| [2615] | 1 | #include "sopnamsp.h"
 | 
|---|
| [729] | 2 | #include "machdefs.h"
 | 
|---|
| [2322] | 3 | #include <iostream>
 | 
|---|
| [729] | 4 | #include <math.h>
 | 
|---|
 | 5 | #include <complex>
 | 
|---|
 | 6 | #include "sphericaltransformserver.h"
 | 
|---|
 | 7 | #include "tvector.h"
 | 
|---|
| [3077] | 8 | #include "srandgen.h"
 | 
|---|
| [729] | 9 | #include "nbmath.h"
 | 
|---|
| [1683] | 10 | #include "timing.h"
 | 
|---|
 | 11 | //#include "spherehealpix.h"
 | 
|---|
| [729] | 12 | 
 | 
|---|
| [1683] | 13 | 
 | 
|---|
| [2808] | 14 | /*! 
 | 
|---|
 | 15 |   \ingroup Samba
 | 
|---|
 | 16 |   \class SOPHYA::SphericalTransformServer
 | 
|---|
 | 17 |   
 | 
|---|
 | 18 |   \brief Analysis/synthesis in spherical harmonics server.
 | 
|---|
| [729] | 19 | 
 | 
|---|
| [1218] | 20 |  Class for performing analysis and synthesis of sky maps using spin-0 or spin-2 spherical harmonics.
 | 
|---|
 | 21 | 
 | 
|---|
| [2808] | 22 | Maps must be SOPHYA SphericalMaps (SphereHEALPix or SphereThetaPhi or SphereECP).
 | 
|---|
| [1218] | 23 | 
 | 
|---|
 | 24 | Temperature and polarization (Stokes parameters) can be developped on spherical harmonics : 
 | 
|---|
 | 25 | \f[
 | 
|---|
 | 26 | \frac{\Delta T}{T}(\hat{n})=\sum_{lm}a_{lm}^TY_l^m(\hat{n})
 | 
|---|
 | 27 | \f]
 | 
|---|
 | 28 | \f[
 | 
|---|
 | 29 | Q(\hat{n})=\frac{1}{\sqrt{2}}\sum_{lm}N_l\left(a_{lm}^EW_{lm}(\hat{n})+a_{lm}^BX_{lm}(\hat{n})\right)
 | 
|---|
 | 30 | \f]
 | 
|---|
 | 31 | \f[
 | 
|---|
 | 32 | U(\hat{n})=-\frac{1}{\sqrt{2}}\sum_{lm}N_l\left(a_{lm}^EX_{lm}(\hat{n})-a_{lm}^BW_{lm}(\hat{n})\right)
 | 
|---|
 | 33 | \f]
 | 
|---|
 | 34 | \f[
 | 
|---|
 | 35 | \left(Q \pm iU\right)(\hat{n})=\sum_{lm}a_{\pm 2lm}\, _{\pm 2}Y_l^m(\hat{n})
 | 
|---|
 | 36 | \f]
 | 
|---|
 | 37 | 
 | 
|---|
 | 38 | \f[
 | 
|---|
 | 39 | Y_l^m(\hat{n})=\lambda_l^m(\theta)e^{im\phi}
 | 
|---|
 | 40 | \f]
 | 
|---|
 | 41 | \f[
 | 
|---|
 | 42 | _{\pm}Y_l^m(\hat{n})=_{\pm}\lambda_l^m(\theta)e^{im\phi}
 | 
|---|
 | 43 | \f]
 | 
|---|
 | 44 | \f[
 | 
|---|
 | 45 | W_{lm}(\hat{n})=\frac{1}{N_l}\,_{w}\lambda_l^m(\theta)e^{im\phi}
 | 
|---|
 | 46 | \f]
 | 
|---|
 | 47 | \f[
 | 
|---|
 | 48 | X_{lm}(\hat{n})=\frac{-i}{N_l}\,_{x}\lambda_l^m(\theta)e^{im\phi}
 | 
|---|
 | 49 | \f]
 | 
|---|
 | 50 | 
 | 
|---|
 | 51 | (see LambdaLMBuilder, LambdaPMBuilder, LambdaWXBuilder classes)
 | 
|---|
 | 52 | 
 | 
|---|
 | 53 | power spectra : 
 | 
|---|
 | 54 | 
 | 
|---|
 | 55 | \f[
 | 
|---|
 | 56 | C_l^T=\frac{1}{2l+1}\sum_{m=0}^{+ \infty }\left|a_{lm}^T\right|^2=\langle\left|a_{lm}^T\right|^2\rangle 
 | 
|---|
 | 57 | \f]
 | 
|---|
 | 58 | \f[
 | 
|---|
 | 59 | C_l^E=\frac{1}{2l+1}\sum_{m=0}^{+\infty}\left|a_{lm}^E\right|^2=\langle\left|a_{lm}^E\right|^2\rangle 
 | 
|---|
 | 60 | \f]
 | 
|---|
 | 61 | \f[
 | 
|---|
 | 62 | C_l^B=\frac{1}{2l+1}\sum_{m=0}^{+\infty}\left|a_{lm}^B\right|^2=\langle\left|a_{lm}^B\right|^2\rangle 
 | 
|---|
 | 63 | \f]
 | 
|---|
 | 64 | 
 | 
|---|
 | 65 | \arg
 | 
|---|
 | 66 | \b Synthesis : Get temperature and polarization maps  from \f$a_{lm}\f$ coefficients or from power spectra, (methods GenerateFrom...).
 | 
|---|
 | 67 | 
 | 
|---|
 | 68 | \b Temperature:
 | 
|---|
 | 69 | \f[
 | 
|---|
 | 70 | \frac{\Delta T}{T}(\hat{n})=\sum_{lm}a_{lm}^TY_l^m(\hat{n}) = \sum_{-\infty}^{+\infty}b_m(\theta)e^{im\phi}
 | 
|---|
 | 71 | \f]
 | 
|---|
 | 72 | 
 | 
|---|
 | 73 | with 
 | 
|---|
 | 74 | \f[
 | 
|---|
 | 75 | b_m(\theta)=\sum_{l=\left|m\right|}^{+\infty}a_{lm}^T\lambda_l^m(\theta)
 | 
|---|
 | 76 | \f]
 | 
|---|
 | 77 | 
 | 
|---|
 | 78 | \b Polarisation
 | 
|---|
 | 79 | \f[
 | 
|---|
 | 80 | Q \pm iU = \sum_{-\infty}^{+\infty}b_m^{\pm}(\theta)e^{im\phi}
 | 
|---|
 | 81 | \f]
 | 
|---|
 | 82 | 
 | 
|---|
 | 83 | where :
 | 
|---|
 | 84 | \f[
 | 
|---|
 | 85 | b_m^{\pm}(\theta) = \sum_{l=\left|m\right|}^{+\infty}a_{\pm 2lm}\,_{\pm}\lambda_l^m(\theta)
 | 
|---|
 | 86 | \f]
 | 
|---|
 | 87 | 
 | 
|---|
 | 88 | or :
 | 
|---|
 | 89 | \f[
 | 
|---|
 | 90 | Q  = \sum_{-\infty}^{+\infty}b_m^{Q}(\theta)e^{im\phi}
 | 
|---|
 | 91 | \f]
 | 
|---|
 | 92 | \f[
 | 
|---|
 | 93 | U  = \sum_{-\infty}^{+\infty}b_m^{U}(\theta)e^{im\phi}
 | 
|---|
 | 94 | \f]
 | 
|---|
 | 95 | 
 | 
|---|
 | 96 | where: 
 | 
|---|
 | 97 | \f[
 | 
|---|
 | 98 | b_m^{Q}(\theta) = \frac{1}{\sqrt{2}}\sum_{l=\left|m\right|}^{+\infty}\left(a_{lm}^E\,_{w}\lambda_l^m(\theta)-ia_{lm}^B\,_{x}\lambda_l^m(\theta)\right)
 | 
|---|
 | 99 | \f]
 | 
|---|
 | 100 | \f[
 | 
|---|
 | 101 | b_m^{U}(\theta) = \frac{1}{\sqrt{2}}\sum_{l=\left|m\right|}^{+\infty}\left(ia_{lm}^E\,_{x}\lambda_l^m(\theta)+a_{lm}^B\,_{w}\lambda_l^m(\theta)\right)
 | 
|---|
 | 102 | \f]
 | 
|---|
 | 103 | 
 | 
|---|
 | 104 | Since the pixelization provides "slices" with constant \f$\theta\f$ and \f$\phi\f$ equally distributed  on \f$2\pi\f$  \f$\frac{\Delta T}{T}\f$, \f$Q\f$,\f$U\f$  can be computed by FFT.
 | 
|---|
 | 105 | 
 | 
|---|
 | 106 | 
 | 
|---|
 | 107 | \arg
 | 
|---|
 | 108 | \b Analysis :  Get \f$a_{lm}\f$ coefficients or  power spectra from temperature and polarization maps   (methods DecomposeTo...). 
 | 
|---|
 | 109 | 
 | 
|---|
 | 110 | \b Temperature:
 | 
|---|
 | 111 | \f[
 | 
|---|
 | 112 | a_{lm}^T=\int\frac{\Delta T}{T}(\hat{n})Y_l^{m*}(\hat{n})d\hat{n}
 | 
|---|
 | 113 | \f]
 | 
|---|
 | 114 | 
 | 
|---|
 | 115 | approximated as : 
 | 
|---|
 | 116 | \f[
 | 
|---|
 | 117 | a_{lm}^T=\sum_{\theta_k}\omega_kC_m(\theta_k)\lambda_l^m(\theta_k)
 | 
|---|
 | 118 | \f]
 | 
|---|
 | 119 | where :
 | 
|---|
 | 120 | \f[
 | 
|---|
 | 121 | C_m (\theta _k)=\sum_{\phi _{k\prime}}\frac{\Delta T}{T}(\theta _k,\phi_{k\prime})e^{-im\phi _{k\prime}}
 | 
|---|
 | 122 | \f]
 | 
|---|
 | 123 | Since the pixelization provides "slices" with constant \f$\theta\f$ and \f$\phi\f$ equally distributed  on \f$2\pi\f$ (\f$\omega_k\f$ is the solid angle of each pixel of the slice \f$\theta_k\f$) \f$C_m\f$ can be computed by FFT.
