return alm.powerSpectrum();
|
---|
| 1370 | }
|
---|
| 1371 |
|
---|
[729] | 1372 | #ifdef __CXX_PRAGMA_TEMPLATES__
|
---|
| 1373 | #pragma define_template SphericalTransformServer<r_8>
|
---|
| 1374 | #pragma define_template SphericalTransformServer<r_4>
|
---|
| 1375 | #endif
|
---|
| 1376 | #if defined(ANSI_TEMPLATES) || defined(GNU_TEMPLATES)
|
---|
| 1377 | template class SphericalTransformServer<r_8>;
|
---|
| 1378 | template class SphericalTransformServer<r_4>;
|
---|
| 1379 | #endif
|
---|