 | 
|---|
 | 124 | 
 | 
|---|
 | 125 | \b polarisation:
 | 
|---|
 | 126 | 
 | 
|---|
 | 127 | \f[
 | 
|---|
 | 128 | a_{\pm 2lm}=\sum_{\theta_k}\omega_kC_m^{\pm}(\theta_k)\,_{\pm}\lambda_l^m(\theta_k)
 | 
|---|
 | 129 | \f]
 | 
|---|
 | 130 | where :
 | 
|---|
 | 131 | \f[
 | 
|---|
 | 132 | C_m^{\pm} (\theta _k)=\sum_{\phi _{k\prime}}\left(Q \pm iU\right)(\theta _k,\phi_{k\prime})e^{-im\phi _{k\prime}}
 | 
|---|
 | 133 | \f]
 | 
|---|
 | 134 | or :
 | 
|---|
 | 135 | 
 | 
|---|
 | 136 | \f[
 | 
|---|
 | 137 | a_{lm}^E=\frac{1}{\sqrt{2}}\sum_{\theta_k}\omega_k\left(C_m^{Q}(\theta_k)\,_{w}\lambda_l^m(\theta_k)-iC_m^{U}(\theta_k)\,_{x}\lambda_l^m(\theta_k)\right)
 | 
|---|
 | 138 | \f]
 | 
|---|
 | 139 | \f[
 | 
|---|
 | 140 | a_{lm}^B=\frac{1}{\sqrt{2}}\sum_{\theta_k}\omega_k\left(iC_m^{Q}(\theta_k)\,_{x}\lambda_l^m(\theta_k)+C_m^{U}(\theta_k)\,_{w}\lambda_l^m(\theta_k)\right)
 | 
|---|
 | 141 | \f]
 | 
|---|
 | 142 | 
 | 
|---|
 | 143 | where : 
 | 
|---|
 | 144 | \f[
 | 
|---|
 | 145 | C_m^{Q} (\theta _k)=\sum_{\phi _{k\prime}}Q(\theta _k,\phi_{k\prime})e^{-im\phi _{k\prime}}
 | 
|---|
 | 146 | \f]
 | 
|---|
 | 147 | \f[
 | 
|---|
 | 148 | C_m^{U} (\theta _k)=\sum_{\phi _{k\prime}}U(\theta _k,\phi_{k\prime})e^{-im\phi _{k\prime}}
 | 
|---|
 | 149 | \f]
 | 
|---|
 | 150 | 
 | 
|---|
 | 151 |  */
 | 
|---|
 | 152 | 
 | 
|---|
 | 153 |  /*! \fn void SOPHYA::SphericalTransformServer::GenerateFromAlm( SphericalMap<T>& map, int_4 pixelSizeIndex, const Alm<T>& alm) const
 | 
|---|
 | 154 | 
 | 
|---|
 | 155 |  synthesis of a temperature  map from  Alm coefficients 
 | 
|---|
 | 156 | */
 | 
|---|
| [729] | 157 | template<class T>
 | 
|---|
 | 158 | void SphericalTransformServer<T>::GenerateFromAlm( SphericalMap<T>& map, int_4 pixelSizeIndex, const Alm<T>& alm) const
 | 
|---|
 | 159 | {
 | 
|---|
 | 160 |   /*=======================================================================
 | 
|---|
| [1756] | 161 |     computes a map from its alm for the HEALPIX pixelisation
 | 
|---|
| [729] | 162 |     map(theta,phi) = sum_l_m a_lm Y_lm(theta,phi)
 | 
|---|
 | 163 |     = sum_m {e^(i*m*phi) sum_l a_lm*lambda_lm(theta)}
 | 
|---|
 | 164 |     
 | 
|---|
 | 165 |     where Y_lm(theta,phi) = lambda(theta) * e^(i*m*phi)
 | 
|---|
 | 166 |     
 | 
|---|
 | 167 |     * the recurrence of Ylm is the standard one (cf Num Rec)
 | 
|---|
 | 168 |     * the sum over m is done by FFT
 | 
|---|
 | 169 |     
 | 
|---|
 | 170 |     =======================================================================*/
 | 
|---|
 | 171 |   int_4 nlmax=alm.Lmax();
 | 
|---|
 | 172 |   int_4 nmmax=nlmax;
 | 
|---|
 | 173 |   int_4 nsmax=0;
 | 
|---|
| [1756] | 174 |   // le Resize est suppose mettre a zero
 | 
|---|
| [729] | 175 |   map.Resize(pixelSizeIndex);
 | 
|---|
| [2291] | 176 |   string sphere_type=map.TypeOfMap();
 | 
|---|
| [2984] | 177 |   int premiereTranche = 0;
 | 
|---|
 | 178 |   int derniereTranche = map.NbThetaSlices()-1;
 | 
|---|
 | 179 | 
 | 
|---|
| [729] | 180 |   Bm<complex<T> > b_m_theta(nmmax);
 | 
|---|
 | 181 | 
 | 
|---|
 | 182 |   // pour chaque tranche en theta
 | 
|---|
| [2991] | 183 |   for (int_4 ith = premiereTranche; ith <= derniereTranche;ith++)  {
 | 
|---|
 | 184 |     int_4 nph;
 | 
|---|
 | 185 |     r_8 phi0;
 | 
|---|
 | 186 |     r_8 theta;
 | 
|---|
 | 187 |     TVector<int_4> pixNumber; 
 | 
|---|
 | 188 |     TVector<T> datan;
 | 
|---|
 | 189 |     
 | 
|---|
 | 190 |     map.GetThetaSlice(ith,theta,phi0, pixNumber,datan);
 | 
|---|
 | 191 |     nph = pixNumber.NElts();
 | 
|---|
 | 192 |     if (nph < 2) continue;  // On laisse tomber les tranches avec un point
 | 
|---|
 | 193 |     //       -----------------------------------------------------
 | 
|---|
 | 194 |     //        for each theta, and each m, computes
 | 
|---|
 | 195 |     //        b(m,theta) = sum_over_l>m (lambda_l_m(theta) * a_l_m) 
 | 
|---|
 | 196 |     //        ------------------------------------------------------
 | 
|---|
 | 197 |     // ===> Optimisation Reza, Mai 2006 
 | 
|---|
 | 198 |     /*---  Le bout de code suivant est remplace par l'appel a la nouvelle fonction
 | 
|---|
 | 199 |       qui calcule la somme au vol 
 | 
|---|
| [729] | 200 |       LambdaLMBuilder lb(theta,nlmax,nmmax);
 | 
|---|
 | 201 |       //  somme sur m de 0 a l'infini
 | 
|---|
| [2991] | 202 |       for (int_4 m = 0; m <= nmmax; m++) {
 | 
|---|
 | 203 |       b_m_theta(m) = (T)( lb.lamlm(m,m) ) * alm(m,m);
 | 
|---|
 | 204 |       for (int l = m+1; l<= nlmax; l++)
 | 
|---|
 | 205 |         b_m_theta(m) += (T)( lb.lamlm(l,m) ) * alm(l,m);
 | 
|---|
 | 206 |       }
 | 
|---|
| [2958] | 207 |       ------- Fin version PRE-Mai2006 */
 | 
|---|
| [2991] | 208 |     LambdaLMBuilder::ComputeBmFrAlm(theta,nlmax,nmmax, alm, b_m_theta);
 | 
|---|
 | 209 |     //Fin Optimisation Reza, Mai 2006 <==== 
 | 
|---|
| [2958] | 210 | 
 | 
|---|
| [729] | 211 |     //        obtains the negative m of b(m,theta) (= complex conjugate)
 | 
|---|
| [2991] | 212 |     for (int_4 m=1;m<=nmmax;m++)
 | 
|---|
 | 213 |       b_m_theta(-m) = conj(b_m_theta(m));
 | 
|---|
 | 214 |     // ---------------------------------------------------------------
 | 
|---|
 | 215 |     //    sum_m  b(m,theta)*exp(i*m*phi)   -> f(phi,theta)
 | 
|---|
 | 216 |     // ---------------------------------------------------------------*/
 | 
|---|
| [729] | 217 | 
 | 
|---|
| [2991] | 218 |     /* ----- Reza, Juin 2006 : 
 | 
|---|
 | 219 |        En verifiant la difference entre deux cartes 
 | 
|---|
 | 220 |        cl -> map -> alm -> map2 et mapdiff = map-map2 
 | 
|---|
 | 221 |        je me suis apercu qu'il y avait des differences importantes - dans les
 | 
|---|
 | 222 |        deux zones 'polar cap' de HEALPix - qui utilisait RfourierSynthesisFromB
 | 
|---|
 | 223 |        TF complex -> reel . Le probleme venant de l'ambiguite de taille, lie 
 | 
|---|
 | 224 |        a la partie imaginaire de la composante a f_nyquist , j'ai corrige et 
 | 
|---|
 | 225 |        tout mis en TF complexe -> reel 
 | 
|---|
 | 226 |     */
 | 
|---|
 | 227 |     TVector<T> Temp = RfourierSynthesisFromB(b_m_theta,nph,phi0);
 | 
|---|
 | 228 |     // Si on peut acceder directement les pixels d'un tranche, on le fait
 | 
|---|
 | 229 |     T* pix = map.GetThetaSliceDataPtr(ith);
 | 
|---|
 | 230 |     if (pix != NULL) 
 | 
|---|
 | 231 |       for (int_4 i=0;i< nph;i++) pix[i] = Temp(i);
 | 
|---|
 | 232 |     else 
 | 
|---|
 | 233 |       for (int_4 i=0;i< nph;i++) map(pixNumber(i))=Temp(i); 
 | 
|---|
 | 234 |   }
 | 
|---|
| [729] | 235 | }
 | 
|---|
 | 236 | 
 | 
|---|
 | 237 | 
 | 
|---|
 | 238 | 
 | 
|---|
| [1218] | 239 |   /*! \fn TVector< complex<T> >  SOPHYA::SphericalTransformServer::fourierSynthesisFromB(const Bm<complex<T> >& b_m,  int_4 nph, r_8 phi0) const
 | 
|---|
 | 240 | 
 | 
|---|
 | 241 | \return a vector with nph elements  which are  sums :\f$\sum_{m=-mmax}^{mmax}b_m(\theta)e^{im\varphi}\f$ for nph values of \f$\varphi\f$ regularly distributed in \f$[0,\pi]\f$ ( calculated by FFT)
 | 
|---|
 | 242 | 
 | 
|---|
 | 243 |   The object b_m (\f$b_m\f$) of the class Bm is a special vector which index goes from -mmax to mmax. 
 | 
|---|
 | 244 |   */
 | 
|---|
| [729] | 245 | template<class T>
 | 
|---|
 | 246 | TVector< complex<T> >  SphericalTransformServer<T>::fourierSynthesisFromB(const Bm<complex<T> >& b_m,  int_4 nph, r_8 phi0) const
 | 
|---|
 | 247 | {
 | 
|---|
 | 248 |   /*=======================================================================
 | 
|---|
 | 249 |      dataout(j) = sum_m datain(m) * exp(i*m*phi(j)) 
 | 
|---|
 | 250 |      with phi(j) = j*2pi/nph + kphi0*pi/nph and kphi0 =0 or 1
 | 
|---|
 | 251 | 
 | 
|---|
 | 252 |      as the set of frequencies {m} is larger than nph, 
 | 
|---|
 | 253 |      we wrap frequencies within {0..nph-1}
 | 
|---|
 | 254 |      ie  m = k*nph + m' with m' in {0..nph-1}
 | 
|---|
 | 255 |      then
 | 
|---|
 | 256 |      noting bw(m') = exp(i*m'*phi0) 
 | 
|---|
 | 257 |                    * sum_k (datain(k*nph+m') exp(i*k*pi*kphi0))
 | 
|---|
 | 258 |         with bw(nph-m') = CONJ(bw(m')) (if datain(-m) = CONJ(datain(m)))
 | 
|---|
 | 259 |      dataout(j) = sum_m' [ bw(m') exp (i*j*m'*2pi/nph) ]
 | 
|---|
 | 260 |                 = Fourier Transform of bw
 | 
|---|
 | 261 |         is real
 | 
|---|
 | 262 | 
 | 
|---|
 | 263 |          NB nph is not necessarily a power of 2
 | 
|---|
 | 264 | 
 | 
|---|
 | 265 | =======================================================================*/
 | 
|---|
 | 266 |   //**********************************************************************
 | 
|---|
 | 267 |   // pour une valeur de phi (indexee par j) la temperature est la transformee 
 | 
|---|
 | 268 |   // de Fourier de bm (somme sur m de -nmax a +nmmax de bm*exp(i*m*phi)).
 | 
|---|
 | 269 |   // on demande nph (nombre de pixels sur la tranche) valeurs de transformees, pour nph valeurs de phi, regulierement reparties sur 2*pi. On a:
 | 
|---|
 | 270 |   //      DT/T(j) = sum_m b(m) * exp(i*m*phi(j)) 
 | 
|---|
 | 271 |   // sommation de -infini a +infini, en fait limitee a -nmamx, +nmmax
 | 
|---|
 | 272 |   // On pose m=k*nph + m', avec m' compris entre 0 et nph-1. Alors :
 | 
|---|
 | 273 |   // DT/T(j) = somme_k somme_m'  b(k*nph + m')*exp(i*(k*nph + m')*phi(j))
 | 
|---|
 | 274 |   // somme_k : de -infini a +infini
 | 
|---|
 | 275 |   // somme_m' : de 0 a nph-1
 | 
|---|
 | 276 |   // On echange les sommations :
 | 
|---|
| [2625] | 277 |   // DT/T(j) = somme_m' (exp(i*m'*phi(j)) somme_k b(k*nph + m')*exp(i*(k*nph*phi(j))
 | 
|---|
| [729] | 278 |   // mais phi(j) est un multiple entier de 2*pi/nph, la seconde exponentielle 
 | 
|---|
 | 279 |   // vaut 1.
 | 
|---|
 | 280 |   // Il reste a calculer les transformees de Fourier de somme_m' b(k*nph + m')
 | 
|---|
 | 281 |   // si phi0 n'est pas nul, il y a juste un decalage a faire.
 | 
|---|
 | 282 |   //**********************************************************************
 | 
|---|
 | 283 | 
 | 
|---|
 | 284 |   TVector< complex<T> > bw(nph);
 | 
|---|
 | 285 |   TVector< complex<T> > dataout(nph);
 | 
|---|
 | 286 |   TVector< complex<T> > data(nph);
 | 
|---|
 | 287 | 
 | 
|---|
 | 288 | 
 | 
|---|
 | 289 |   for (int kk=0; kk<bw.NElts(); kk++) bw(kk)=(T)0.;
 | 
|---|
| [833] | 290 |   int m;
 | 
|---|
 | 291 |   for (m=-b_m.Mmax();m<=-1;m++)
 | 
|---|
| [729] | 292 |     {
 | 
|---|
 | 293 |       int maux=m;
 | 
|---|
 | 294 |       while (maux<0) maux+=nph;
 | 
|---|
 | 295 |       int iw=maux%nph;
 | 
|---|
 | 296 |       double aux=(m-iw)*phi0;
 | 
|---|
 | 297 |       bw(iw) += b_m(m) * complex<T>( (T)cos(aux),(T)sin(aux) )  ;
 | 
|---|
 | 298 |     }
 | 
|---|
| [833] | 299 |   for (m=0;m<=b_m.Mmax();m++)
 | 
|---|
| [729] | 300 |     {
 | 
|---|
 | 301 |       //      int iw=((m % nph) +nph) % nph; //between 0 and nph = m'
 | 
|---|
 | 302 |       int iw=m%nph;
 | 
|---|
 | 303 |       double aux=(m-iw)*phi0;
 | 
|---|
 | 304 |       bw(iw)+=b_m(m) * complex<T>( (T)cos(aux),(T)sin(aux) );
 | 
|---|
 | 305 |     }
 | 
|---|
 | 306 | 
 | 
|---|
 | 307 |   //     applies the shift in position <-> phase factor in Fourier space
 | 
|---|
 | 308 |   for (int mprime=0; mprime < nph; mprime++)
 | 
|---|
 | 309 |     {
 | 
|---|
 | 310 |       complex<double> aux(cos(mprime*phi0),sin(mprime*phi0));
 | 
|---|
 | 311 |       data(mprime)=bw(mprime)*
 | 
|---|
 | 312 |                        (complex<T>)(complex<double>(cos(mprime*phi0),sin(mprime*phi0)));
 | 
|---|
 | 313 |     }
 | 
|---|
 | 314 | 
 | 
|---|
 | 315 |   //sortie.ReSize(nph);
 | 
|---|
 | 316 |   TVector< complex<T> > sortie(nph);
 | 
|---|
 | 317 | 
 | 
|---|
 | 318 |   fftIntfPtr_-> FFTBackward(data, sortie);
 | 
|---|
 | 319 |   
 | 
|---|
 | 320 |   return sortie;
 | 
|---|
 | 321 | }
 | 
|---|
 | 322 | 
 | 
|---|
 | 323 | //********************************************
 | 
|---|
| [1218] | 324 | /*! \fn TVector<T>  SOPHYA::SphericalTransformServer::RfourierSynthesisFromB(const Bm<complex<T> >& b_m,  int_4 nph, r_8 phi0) const
 | 
|---|
 | 325 | 
 | 
|---|
 | 326 | same as fourierSynthesisFromB, but return a real vector, taking into account the fact that b(-m) is conjugate of b(m) */
 | 
|---|
| [729] | 327 | template<class T>
 | 
|---|
 | 328 | TVector<T>  SphericalTransformServer<T>::RfourierSynthesisFromB(const Bm<complex<T> >& b_m,  int_4 nph, r_8 phi0) const
 | 
|---|
 | 329 | {
 | 
|---|
 | 330 |   /*=======================================================================
 | 
|---|
 | 331 |      dataout(j) = sum_m datain(m) * exp(i*m*phi(j)) 
 | 
|---|
 | 332 |      with phi(j) = j*2pi/nph + kphi0*pi/nph and kphi0 =0 or 1
 | 
|---|
 | 333 | 
 | 
|---|
 | 334 |      as the set of frequencies {m} is larger than nph, 
 | 
|---|
 | 335 |      we wrap frequencies within {0..nph-1}
 | 
|---|
 | 336 |      ie  m = k*nph + m' with m' in {0..nph-1}
 | 
|---|
 | 337 |      then
 | 
|---|
 | 338 |      noting bw(m') = exp(i*m'*phi0) 
 | 
|---|
 | 339 |                    * sum_k (datain(k*nph+m') exp(i*k*pi*kphi0))
 | 
|---|
 | 340 |         with bw(nph-m') = CONJ(bw(m')) (if datain(-m) = CONJ(datain(m)))
 | 
|---|
 | 341 |      dataout(j) = sum_m' [ bw(m') exp (i*j*m'*2pi/nph) ]
 | 
|---|
 | 342 |                 = Fourier Transform of bw
 | 
|---|
 | 343 |         is real
 | 
|---|
 | 344 | 
 | 
|---|
 | 345 |          NB nph is not necessarily a power of 2
 | 
|---|
 | 346 | 
 | 
|---|
 | 347 | =======================================================================*/
 | 
|---|
 | 348 |   //**********************************************************************
 | 
|---|
 | 349 |   // pour une valeur de phi (indexee par j) la temperature est la transformee 
 | 
|---|
 | 350 |   // de Fourier de bm (somme sur m de -nmax a +nmmax de bm*exp(i*m*phi)).
 | 
|---|
 | 351 |   // on demande nph (nombre de pixels sur la tranche) valeurs de transformees, pour nph valeurs de phi, regulierement reparties sur 2*pi. On a:
 | 
|---|
 | 352 |   //      DT/T(j) = sum_m b(m) * exp(i*m*phi(j)) 
 | 
|---|
 | 353 |   // sommation de -infini a +infini, en fait limitee a -nmamx, +nmmax
 | 
|---|
 | 354 |   // On pose m=k*nph + m', avec m' compris entre 0 et nph-1. Alors :
 | 
|---|
 | 355 |   // DT/T(j) = somme_k somme_m'  b(k*nph + m')*exp(i*(k*nph + m')*phi(j))
 | 
|---|
 | 356 |   // somme_k : de -infini a +infini
 | 
|---|
 | 357 |   // somme_m' : de 0 a nph-1
 | 
|---|
 | 358 |   // On echange les sommations :
 | 
|---|
| [2313] | 359 |   // DT/T(j) = somme_m' (exp(i*m'*phi(j)) somme_k b(k*nph + m')*exp(i*(k*nph*phi(j))
 | 
|---|
| [729] | 360 |   // mais phi(j) est un multiple entier de 2*pi/nph, la seconde exponentielle 
 | 
|---|
 | 361 |   // vaut 1.
 | 
|---|
| [2313] | 362 |   // Il reste a calculer les transformees de Fourier de somme_k b(k*nph + m')
 | 
|---|
| [729] | 363 |   // si phi0 n'est pas nul, il y a juste un decalage a faire.
 | 
|---|
 | 364 |   //**********************************************************************
 | 
|---|
 | 365 |   TVector< complex<T> > bw(nph);
 | 
|---|
 | 366 |   TVector< complex<T> > data(nph/2+1);
 | 
|---|
 | 367 | 
 | 
|---|
 | 368 |   for (int kk=0; kk<bw.NElts(); kk++) bw(kk)=(T)0.;
 | 
|---|
| [833] | 369 |   int m;
 | 
|---|
| [2991] | 370 |   for (m=-b_m.Mmax();m<=-1;m++)  {
 | 
|---|
 | 371 |     int maux=m;
 | 
|---|
 | 372 |     while (maux<0) maux+=nph;
 | 
|---|
 | 373 |     int iw=maux%nph;
 | 
|---|
 | 374 |     double aux=(m-iw)*phi0;
 | 
|---|
 | 375 |     bw(iw) += b_m(m) * complex<T>( (T)cos(aux),(T)sin(aux) )  ;
 | 
|---|
 | 376 |   }
 | 
|---|
 | 377 |   for (m=0;m<=b_m.Mmax();m++) {
 | 
|---|
 | 378 |     //      int iw=((m % nph) +nph) % nph; //between 0 and nph = m'
 | 
|---|
 | 379 |     int iw=m%nph;
 | 
|---|
 | 380 |     double aux=(m-iw)*phi0;
 | 
|---|
 | 381 |     bw(iw)+=b_m(m) * complex<T>( (T)cos(aux),(T)sin(aux) );
 | 
|---|
 | 382 |   }
 | 
|---|
| [729] | 383 | 
 | 
|---|
 | 384 |   //     applies the shift in position <-> phase factor in Fourier space
 | 
|---|
| [2991] | 385 |   for (int mprime=0; mprime <= nph/2; mprime++)  
 | 
|---|
 | 386 |     data(mprime)=bw(mprime)*complex<T>((T)cos(mprime*phi0),(T)sin(mprime*phi0));    
 | 
|---|
 | 387 |   TVector<T> sortie(nph);
 | 
|---|
 | 388 | // On met la partie imaginaire du dernier element du data a zero pour nph pair
 | 
|---|
 | 389 |   if (nph%2 == 0) data(nph/2) = complex<T>(data(nph/2).real(), (T)0.);
 | 
|---|
 | 390 | // et on impose l'utilisation de la taille en sortie pour FFTBack (..., ..., true)
 | 
|---|
 | 391 |   fftIntfPtr_-> FFTBackward(data, sortie, true); 
 | 
|---|
| [729] | 392 |   return sortie;
 | 
|---|
 | 393 | }
 | 
|---|
 | 394 | //*******************************************
 | 
|---|
 | 395 | 
 | 
|---|
| [1218] | 396 |  /*! \fn  Alm<T> SOPHYA::SphericalTransformServer::DecomposeToAlm(const SphericalMap<T>& map, int_4 nlmax, r_8 cos_theta_cut) const
 | 
|---|
 | 397 | 
 | 
|---|
| [1756] | 398 | \return the Alm coefficients from analysis of a temperature map. 
 | 
|---|
| [1218] | 399 | 
 | 
|---|
 | 400 |     \param<nlmax> : maximum value of the l index
 | 
|---|
 | 401 | 
 | 
|---|
 | 402 |      \param<cos_theta_cut> : cosinus of the symmetric cut EULER angle theta : cos_theta_cut=0 means no cut ; cos_theta_cut=1 all the sphere is cut.
 | 
|---|
| [1683] | 403 | 
 | 
|---|
| [1756] | 404 |  */ 
 | 
|---|
| [729] | 405 | template<class T>
 | 
|---|
| [1756] | 406 | void SphericalTransformServer<T>::DecomposeToAlm(const SphericalMap<T>& map, Alm<T>& alm, int_4 nlmax, r_8 cos_theta_cut) const
 | 
|---|
 | 407 | {
 | 
|---|
 | 408 |   DecomposeToAlm(const_cast< SphericalMap<T>& >(map), alm, nlmax, cos_theta_cut, 0);
 | 
|---|
 | 409 | }
 | 
|---|
 | 410 | //*******************************************
 | 
|---|
 | 411 | 
 | 
|---|
 | 412 |  /*! \fn  Alm<T> SOPHYA::SphericalTransformServer::DecomposeToAlm(const SphericalMap<T>& map, int_4 nlmax, r_8 cos_theta_cut, int iterationOrder) const
 | 
|---|
 | 413 | 
 | 
|---|
 | 414 | \return the Alm coefficients from analysis of a temperature map. THE MAP CAN BE MODIFIED (if iterationOrder >0)
 | 
|---|
 | 415 | 
 | 
|---|
 | 416 |     \param<nlmax> : maximum value of the l index
 | 
|---|
 | 417 | 
 | 
|---|
 | 418 |      \param<cos_theta_cut> : cosinus of the symmetric cut EULER angle theta : cos_theta_cut=0 means no cut ; cos_theta_cut=1 all the sphere is cut.
 | 
|---|
 | 419 | 
 | 
|---|
 | 420 | \param<iterationOrder> : 1,2,3,4.... order of an iterative analysis. (Default : 0 -> standard analysis). If iterationOrder is not null, the method works with SphereHEALPix but NOT WITH SphereThetaPhi maps !  */ 
 | 
|---|
 | 421 | template<class T>
 | 
|---|
| [1683] | 422 | void SphericalTransformServer<T>::DecomposeToAlm(SphericalMap<T>& map, Alm<T>& alm, int_4 nlmax, r_8 cos_theta_cut, int iterationOrder) const
 | 
|---|
| [729] | 423 | {
 | 
|---|
| [1683] | 424 |   int_4  nmmax = nlmax;
 | 
|---|
 | 425 |   //  PrtTim("appel  carteVersAlm");
 | 
|---|
 | 426 |   carteVersAlm(map, nlmax, cos_theta_cut, alm);
 | 
|---|
 | 427 |   //  PrtTim("retour  carteVersAlm");
 | 
|---|
 | 428 |   if (iterationOrder > 0)
 | 
|---|
 | 429 |     {
 | 
|---|
 | 430 |       TVector<int_4> fact(iterationOrder+2);
 | 
|---|
 | 431 |       fact(0) = 1;
 | 
|---|
| [1715] | 432 |       int k;
 | 
|---|
 | 433 |       for (k=1; k <= iterationOrder+1; k++)
 | 
|---|
| [1683] | 434 |         {
 | 
|---|
 | 435 |           fact(k) = fact(k-1)*k;
 | 
|---|
 | 436 |         }
 | 
|---|
 | 437 |       Alm<T> alm2(alm);
 | 
|---|
 | 438 |       T Tzero = (T)0.;
 | 
|---|
 | 439 |       complex<T> complexZero = complex<T>(Tzero, Tzero);
 | 
|---|
 | 440 |       alm = complexZero;
 | 
|---|
 | 441 |       int signe = 1;
 | 
|---|
 | 442 |       int nbIteration = iterationOrder+1;
 | 
|---|
| [1715] | 443 |       for (k=1; k <= nbIteration; k++)
 | 
|---|
| [1683] | 444 |         {
 | 
|---|
 | 445 |           T facMult = (T)(0.5*signe*fact(iterationOrder)*(2*nbIteration-k)/(fact(k)*fact(nbIteration-k)));
 | 
|---|
 | 446 |           for (int m = 0; m <= nmmax; m++)
 | 
|---|
 | 447 |             {
 | 
|---|
 | 448 |               for (int l = m; l<= nlmax; l++)
 | 
|---|
 | 449 |                 {
 | 
|---|
 | 450 |                   alm(l,m) += facMult*alm2(l,m); 
 | 
|---|
 | 451 |                 }
 | 
|---|
 | 452 |             }
 | 
|---|
 | 453 |           if (k == nbIteration) break;
 | 
|---|
 | 454 |           signe = -signe;
 | 
|---|
 | 455 |           for (int k=0; k< map.NbPixels(); k++) map(k) = (T)0.;
 | 
|---|
 | 456 |           //        synthetize a map from the estimated alm
 | 
|---|
 | 457 |           //      PrtTim("appel  GenerateFromAlm");
 | 
|---|
 | 458 |           GenerateFromAlm( map, map.SizeIndex(), alm2);
 | 
|---|
 | 459 |           //      PrtTim("retour  GenerateFromAlm");
 | 
|---|
 | 460 |           alm2 = complexZero;
 | 
|---|
 | 461 |           //        analyse the new map
 | 
|---|
 | 462 |           //      PrtTim("appel  carteVersAlm");
 | 
|---|
 | 463 |           carteVersAlm(map, nlmax, cos_theta_cut, alm2);
 | 
|---|
 | 464 |           //      PrtTim("retour  carteVersAlm");
 | 
|---|
 | 465 |         }
 | 
|---|
 | 466 |     }
 | 
|---|
 | 467 | }
 | 
|---|
 | 468 | 
 | 
|---|
 | 469 | template<class T>
 | 
|---|
 | 470 |  void SphericalTransformServer<T>::carteVersAlm(const SphericalMap<T>& map, int_4 nlmax, r_8 cos_theta_cut, Alm<T>& alm) const
 | 
|---|
 | 471 | {
 | 
|---|
| [729] | 472 |   
 | 
|---|
 | 473 |   /*-----------------------------------------------------------------------
 | 
|---|
 | 474 |     computes the integral in phi : phas_m(theta)
 | 
|---|
 | 475 |     for each parallele from north to south pole
 | 
|---|
 | 476 |     -----------------------------------------------------------------------*/
 | 
|---|
 | 477 |   TVector<T> data;
 | 
|---|
 | 478 |   TVector<int_4> pixNumber;
 | 
|---|
 | 479 |   int_4  nmmax = nlmax;
 | 
|---|
 | 480 |   TVector< complex<T> > phase(nmmax+1);
 | 
|---|
| [1683] | 481 |   
 | 
|---|
| [729] | 482 |   alm.ReSizeToLmax(nlmax);
 | 
|---|
| [746] | 483 |   for (int_4 ith = 0; ith < map.NbThetaSlices(); ith++)
 | 
|---|
| [729] | 484 |     {
 | 
|---|
 | 485 |       r_8 phi0;
 | 
|---|
 | 486 |       r_8 theta;
 | 
|---|
| [1683] | 487 |       //  PrtTim("debut 1ere tranche ");
 | 
|---|
| [729] | 488 |       map.GetThetaSlice(ith,theta,phi0,pixNumber ,data);
 | 
|---|
| [1683] | 489 |       phase = complex<T>((T)0.,(T)0.);
 | 
|---|
| [729] | 490 |       double cth = cos(theta);
 | 
|---|
 | 491 |       
 | 
|---|
 | 492 |       //part of the sky out of the symetric cut
 | 
|---|
| [1428] | 493 |       bool keep_it = (fabs(cth) >= cos_theta_cut); 
 | 
|---|
| [1683] | 494 | 
 | 
|---|
 | 495 |       //    PrtTim("fin 1ere tranche ");
 | 
|---|
 | 496 |   
 | 
|---|
| [729] | 497 |       if (keep_it)
 | 
|---|
 | 498 |         {
 | 
|---|
| [1683] | 499 |           //      phase = CFromFourierAnalysis(nmmax,data,phi0);
 | 
|---|
 | 500 |           //      PrtTim("avant Fourier ");
 | 
|---|
 | 501 |           CFromFourierAnalysis(nmmax,data,phase, phi0);
 | 
|---|
 | 502 |           //      PrtTim("apres Fourier ");
 | 
|---|
| [729] | 503 | 
 | 
|---|
 | 504 |         }
 | 
|---|
 | 505 |       
 | 
|---|
| [1683] | 506 | //      ---------------------------------------------------------------------
 | 
|---|
 | 507 | //      computes the a_lm by integrating over theta
 | 
|---|
 | 508 | //      lambda_lm(theta) * phas_m(theta)
 | 
|---|
 | 509 | //      for each m and l
 | 
|---|
 | 510 | //      -----------------------------------------------------------------------
 | 
|---|
| [2958] | 511 | 
 | 
|---|
 | 512 |       // ===> Optimisation Reza, Mai 2006 
 | 
|---|
 | 513 |       /*---  Le bout de code suivant est remplace par l'appel a la nouvelle fonction
 | 
|---|
 | 514 |         qui calcule la somme au vol 
 | 
|---|
| [1683] | 515 |       //        PrtTim("avant instanciation LM ");
 | 
|---|
| [729] | 516 |       LambdaLMBuilder lb(theta,nlmax,nmmax);
 | 
|---|
| [1683] | 517 |       //        PrtTim("apres instanciation LM ");
 | 
|---|
| [729] | 518 |       r_8 domega=map.PixSolAngle(map.PixIndexSph(theta,phi0));
 | 
|---|
| [1683] | 519 | 
 | 
|---|
 | 520 |       //   PrtTim("avant mise a jour Alm ");
 | 
|---|
 | 521 |       complex<T> fi;
 | 
|---|
 | 522 |       T facteur;
 | 
|---|
 | 523 |       int index;
 | 
|---|
| [729] | 524 |       for (int m = 0; m <= nmmax; m++)
 | 
|---|
 | 525 |         {
 | 
|---|
| [1683] | 526 |           fi = phase(m);
 | 
|---|
 | 527 |           for (int l = m; l<= nlmax; l++)
 | 
|---|
| [729] | 528 |             {
 | 
|---|
| [1683] | 529 |                  index = alm.indexOfElement(l,m);
 | 
|---|
 | 530 |                  //  facteur = (T)(lb.lamlm(l,m) * domega);
 | 
|---|
 | 531 |                     facteur = (T)(lb.lamlm(index) * domega);
 | 
|---|
 | 532 |                   // alm(l,m) += facteur * fi ; 
 | 
|---|
 | 533 |                       alm(index) += facteur * fi ; 
 | 
|---|
| [729] | 534 |             }
 | 
|---|
 | 535 |         }
 | 
|---|
| [2958] | 536 |       ------- Fin version PRE-Mai2006 */
 | 
|---|
 | 537 |       r_8 domega=map.PixSolAngle(map.PixIndexSph(theta,phi0));
 | 
|---|
 | 538 |       phase *= complex<T>((T)domega, 0.);
 | 
|---|
 | 539 |       LambdaLMBuilder::ComputeAlmFrPhase(theta,nlmax,nmmax, phase, alm);
 | 
|---|
 | 540 |       //Fin Optimisation Reza, Mai 2006 <==== 
 | 
|---|
| [1683] | 541 |       
 | 
|---|
 | 542 | 
 | 
|---|
 | 543 |       
 | 
|---|
 | 544 |       //
 | 
|---|
 | 545 |       //
 | 
|---|
 | 546 |       //       PrtTim("apres mise a jour Alm ");
 | 
|---|
| [729] | 547 |     }
 | 
|---|
 | 548 | }
 | 
|---|
| [1218] | 549 |   /*! \fn TVector< complex<T> > SOPHYA::SphericalTransformServer::CFromFourierAnalysis(int_4 nmmax, const TVector<complex<T> >datain, r_8 phi0) const
 | 
|---|
 | 550 | 
 | 
|---|
 | 551 | \return a vector with mmax elements  which are  sums :
 | 
|---|
 | 552 | \f$\sum_{k=0}^{nphi}datain(\theta,\varphi_k)e^{im\varphi_k}\f$ for (mmax+1) values of \f$m\f$ from 0 to mmax.
 | 
|---|
 | 553 |    */
 | 
|---|
| [729] | 554 | template<class T>
 | 
|---|
| [746] | 555 | TVector< complex<T> > SphericalTransformServer<T>::CFromFourierAnalysis(int_4 nmmax, const TVector<complex<T> >datain, r_8 phi0) const
 | 
|---|
| [729] | 556 | {
 | 
|---|
 | 557 |   /*=======================================================================
 | 
|---|
 | 558 |     integrates (data * phi-dependence-of-Ylm) over phi
 | 
|---|
 | 559 |     --> function of m can be computed by FFT
 | 
|---|
 | 560 |     
 | 
|---|
 | 561 |     datain est modifie
 | 
|---|
 | 562 |     =======================================================================*/
 | 
|---|
 | 563 |   int_4 nph=datain.NElts();
 | 
|---|
 | 564 |   if (nph <= 0) 
 | 
|---|
 | 565 |     {
 | 
|---|
 | 566 |       throw PException("bizarre : vecteur datain de longueur nulle (CFromFourierAnalysis)");
 | 
|---|
 | 567 |     }
 | 
|---|
 | 568 |   TVector<complex<T> > transformedData(nph);
 | 
|---|
| [3003] | 569 |   // Il faut avoir instancie le serveur de FFT avec l'option preserveinput=true
 | 
|---|
 | 570 |   fftIntfPtr_-> FFTForward(const_cast<TVector< complex<T> > &>(datain), transformedData);
 | 
|---|
| [729] | 571 | 
 | 
|---|
 | 572 |   TVector< complex<T> > dataout(nmmax+1);
 | 
|---|
 | 573 | 
 | 
|---|
 | 574 |   int im_max=min(nph,nmmax+1);
 | 
|---|
| [833] | 575 |   int i;
 | 
|---|
| [1683] | 576 |   dataout = complex<T>((T)0.,(T)0.);
 | 
|---|
 | 577 |   //  for (i=0;i< dataout.NElts();i++) dataout(i)=complex<T>((T)0.,(T)0.);
 | 
|---|
| [833] | 578 |   for (i=0;i<im_max;i++) dataout(i)=transformedData(i);
 | 
|---|
| [729] | 579 | 
 | 
|---|
 | 580 | 
 | 
|---|
 | 581 |   for (int kk=nph; kk<dataout.NElts(); kk++) dataout(kk)=dataout(kk%nph);
 | 
|---|
| [833] | 582 |   for (i = 0;i <dataout.NElts();i++){
 | 
|---|
| [729] | 583 |     dataout(i)*= (complex<T>)(complex<double>(cos(-i*phi0),sin(-i*phi0)));
 | 
|---|
 | 584 |   }
 | 
|---|
 | 585 |   return dataout;
 | 
|---|
 | 586 | }
 | 
|---|
 | 587 | 
 | 
|---|
 | 588 | //&&&&&&&&& nouvelle version
 | 
|---|
| [1218] | 589 | /* \fn TVector< complex<T> > SOPHYA::SphericalTransformServer::CFromFourierAnalysis(int_4 nmmax, const TVector<T> datain, r_8 phi0) const
 | 
|---|
 | 590 | 
 | 
|---|
 | 591 | same as previous one, but with a "datain" which is real (not complex) */
 | 
|---|
| [729] | 592 | template<class T>
 | 
|---|
| [1683] | 593 | void SphericalTransformServer<T>::CFromFourierAnalysis(int_4 nmmax, const TVector<T> datain, TVector< complex<T> >& dataout, r_8 phi0) const
 | 
|---|
| [729] | 594 | {
 | 
|---|
 | 595 |   //=======================================================================
 | 
|---|
 | 596 |   //    integrates (data * phi-dependence-of-Ylm) over phi
 | 
|---|
 | 597 |   //    --> function of m can be computed by FFT
 | 
|---|
 | 598 |   //   !     with  0<= m <= npoints/2 (: Nyquist)
 | 
|---|
 | 599 |   //   !     because the data is real the negative m are the conjugate of the 
 | 
|---|
 | 600 |   //   !     positive ones
 | 
|---|
 | 601 |     
 | 
|---|
 | 602 |   //    datain est modifie
 | 
|---|
 | 603 |   //    
 | 
|---|
 | 604 |   //    =======================================================================
 | 
|---|
 | 605 |   int_4 nph=datain.NElts();
 | 
|---|
 | 606 |   if (nph <= 0) 
 | 
|---|
 | 607 |     {
 | 
|---|
 | 608 |       throw PException("bizarre : vecteur datain de longueur nulle (CFromFourierAnalysis)");
 | 
|---|
 | 609 |     }
 | 
|---|
| [1756] | 610 |   // if (nph%2 != 0 )
 | 
|---|
 | 611 |   //  {
 | 
|---|
 | 612 |       //  throw PException("SphericalTransformServer<T>::CFromFourierAnalysis : longueur de datain impair ?");
 | 
|---|
 | 613 |   //  }
 | 
|---|
| [729] | 614 |   TVector<complex<T> > transformedData;
 | 
|---|
 | 615 | 
 | 
|---|
| [1683] | 616 |   // la taille du vecteur complexe retourne est nph/2+1 (si la taille 
 | 
|---|
 | 617 |   // du vecteur reel entre est nph)
 | 
|---|
| [1756] | 618 |   //   cout << " longueur de datain  = " << nph << endl;
 | 
|---|
| [3003] | 619 |   // Il faut avoir instancie le serveur de FFT avec l'option preserveinput=true
 | 
|---|
 | 620 |   fftIntfPtr_-> FFTForward(const_cast< TVector<T> &>(datain), transformedData);
 | 
|---|
| [1756] | 621 |   //  cout <<  " taille de la transformee " << transformedData.Size() << endl;
 | 
|---|
| [1683] | 622 |   //  TVector< complex<T> > dataout(nmmax+1);
 | 
|---|
 | 623 |   dataout.ReSize(nmmax+1);
 | 
|---|
| [729] | 624 | 
 | 
|---|
 | 625 |   // on transfere le resultat de la fft dans dataout.
 | 
|---|
| [1683] | 626 | 
 | 
|---|
 | 627 |   int maxFreqAccessiblesParFFT = min(nph/2,nmmax);
 | 
|---|
| [833] | 628 |   int i;
 | 
|---|
| [1683] | 629 |   for (i=0;i<=maxFreqAccessiblesParFFT;i++) dataout(i)=transformedData(i);
 | 
|---|
| [729] | 630 | 
 | 
|---|
 | 631 | 
 | 
|---|
| [1683] | 632 |   // si dataout n'est pas plein, on complete jusqu'a  nph+1 valeurs (a moins 
 | 
|---|
| [729] | 633 |   // que dataout ne soit plein avant d'atteindre nph)
 | 
|---|
| [1683] | 634 |   if (maxFreqAccessiblesParFFT != nmmax )
 | 
|---|
| [729] | 635 |     {
 | 
|---|
| [1683] | 636 |       int maxMfft = min(nph,nmmax);
 | 
|---|
 | 637 |       for (i=maxFreqAccessiblesParFFT+1; i<=maxMfft; i++)
 | 
|---|
| [729] | 638 |         {
 | 
|---|
 | 639 |           dataout(i) = conj(dataout(nph-i) );
 | 
|---|
 | 640 |         }
 | 
|---|
 | 641 |       // on conplete, si necessaire, par periodicite
 | 
|---|
| [1683] | 642 |       if ( maxMfft != nmmax )
 | 
|---|
| [729] | 643 |         {
 | 
|---|
| [1683] | 644 |           for (int kk=nph+1; kk <= nmmax; kk++) 
 | 
|---|
 | 645 |             {
 | 
|---|
 | 646 |               dataout(kk)=dataout(kk%nph);
 | 
|---|
 | 647 |             }
 | 
|---|
| [729] | 648 |         }
 | 
|---|
 | 649 |     }
 | 
|---|
| [1683] | 650 |   for (i = 0;i <dataout.NElts();i++)
 | 
|---|
 | 651 |     {
 | 
|---|
 | 652 |       dataout(i)*= (complex<T>)(complex<double>(cos(-i*phi0),sin(-i*phi0)));
 | 
|---|
 | 653 |     }
 | 
|---|
 | 654 |   //  return dataout;
 | 
|---|
| [729] | 655 | }
 | 
|---|
 | 656 | 
 | 
|---|
| [1218] | 657 |  /*! \fn void SOPHYA::SphericalTransformServer::GenerateFromAlm(SphericalMap<T>& mapq,
 | 
|---|
 | 658 |                                                SphericalMap<T>& mapu, 
 | 
|---|
 | 659 |                                                int_4 pixelSizeIndex,
 | 
|---|
 | 660 |                                                const Alm<T>& alme,
 | 
|---|
 | 661 |                                                const Alm<T>& almb) const
 | 
|---|
 | 662 | 
 | 
|---|
 | 663 | synthesis of a polarization map from  Alm coefficients. The spheres mapq and mapu contain respectively the Stokes parameters. */
 | 
|---|
| [729] | 664 | template<class T>
 | 
|---|
 | 665 | void SphericalTransformServer<T>::GenerateFromAlm(SphericalMap<T>& mapq,
 | 
|---|
 | 666 |                                                SphericalMap<T>& mapu, 
 | 
|---|
 | 667 |                                                int_4 pixelSizeIndex,
 | 
|---|
 | 668 |                                                const Alm<T>& alme,
 | 
|---|
 | 669 |                                                const Alm<T>& almb) const
 | 
|---|
 | 670 | {
 | 
|---|
 | 671 |   /*=======================================================================
 | 
|---|
 | 672 |     computes a map form its alm for the HEALPIX pixelisation
 | 
|---|
 | 673 |     map(theta,phi) = sum_l_m a_lm Y_lm(theta,phi)
 | 
|---|
 | 674 |     = sum_m {e^(i*m*phi) sum_l a_lm*lambda_lm(theta)}
 | 
|---|
 | 675 |     
 | 
|---|
 | 676 |     where Y_lm(theta,phi) = lambda(theta) * e^(i*m*phi)
 | 
|---|
 | 677 |     
 | 
|---|
 | 678 |     * the recurrence of Ylm is the standard one (cf Num Rec)
 | 
|---|
 | 679 |     * the sum over m is done by FFT
 | 
|---|
 | 680 |     
 | 
|---|
 | 681 |     =======================================================================*/
 | 
|---|
 | 682 |   int_4 nlmax=alme.Lmax();
 | 
|---|
 | 683 |   if (nlmax != almb.Lmax())
 | 
|---|
 | 684 |     {
 | 
|---|
 | 685 |       cout << " SphericalTransformServer: les deux tableaux alm n'ont pas la meme taille" << endl;
 | 
|---|
 | 686 |       throw SzMismatchError("SphericalTransformServer: les deux tableaux alm n'ont pas la meme taille");
 | 
|---|
 | 687 |     }
 | 
|---|
 | 688 |   int_4 nmmax=nlmax;
 | 
|---|
 | 689 |   int_4 nsmax=0;
 | 
|---|
 | 690 |   mapq.Resize(pixelSizeIndex);
 | 
|---|
 | 691 |   mapu.Resize(pixelSizeIndex);
 | 
|---|
| [2291] | 692 |   string sphere_type=mapq.TypeOfMap();
 | 
|---|
 | 693 |   if (sphere_type != mapu.TypeOfMap())
 | 
|---|
| [729] | 694 |     {
 | 
|---|
 | 695 |       cout <<  " SphericalTransformServer: les deux spheres ne sont pas de meme type" << endl;
 | 
|---|
 | 696 |       cout << " type 1 " << sphere_type << endl;
 | 
|---|
 | 697 |       cout << " type 2 " << mapu.TypeOfMap() << endl;
 | 
|---|
 | 698 |       throw SzMismatchError("SphericalTransformServer: les deux spheres ne sont pas de meme type");
 | 
|---|
 | 699 |       
 | 
|---|
 | 700 |     }
 | 
|---|
| [2313] | 701 |   bool healpix = true;
 | 
|---|
| [2291] | 702 |   if (sphere_type.substr(0,4) == "RING")
 | 
|---|
| [729] | 703 |     {
 | 
|---|
 | 704 |       nsmax=mapq.SizeIndex();
 | 
|---|
 | 705 |     }
 | 
|---|
 | 706 |   else
 | 
|---|
 | 707 |     // pour une sphere Gorski le nombre de pixels est 12*nsmax**2
 | 
|---|
 | 708 |     // on calcule une quantite equivalente a nsmax pour la sphere-theta-phi
 | 
|---|
 | 709 |     // en vue de l'application du critere Healpix : nlmax<=3*nsmax-1
 | 
|---|
 | 710 |     // c'est approximatif ; a raffiner.
 | 
|---|
| [2313] | 711 |     healpix = false;
 | 
|---|
| [2291] | 712 |     if (sphere_type.substr(0,6) == "TETAFI")
 | 
|---|
| [729] | 713 |       {
 | 
|---|
 | 714 |         nsmax=(int_4)sqrt(mapq.NbPixels()/12.);
 | 
|---|
 | 715 |       }
 | 
|---|
 | 716 |     else
 | 
|---|
 | 717 |       {
 | 
|---|
 | 718 |         cout << " unknown type of sphere : " << sphere_type << endl;
 | 
|---|
 | 719 |         throw IOExc(" unknown type of sphere ");
 | 
|---|
 | 720 |       }
 | 
|---|
 | 721 |   cout << "GenerateFromAlm: the spheres are of type : " << sphere_type << endl;
 | 
|---|
 | 722 |   cout << "GenerateFromAlm: size indices (nside) of  spheres= " << nsmax << endl;
 | 
|---|
 | 723 |   cout << "GenerateFromAlm: nlmax (from Alm) = " << nlmax << endl;
 | 
|---|
 | 724 |   if (nlmax>3*nsmax-1) 
 | 
|---|
 | 725 |     {
 | 
|---|
 | 726 |       cout << "GenerateFromAlm: nlmax should be <= 3*nside-1" << endl;
 | 
|---|
| [2291] | 727 |       if (sphere_type.substr(0,6) == "TETAFI")
 | 
|---|
| [729] | 728 |         {
 | 
|---|
 | 729 |           cout << " (for this criterium, nsmax is computed as sqrt(nbPixels/12))" << endl;
 | 
|---|
 | 730 |         }
 | 
|---|
 | 731 |     }
 | 
|---|
 | 732 |   if (alme.Lmax()!=almb.Lmax())
 | 
|---|
 | 733 |     {
 | 
|---|
 | 734 |       cout << "GenerateFromAlm: arrays Alme and Almb have not the same size ? " << endl; 
 | 
|---|
 | 735 |       throw SzMismatchError("SphericalTransformServer: arrays Alme and Almb have not the same size ?  ");
 | 
|---|
 | 736 |     }
 | 
|---|
| [2313] | 737 |     mapFromWX(nlmax, nmmax, mapq, mapu, alme, almb, healpix);
 | 
|---|
| [729] | 738 |     // mapFromPM(nlmax, nmmax, mapq, mapu, alme, almb);
 | 
|---|
 | 739 | }
 | 
|---|
| [1756] | 740 |  /*! \fn void SOPHYA::SphericalTransformServer::DecomposeToAlm(const SphericalMap<T>& mapq,
 | 
|---|
 | 741 |                                               const SphericalMap<T>& mapu,
 | 
|---|
 | 742 |                                               Alm<T>& alme,
 | 
|---|
 | 743 |                                               Alm<T>& almb,
 | 
|---|
 | 744 |                                               int_4 nlmax,
 | 
|---|
 | 745 |                                               r_8 cos_theta_cut) const
 | 
|---|
| [729] | 746 | 
 | 
|---|
| [1756] | 747 | analysis of a polarization map into Alm coefficients.
 | 
|---|
| [729] | 748 | 
 | 
|---|
| [1756] | 749 |  The spheres \c mapq and \c mapu contain respectively the Stokes parameters. 
 | 
|---|
 | 750 | 
 | 
|---|
 | 751 |  \c a2lme and \c a2lmb will receive respectively electric and magnetic Alm's
 | 
|---|
 | 752 |     nlmax : maximum value of the l index
 | 
|---|
 | 753 | 
 | 
|---|
 | 754 |  \c cos_theta_cut : cosinus of the symmetric cut EULER angle theta : cos_theta_cut=0 means no cut ; cos_theta_cut=1 all the sphere is cut.
 | 
|---|
 | 755 | 
 | 
|---|
 | 756 | 
 | 
|---|
 | 757 |  */ 
 | 
|---|
 | 758 | template<class T>
 | 
|---|
 | 759 | void SphericalTransformServer<T>::DecomposeToAlm(const SphericalMap<T>& mapq,
 | 
|---|
| [1218] | 760 |                                               const SphericalMap<T>& mapu,
 | 
|---|
 | 761 |                                               Alm<T>& alme,
 | 
|---|
 | 762 |                                               Alm<T>& almb,
 | 
|---|
 | 763 |                                               int_4 nlmax,
 | 
|---|
 | 764 |                                               r_8 cos_theta_cut) const
 | 
|---|
| [1756] | 765 | {
 | 
|---|
 | 766 |   DecomposeToAlm(const_cast< SphericalMap<T>& >(mapq), const_cast< SphericalMap<T>& >(mapu), alme, almb, nlmax, cos_theta_cut);
 | 
|---|
 | 767 | }
 | 
|---|
| [1218] | 768 | 
 | 
|---|
| [1756] | 769 |  /*! \fn void SOPHYA::SphericalTransformServer::DecomposeToAlm(const SphericalMap<T>& mapq,
 | 
|---|
 | 770 |                                               const SphericalMap<T>& mapu,
 | 
|---|
 | 771 |                                               Alm<T>& alme,
 | 
|---|
 | 772 |                                               Alm<T>& almb,
 | 
|---|
 | 773 |                                               int_4 nlmax,
 | 
|---|
 | 774 |                                               r_8 cos_theta_cut,
 | 
|---|
 | 775 |                                               int iterationOrder) const
 | 
|---|
 | 776 | 
 | 
|---|
| [1218] | 777 | analysis of a polarization map into Alm coefficients.
 | 
|---|
 | 778 | 
 | 
|---|
 | 779 |  The spheres \c mapq and \c mapu contain respectively the Stokes parameters. 
 | 
|---|
 | 780 | 
 | 
|---|
 | 781 |  \c a2lme and \c a2lmb will receive respectively electric and magnetic Alm's
 | 
|---|
 | 782 |     nlmax : maximum value of the l index
 | 
|---|
 | 783 | 
 | 
|---|
 | 784 |  \c cos_theta_cut : cosinus of the symmetric cut EULER angle theta : cos_theta_cut=0 means no cut ; cos_theta_cut=1 all the sphere is cut.
 | 
|---|
| [1756] | 785 | 
 | 
|---|
 | 786 | \param<iterationOrder> : 1,2,3,4.... order of an iterative analysis. (Default : 0 -> standard analysis). If iterationOrder is not null, the method works with SphereHEALPix but NOT WITH SphereThetaPhi maps !
 | 
|---|
 | 787 | 
 | 
|---|
 | 788 | THE INPUT MAPS CAN BE MODIFIED (only if iterationOrder >0)
 | 
|---|
 | 789 | 
 | 
|---|
| [1218] | 790 |  */ 
 | 
|---|
| [729] | 791 | template<class T>
 | 
|---|
| [1683] | 792 | void SphericalTransformServer<T>::DecomposeToAlm(SphericalMap<T>& mapq,
 | 
|---|
 | 793 |                                               SphericalMap<T>& mapu,
 | 
|---|
 | 794 |                                               Alm<T>& alme,
 | 
|---|
 | 795 |                                               Alm<T>& almb,
 | 
|---|
 | 796 |                                               int_4 nlmax,
 | 
|---|
 | 797 |                                               r_8 cos_theta_cut, 
 | 
|---|
 | 798 |                                               int iterationOrder) const
 | 
|---|
 | 799 | {
 | 
|---|
 | 800 |   int_4  nmmax = nlmax;
 | 
|---|
 | 801 |   carteVersAlm(mapq, mapu, alme, almb, nlmax, cos_theta_cut);
 | 
|---|
 | 802 |   if (iterationOrder > 0)
 | 
|---|
 | 803 |     {
 | 
|---|
 | 804 |       TVector<int_4> fact(iterationOrder+2);
 | 
|---|
 | 805 |       fact(0) = 1;
 | 
|---|
| [1715] | 806 |       int k;
 | 
|---|
 | 807 |       for (k=1; k <= iterationOrder+1; k++)
 | 
|---|
| [1683] | 808 |         {
 | 
|---|
 | 809 |           fact(k) = fact(k-1)*k;
 | 
|---|
 | 810 |         }
 | 
|---|
 | 811 |       Alm<T> alme2(alme);
 | 
|---|
 | 812 |       Alm<T> almb2(almb);
 | 
|---|
 | 813 |       T Tzero = (T)0.;
 | 
|---|
 | 814 |       complex<T> complexZero = complex<T>(Tzero, Tzero);
 | 
|---|
 | 815 |       alme = complexZero;
 | 
|---|
 | 816 |       almb = complexZero;
 | 
|---|
 | 817 |       int signe = 1;
 | 
|---|
 | 818 |       int nbIteration = iterationOrder+1;
 | 
|---|
| [1715] | 819 |       for (k=1; k <= nbIteration; k++)
 | 
|---|
| [1683] | 820 |         {
 | 
|---|
 | 821 |           T facMult = (T)(0.5*signe*fact(iterationOrder)*(2*nbIteration-k)/(fact(k)*fact(nbIteration-k)));
 | 
|---|
 | 822 |           for (int m = 0; m <= nmmax; m++)
 | 
|---|
 | 823 |             {
 | 
|---|
 | 824 |               for (int l = m; l<= nlmax; l++)
 | 
|---|
 | 825 |                 {
 | 
|---|
 | 826 |                   alme(l,m) += facMult*alme2(l,m); 
 | 
|---|
 | 827 |                   almb(l,m) += facMult*almb2(l,m); 
 | 
|---|
 | 828 |                 }
 | 
|---|
 | 829 |             }
 | 
|---|
 | 830 |           if (k == nbIteration) break;
 | 
|---|
 | 831 |           signe = -signe;
 | 
|---|
 | 832 |           for (int k=0; k< mapq.NbPixels(); k++)
 | 
|---|
 | 833 |             {
 | 
|---|
 | 834 |               mapq(k) = (T)0.;
 | 
|---|
 | 835 |               mapu(k) = (T)0.;
 | 
|---|
 | 836 |             }
 | 
|---|
 | 837 |           //        synthetize a map from the estimated alm
 | 
|---|
 | 838 |           GenerateFromAlm(mapq,mapu,mapq.SizeIndex(),alme2,almb2); 
 | 
|---|
 | 839 |           alme2 = complexZero;
 | 
|---|
 | 840 |           almb2 = complexZero;
 | 
|---|
 | 841 |           //        analyse the new map
 | 
|---|
 | 842 |           carteVersAlm(mapq, mapu, alme2, almb2, nlmax, cos_theta_cut);
 | 
|---|
 | 843 |         }
 | 
|---|
 | 844 |     }
 | 
|---|
 | 845 | }
 | 
|---|
 | 846 | 
 | 
|---|
 | 847 | template<class T>
 | 
|---|
 | 848 | void SphericalTransformServer<T>::carteVersAlm(const SphericalMap<T>& mapq,
 | 
|---|
| [729] | 849 |                                               const SphericalMap<T>& mapu,
 | 
|---|
 | 850 |                                               Alm<T>& alme,
 | 
|---|
 | 851 |                                               Alm<T>& almb,
 | 
|---|
 | 852 |                                               int_4 nlmax,
 | 
|---|
 | 853 |                                               r_8 cos_theta_cut) const
 | 
|---|
 | 854 | {
 | 
|---|
 | 855 |   int_4  nmmax = nlmax;
 | 
|---|
 | 856 |   // resize et remise a zero
 | 
|---|
 | 857 |   alme.ReSizeToLmax(nlmax);
 | 
|---|
 | 858 |   almb.ReSizeToLmax(nlmax);
 | 
|---|
 | 859 | 
 | 
|---|
 | 860 |   
 | 
|---|
 | 861 |   TVector<T> dataq;
 | 
|---|
 | 862 |   TVector<T> datau;
 | 
|---|
 | 863 |   TVector<int_4> pixNumber;
 | 
|---|
 | 864 | 
 | 
|---|
| [2291] | 865 |   string sphere_type=mapq.TypeOfMap();
 | 
|---|
 | 866 |   if (sphere_type != mapu.TypeOfMap())
 | 
|---|
| [729] | 867 |     {
 | 
|---|
 | 868 |       cout <<  " SphericalTransformServer: les deux spheres ne sont pas de meme type" << endl;
 | 
|---|
 | 869 |       cout << " type 1 " << sphere_type << endl;
 | 
|---|
 | 870 |       cout << " type 2 " << mapu.TypeOfMap() << endl;
 | 
|---|
 | 871 |       throw SzMismatchError("SphericalTransformServer: les deux spheres ne sont pas de meme type");
 | 
|---|
 | 872 |       
 | 
|---|
 | 873 |     }
 | 
|---|
 | 874 |   if (mapq.NbPixels()!=mapu.NbPixels())
 | 
|---|
 | 875 |     {
 | 
|---|
 | 876 |       cout << " DecomposeToAlm: map Q and map U have not same size ?" << endl;
 | 
|---|
 | 877 |       throw SzMismatchError("SphericalTransformServer::DecomposeToAlm: map Q and map U have not same size ");
 | 
|---|
 | 878 |     }
 | 
|---|
| [746] | 879 |   for (int_4 ith = 0; ith < mapq.NbThetaSlices(); ith++)
 | 
|---|
| [729] | 880 |     {
 | 
|---|
 | 881 |       r_8 phi0;
 | 
|---|
 | 882 |       r_8 theta;
 | 
|---|
 | 883 |       mapq.GetThetaSlice(ith,theta,phi0, pixNumber,dataq);
 | 
|---|
 | 884 |       mapu.GetThetaSlice(ith,theta,phi0, pixNumber,datau);
 | 
|---|
 | 885 |       if (dataq.NElts() != datau.NElts() ) 
 | 
|---|
 | 886 |         {
 | 
|---|
 | 887 |           throw  SzMismatchError("the spheres have not the same pixelization");
 | 
|---|
 | 888 |         }
 | 
|---|
 | 889 |       r_8 domega=mapq.PixSolAngle(mapq.PixIndexSph(theta,phi0));
 | 
|---|
 | 890 |       double cth = cos(theta);
 | 
|---|
 | 891 |       //part of the sky out of the symetric cut
 | 
|---|
| [1428] | 892 |       bool keep_it = (fabs(cth) >= cos_theta_cut); 
 | 
|---|
| [729] | 893 |       if (keep_it)
 | 
|---|
 | 894 |         {
 | 
|---|
| [1328] | 895 |           //  almFromPM(pixNumber.NElts(), nlmax, nmmax, phi0, domega, theta, dataq, datau, alme, almb); 
 | 
|---|
| [746] | 896 |           almFromWX(nlmax, nmmax, phi0, domega, theta, dataq, datau, alme, almb); 
 | 
|---|
| [729] | 897 |         }
 | 
|---|
 | 898 |     }
 | 
|---|
 | 899 | }
 | 
|---|
 | 900 | 
 | 
|---|
 | 901 | 
 | 
|---|
| [1218] | 902 |  /*! \fn void SOPHYA::SphericalTransformServer::almFromWX(int_4 nlmax, int_4 nmmax,
 | 
|---|
 | 903 |                                          r_8 phi0, r_8 domega, 
 | 
|---|
 | 904 |                                          r_8 theta, 
 | 
|---|
 | 905 |                                          const TVector<T>& dataq, 
 | 
|---|
 | 906 |                                          const TVector<T>& datau,
 | 
|---|
 | 907 |                                          Alm<T>& alme,
 | 
|---|
 | 908 |                                          Alm<T>& almb) const
 | 
|---|
 | 909 | 
 | 
|---|
 | 910 | Compute polarized Alm's as : 
 | 
|---|
 | 911 | \f[
 | 
|---|
 | 912 | a_{lm}^E=\frac{1}{\sqrt{2}}\sum_{slices}{\omega_{pix}\left(\,_{w}\lambda_l^m\tilde{Q}-i\,_{x}\lambda_l^m\tilde{U}\right)}
 | 
|---|
 | 913 | \f]
 | 
|---|
 | 914 | \f[
 | 
|---|
 | 915 | a_{lm}^B=\frac{1}{\sqrt{2}}\sum_{slices}{\omega_{pix}\left(i\,_{x}\lambda_l^m\tilde{Q}+\,_{w}\lambda_l^m\tilde{U}\right)}
 | 
|---|
 | 916 | \f]
 | 
|---|
 | 917 | 
 | 
|---|
 | 918 | where \f$\tilde{Q}\f$ and \f$\tilde{U}\f$ are C-coefficients computed by FFT (method CFromFourierAnalysis, called by present method) from the Stokes parameters.
 | 
|---|
 | 919 | 
 | 
|---|
 | 920 | \f$\omega_{pix}\f$ are solid angle of each pixel.
 | 
|---|
 | 921 | 
 | 
|---|
 | 922 | dataq, datau : Stokes parameters.
 | 
|---|
 | 923 | 
 | 
|---|
 | 924 |   */
 | 
|---|
| [729] | 925 | template<class T>
 | 
|---|
| [746] | 926 | void SphericalTransformServer<T>::almFromWX(int_4 nlmax, int_4 nmmax,
 | 
|---|
| [729] | 927 |                                          r_8 phi0, r_8 domega, 
 | 
|---|
 | 928 |                                          r_8 theta, 
 | 
|---|
 | 929 |                                          const TVector<T>& dataq, 
 | 
|---|
 | 930 |                                          const TVector<T>& datau,
 | 
|---|
 | 931 |                                          Alm<T>& alme,
 | 
|---|
 | 932 |                                          Alm<T>& almb) const
 | 
|---|
 | 933 | {
 | 
|---|
 | 934 |   TVector< complex<T> > phaseq(nmmax+1);
 | 
|---|
 | 935 |   TVector< complex<T> > phaseu(nmmax+1);
 | 
|---|
 | 936 |   //  TVector<complex<T> > datain(nph);
 | 
|---|
 | 937 |   for (int i=0;i< nmmax+1;i++)
 | 
|---|
 | 938 |     {
 | 
|---|
 | 939 |       phaseq(i)=0; 
 | 
|---|
 | 940 |       phaseu(i)=0; 
 | 
|---|
 | 941 |     }
 | 
|---|
 | 942 |   //  for(int kk=0; kk<nph; kk++) datain(kk)=complex<T>(dataq(kk),0.);
 | 
|---|
 | 943 | 
 | 
|---|
| [1683] | 944 |   //  phaseq = CFromFourierAnalysis(nmmax,dataq,phi0); 
 | 
|---|
 | 945 |   CFromFourierAnalysis(nmmax,dataq,phaseq, phi0); 
 | 
|---|
| [729] | 946 | 
 | 
|---|
| [1683] | 947 |   //  phaseu=  CFromFourierAnalysis(nmmax,datau,phi0); 
 | 
|---|
 | 948 |   CFromFourierAnalysis(nmmax,datau,phaseu, phi0); 
 | 
|---|
| [729] | 949 | 
 | 
|---|
 | 950 |   LambdaWXBuilder lwxb(theta,nlmax,nmmax);
 | 
|---|
 | 951 | 
 | 
|---|
 | 952 |   r_8 sqr2inv=1/Rac2;
 | 
|---|
 | 953 |   for (int m = 0; m <= nmmax; m++)
 | 
|---|
 | 954 |     {
 | 
|---|
 | 955 |       r_8 lambda_w=0.;
 | 
|---|
 | 956 |       r_8 lambda_x=0.;
 | 
|---|
 | 957 |       lwxb.lam_wx(m, m, lambda_w, lambda_x);
 | 
|---|
 | 958 |       complex<T>  zi_lam_x((T)0., (T)lambda_x);
 | 
|---|
 | 959 |       alme(m,m) +=  ( (T)(lambda_w)*phaseq(m)-zi_lam_x*phaseu(m) )*(T)(domega*sqr2inv);
 | 
|---|
 | 960 |       almb(m,m) +=  ( (T)(lambda_w)*phaseu(m)+zi_lam_x*phaseq(m) )*(T)(domega*sqr2inv);
 | 
|---|
 | 961 |       
 | 
|---|
 | 962 |       for (int l = m+1; l<= nlmax; l++)
 | 
|---|
 | 963 |         {
 | 
|---|
 | 964 |           lwxb.lam_wx(l, m, lambda_w, lambda_x);
 | 
|---|
 | 965 |           zi_lam_x = complex<T>((T)0., (T)lambda_x);
 | 
|---|
 | 966 |           alme(l,m) +=  ( (T)(lambda_w)*phaseq(m)-zi_lam_x*phaseu(m) )*(T)(domega*sqr2inv);
 | 
|---|
 | 967 |           almb(l,m) +=  ( (T)(lambda_w)*phaseu(m)+zi_lam_x*phaseq(m) )*(T)(domega*sqr2inv);
 | 
|---|
 | 968 |         }
 | 
|---|
 | 969 |     }
 | 
|---|
 | 970 | }
 | 
|---|
 | 971 | 
 | 
|---|
 | 972 | 
 | 
|---|
| [1218] | 973 |  /*! \fn void SOPHYA::SphericalTransformServer::almFromPM(int_4 nph, int_4 nlmax, 
 | 
|---|
 | 974 |                                          int_4 nmmax,
 | 
|---|
 | 975 |                                          r_8 phi0, r_8 domega,  
 | 
|---|
 | 976 |                                          r_8 theta, 
 | 
|---|
 | 977 |                                          const TVector<T>& dataq, 
 | 
|---|
 | 978 |                                          const TVector<T>& datau,
 | 
|---|
 | 979 |                                          Alm<T>& alme,
 | 
|---|
 | 980 |                                          Alm<T>& almb) const
 | 
|---|
 | 981 | 
 | 
|---|
 | 982 | Compute polarized Alm's as : 
 | 
|---|
 | 983 | \f[
 | 
|---|
 | 984 | a_{lm}^E=-\frac{1}{2}\sum_{slices}{\omega_{pix}\left(\,_{+}\lambda_l^m\tilde{P^+}+\,_{-}\lambda_l^m\tilde{P^-}\right)}
 | 
|---|
 | 985 | \f]
 | 
|---|
 | 986 | \f[
 | 
|---|
 | 987 | a_{lm}^B=\frac{i}{2}\sum_{slices}{\omega_{pix}\left(\,_{+}\lambda_l^m\tilde{P^+}-\,_{-}\lambda_l^m\tilde{P^-}\right)}
 | 
|---|
 | 988 | \f]
 | 
|---|
 | 989 | 
 | 
|---|
 | 990 | where \f$\tilde{P^{\pm}}=\tilde{Q}\pm\tilde{U}\f$  computed by FFT (method CFromFourierAnalysis, called by present method) from the Stokes parameters,\f$Q\f$ and \f$U\f$ .
 | 
|---|
 | 991 | 
 | 
|---|
 | 992 | \f$\omega_{pix}\f$ are solid angle of each pixel.
 | 
|---|
 | 993 | 
 | 
|---|
 | 994 | dataq, datau : Stokes parameters.
 | 
|---|
 | 995 | 
 | 
|---|
 | 996 |   */
 | 
|---|
| [729] | 997 | template<class T>
 | 
|---|
| [1218] | 998 | void SphericalTransformServer<T>::almFromPM(int_4 nph, int_4 nlmax, 
 | 
|---|
 | 999 |                                          int_4 nmmax,
 | 
|---|
| [729] | 1000 |                                          r_8 phi0, r_8 domega,  
 | 
|---|
 | 1001 |                                          r_8 theta, 
 | 
|---|
 | 1002 |                                          const TVector<T>& dataq, 
 | 
|---|
 | 1003 |                                          const TVector<T>& datau,
 | 
|---|
 | 1004 |                                          Alm<T>& alme,
 | 
|---|
 | 1005 |                                          Alm<T>& almb) const
 | 
|---|
 | 1006 | {
 | 
|---|
 | 1007 |   TVector< complex<T> > phasep(nmmax+1);
 | 
|---|
 | 1008 |   TVector< complex<T> > phasem(nmmax+1);
 | 
|---|
 | 1009 |   TVector<complex<T> > datain(nph);
 | 
|---|
 | 1010 |   for (int i=0;i< nmmax+1;i++)
 | 
|---|
 | 1011 |     {
 | 
|---|
 | 1012 |       phasep(i)=0; 
 | 
|---|
 | 1013 |       phasem(i)=0; 
 | 
|---|
 | 1014 |     }
 | 
|---|
| [833] | 1015 |   int kk;
 | 
|---|
 | 1016 |   for(kk=0; kk<nph; kk++) datain(kk)=complex<T>(dataq(kk),datau(kk));
 | 
|---|
| [729] | 1017 | 
 | 
|---|
| [746] | 1018 |   phasep = CFromFourierAnalysis(nmmax,datain,phi0); 
 | 
|---|
| [729] | 1019 | 
 | 
|---|
| [833] | 1020 |   for(kk=0; kk<nph; kk++) datain(kk)=complex<T>(dataq(kk),-datau(kk));
 | 
|---|
| [746] | 1021 |   phasem = CFromFourierAnalysis(nmmax,datain,phi0); 
 | 
|---|
| [729] | 1022 |   LambdaPMBuilder lpmb(theta,nlmax,nmmax);
 | 
|---|
 | 1023 |           
 | 
|---|
 | 1024 |   for (int m = 0; m <= nmmax; m++)
 | 
|---|
 | 1025 |     {
 | 
|---|
 | 1026 |       r_8 lambda_p=0.;
 | 
|---|
 | 1027 |       r_8 lambda_m=0.;
 | 
|---|
 | 1028 |       complex<T> im((T)0.,(T)1.);
 | 
|---|
 | 1029 |       lpmb.lam_pm(m, m, lambda_p, lambda_m);
 | 
|---|
 | 1030 |               
 | 
|---|
 | 1031 |       alme(m,m) +=   -( (T)(lambda_p)*phasep(m) + (T)(lambda_m)*phasem(m)  )*(T)(domega*0.5);
 | 
|---|
 | 1032 |       almb(m,m) +=  im*( (T)(lambda_p)*phasep(m) - (T)(lambda_m)*phasem(m) )*(T)(domega*0.5);
 | 
|---|
 | 1033 |       for (int l = m+1; l<= nlmax; l++)
 | 
|---|
 | 1034 |         {
 | 
|---|
 | 1035 |           lpmb.lam_pm(l, m, lambda_p, lambda_m);
 | 
|---|
 | 1036 |           alme(l,m) +=  -( (T)(lambda_p)*phasep(m) + (T)(lambda_m)*phasem(m)  )*(T)(domega*0.5);
 | 
|---|
 | 1037 |           almb(l,m) += im* ( (T)(lambda_p)*phasep(m) - (T)(lambda_m)*phasem(m) )*(T)(domega*0.5);
 | 
|---|
 | 1038 |         }
 | 
|---|
 | 1039 |     }
 | 
|---|
 | 1040 | }
 | 
|---|
 | 1041 | 
 | 
|---|
 | 1042 | 
 | 
|---|
| [1218] | 1043 | /*! \fn void SOPHYA::SphericalTransformServer::mapFromWX(int_4 nlmax, int_4 nmmax,
 | 
|---|
 | 1044 |                                          SphericalMap<T>& mapq,
 | 
|---|
 | 1045 |                                          SphericalMap<T>& mapu, 
 | 
|---|
 | 1046 |                                          const Alm<T>& alme,
 | 
|---|
| [2313] | 1047 |                                          const Alm<T>& almb, bool healpix) const
 | 
|---|
| [1218] | 1048 | 
 | 
|---|
 | 1049 | synthesis of Stokes parameters following formulae : 
 | 
|---|
 | 1050 | 
 | 
|---|
 | 1051 | \f[
 | 
|---|
 | 1052 | Q=\sum_{m=-mmax}^{mmax}b_m^qe^{im\varphi}
 | 
|---|
 | 1053 | \f]
 | 
|---|
 | 1054 | \f[
 | 
|---|
 | 1055 | U=\sum_{m=-mmax}^{mmax}b_m^ue^{im\varphi}
 | 
|---|
 | 1056 | \f]
 | 
|---|
 | 1057 | 
 | 
|---|
 | 1058 | computed by FFT (method fourierSynthesisFromB called by the present one)
 | 
|---|
 | 1059 | 
 | 
|---|
 | 1060 | with :
 | 
|---|
 | 1061 | 
 | 
|---|
 | 1062 | \f[
 | 
|---|
 | 1063 | b_m^q=-\frac{1}{\sqrt{2}}\sum_{l=|m|}^{lmax}{\left(\,_{w}\lambda_l^ma_{lm}^E-i\,_{x}\lambda_l^ma_{lm}^B\right) }
 | 
|---|
 | 1064 | \f]
 | 
|---|
 | 1065 | \f[
 | 
|---|
 | 1066 | b_m^u=\frac{1}{\sqrt{2}}\sum_{l=|m|}^{lmax}{\left(i\,_{x}\lambda_l^ma_{lm}^E+\,_{w}\lambda_l^ma_{lm}^B\right) }
 | 
|---|
 | 1067 | \f]
 | 
|---|
 | 1068 |  */
 | 
|---|
| [729] | 1069 | template<class T>
 | 
|---|
 | 1070 | void SphericalTransformServer<T>::mapFromWX(int_4 nlmax, int_4 nmmax,
 | 
|---|
 | 1071 |                                          SphericalMap<T>& mapq,
 | 
|---|
 | 1072 |                                          SphericalMap<T>& mapu, 
 | 
|---|
 | 1073 |                                          const Alm<T>& alme,
 | 
|---|
| [2313] | 1074 |                                          const Alm<T>& almb, bool healpix) const
 | 
|---|
| [729] | 1075 | {
 | 
|---|
| [2313] | 1076 |   int i;
 | 
|---|
 | 1077 | 
 | 
|---|
| [729] | 1078 |   Bm<complex<T> > b_m_theta_q(nmmax);
 | 
|---|
 | 1079 |   Bm<complex<T> > b_m_theta_u(nmmax);
 | 
|---|
 | 1080 | 
 | 
|---|
| [746] | 1081 |   for (int_4 ith = 0; ith < mapq.NbThetaSlices();ith++)
 | 
|---|
| [729] | 1082 |     {
 | 
|---|
 | 1083 |       int_4 nph;
 | 
|---|
 | 1084 |       r_8 phi0;
 | 
|---|
 | 1085 |       r_8 theta;
 | 
|---|
 | 1086 |       TVector<int_4>  pixNumber; 
 | 
|---|
 | 1087 |       TVector<T> datan;
 | 
|---|
 | 1088 |       
 | 
|---|
 | 1089 |       mapq.GetThetaSlice(ith,theta,phi0, pixNumber,datan);
 | 
|---|
 | 1090 |       nph =  pixNumber.NElts();
 | 
|---|
 | 1091 |       //       -----------------------------------------------------
 | 
|---|
 | 1092 |       //              for each theta, and each m, computes
 | 
|---|
 | 1093 |       //              b(m,theta) = sum_over_l>m (lambda_l_m(theta) * a_l_m) 
 | 
|---|
 | 1094 |       //              ------------------------------------------------------
 | 
|---|
 | 1095 |       LambdaWXBuilder lwxb(theta,nlmax,nmmax);
 | 
|---|
 | 1096 |       //      LambdaPMBuilder lpmb(theta,nlmax,nmmax);
 | 
|---|
 | 1097 |       r_8 sqr2inv=1/Rac2;
 | 
|---|
| [833] | 1098 |       int m;
 | 
|---|
 | 1099 |       for (m = 0; m <= nmmax; m++)
 | 
|---|
| [729] | 1100 |         {
 | 
|---|
 | 1101 |           r_8 lambda_w=0.;
 | 
|---|
 | 1102 |           r_8 lambda_x=0.;
 | 
|---|
 | 1103 |           lwxb.lam_wx(m, m, lambda_w, lambda_x);
 | 
|---|
 | 1104 |           complex<T>  zi_lam_x((T)0., (T)lambda_x);
 | 
|---|
 | 1105 |           
 | 
|---|
 | 1106 |           b_m_theta_q(m) =  ( (T)(lambda_w) * alme(m,m) - zi_lam_x * almb(m,m))*(T)sqr2inv ;
 | 
|---|
 | 1107 |           b_m_theta_u(m) =  ( (T)(lambda_w) * almb(m,m) + zi_lam_x * alme(m,m))*(T)sqr2inv;
 | 
|---|
 | 1108 |           
 | 
|---|
 | 1109 |           
 | 
|---|
 | 1110 |           for (int l = m+1; l<= nlmax; l++)
 | 
|---|
 | 1111 |             {
 | 
|---|
 | 1112 |               
 | 
|---|
 | 1113 |               lwxb.lam_wx(l, m, lambda_w, lambda_x);
 | 
|---|
 | 1114 |               zi_lam_x= complex<T>((T)0., (T)lambda_x);
 | 
|---|
 | 1115 |               
 | 
|---|
 | 1116 |               b_m_theta_q(m) += ((T)(lambda_w)*alme(l,m)-zi_lam_x *almb(l,m))*(T)sqr2inv;
 | 
|---|
 | 1117 |               b_m_theta_u(m) += ((T)(lambda_w)*almb(l,m)+zi_lam_x *alme(l,m))*(T)sqr2inv;
 | 
|---|
 | 1118 |               
 | 
|---|
 | 1119 |             } 
 | 
|---|
 | 1120 |         }
 | 
|---|
 | 1121 |       //        obtains the negative m of b(m,theta) (= complex conjugate)
 | 
|---|
| [833] | 1122 |       for (m=1;m<=nmmax;m++)
 | 
|---|
| [729] | 1123 |         {
 | 
|---|
 | 1124 |           b_m_theta_q(-m) = conj(b_m_theta_q(m));
 | 
|---|
 | 1125 |           b_m_theta_u(-m) = conj(b_m_theta_u(m));
 | 
|---|
 | 1126 |         }
 | 
|---|
| [2313] | 1127 |       if (healpix) 
 | 
|---|
| [729] | 1128 |         {
 | 
|---|
| [2313] | 1129 |           TVector<T> Tempq = RfourierSynthesisFromB(b_m_theta_q,nph,phi0);  
 | 
|---|
 | 1130 |           TVector<T> Tempu = RfourierSynthesisFromB(b_m_theta_u,nph,phi0); 
 | 
|---|
 | 1131 |           for (i=0;i< nph;i++)
 | 
|---|
 | 1132 |             {
 | 
|---|
 | 1133 |               mapq(pixNumber(i))=Tempq(i);
 | 
|---|
 | 1134 |               mapu(pixNumber(i))=Tempu(i);
 | 
|---|
 | 1135 |             }
 | 
|---|
| [729] | 1136 |         }
 | 
|---|
| [2313] | 1137 |       else
 | 
|---|
 | 1138 |         // pour des pixelisations quelconques (autres que HEALPix
 | 
|---|
 | 1139 |         //  nph n'est pas toujours pair
 | 
|---|
 | 1140 |         // ca fait des problemes pour les transformees de Fourier
 | 
|---|
 | 1141 |         // car le server de TF ajuste la longueur du vecteur reel 
 | 
|---|
 | 1142 |         // en sortie de TF, bref, la securite veut qu'on prenne une 
 | 
|---|
 | 1143 |         // TF complexe
 | 
|---|
 | 1144 |         {
 | 
|---|
 | 1145 |           TVector<complex<T> > Tempq = fourierSynthesisFromB(b_m_theta_q,nph,phi0);  
 | 
|---|
 | 1146 |           TVector<complex<T> > Tempu = fourierSynthesisFromB(b_m_theta_u,nph,phi0); 
 | 
|---|
 | 1147 |           for (i=0;i< nph;i++)
 | 
|---|
 | 1148 |             {
 | 
|---|
 | 1149 |               mapq(pixNumber(i))=Tempq(i).real();
 | 
|---|
 | 1150 |               mapu(pixNumber(i))=Tempu(i).real();
 | 
|---|
 | 1151 |             }
 | 
|---|
 | 1152 |         }
 | 
|---|
| [729] | 1153 |     } 
 | 
|---|
 | 1154 | }
 | 
|---|
| [1218] | 1155 | /*! \fn void SOPHYA::SphericalTransformServer::mapFromPM(int_4 nlmax, int_4 nmmax,
 | 
|---|
 | 1156 |                                          SphericalMap<T>& mapq,
 | 
|---|
 | 1157 |                                          SphericalMap<T>& mapu, 
 | 
|---|
 | 1158 |                                          const Alm<T>& alme,
 | 
|---|
 | 1159 |                                          const Alm<T>& almb) const
 | 
|---|
 | 1160 | 
 | 
|---|
 | 1161 | synthesis of polarizations following formulae : 
 | 
|---|
 | 1162 | 
 | 
|---|
 | 1163 | \f[
 | 
|---|
 | 1164 | P^+ = \sum_{m=-mmax}^{mmax} {b_m^+e^{im\varphi} }
 | 
|---|
 | 1165 | \f]
 | 
|---|
 | 1166 | \f[
 | 
|---|
 | 1167 | P^- = \sum_{m=-mmax}^{mmax} {b_m^-e^{im\varphi} }
 | 
|---|
 | 1168 | \f]
 | 
|---|
 | 1169 | 
 | 
|---|
 | 1170 | computed by FFT (method fourierSynthesisFromB called by the present one)
 | 
|---|
 | 1171 | 
 | 
|---|
 | 1172 | with :
 | 
|---|
 | 1173 | 
 | 
|---|
 | 1174 | \f[
 | 
|---|
 | 1175 | b_m^+=-\sum_{l=|m|}^{lmax}{\,_{+}\lambda_l^m \left( a_{lm}^E+ia_{lm}^B \right) }
 | 
|---|
 | 1176 | \f]
 | 
|---|
 | 1177 | \f[
 | 
|---|
 | 1178 | b_m^-=-\sum_{l=|m|}^{lmax}{\,_{+}\lambda_l^m \left( a_{lm}^E-ia_{lm}^B \right) }
 | 
|---|
 | 1179 | \f]
 | 
|---|
 | 1180 |  */
 | 
|---|
| [729] | 1181 | template<class T>
 | 
|---|
 | 1182 | void SphericalTransformServer<T>::mapFromPM(int_4 nlmax, int_4 nmmax,
 | 
|---|
 | 1183 |                                          SphericalMap<T>& mapq,
 | 
|---|
 | 1184 |                                          SphericalMap<T>& mapu, 
 | 
|---|
 | 1185 |                                          const Alm<T>& alme,
 | 
|---|
 | 1186 |                                          const Alm<T>& almb) const
 | 
|---|
 | 1187 | {
 | 
|---|
 | 1188 |   Bm<complex<T> > b_m_theta_p(nmmax);
 | 
|---|
 | 1189 |   Bm<complex<T> > b_m_theta_m(nmmax);
 | 
|---|
| [746] | 1190 |   for (int_4 ith = 0; ith < mapq.NbThetaSlices();ith++)
 | 
|---|
| [729] | 1191 |     {
 | 
|---|
 | 1192 |       int_4 nph;
 | 
|---|
 | 1193 |       r_8 phi0;
 | 
|---|
 | 1194 |       r_8 theta;
 | 
|---|
 | 1195 |       TVector<int_4> pixNumber; 
 | 
|---|
 | 1196 |       TVector<T> datan;
 | 
|---|
 | 1197 |       
 | 
|---|
 | 1198 |       mapq.GetThetaSlice(ith,theta,phi0, pixNumber,datan);
 | 
|---|
 | 1199 |       nph =  pixNumber.NElts();
 | 
|---|
 | 1200 | 
 | 
|---|
 | 1201 |       //       -----------------------------------------------------
 | 
|---|
 | 1202 |       //              for each theta, and each m, computes
 | 
|---|
 | 1203 |       //              b(m,theta) = sum_over_l>m (lambda_l_m(theta) * a_l_m) 
 | 
|---|
 | 1204 |       //------------------------------------------------------
 | 
|---|
 | 1205 | 
 | 
|---|
 | 1206 |       LambdaPMBuilder lpmb(theta,nlmax,nmmax);
 | 
|---|
| [833] | 1207 |       int m;
 | 
|---|
 | 1208 |       for (m = 0; m <= nmmax; m++)
 | 
|---|
| [729] | 1209 |         {
 | 
|---|
 | 1210 |           r_8 lambda_p=0.;
 | 
|---|
 | 1211 |           r_8 lambda_m=0.;
 | 
|---|
 | 1212 |           lpmb.lam_pm(m, m, lambda_p, lambda_m);
 | 
|---|
 | 1213 |           complex<T> im((T)0.,(T)1.);
 | 
|---|
 | 1214 |           
 | 
|---|
 | 1215 |           b_m_theta_p(m) =  (T)(lambda_p )* (-alme(m,m) - im * almb(m,m));
 | 
|---|
 | 1216 |           b_m_theta_m(m) =  (T)(lambda_m) * (-alme(m,m) + im * almb(m,m));
 | 
|---|
 | 1217 |           
 | 
|---|
 | 1218 |           
 | 
|---|
 | 1219 |           for (int l = m+1; l<= nlmax; l++)
 | 
|---|
 | 1220 |             {
 | 
|---|
 | 1221 |               lpmb.lam_pm(l, m, lambda_p, lambda_m);
 | 
|---|
 | 1222 |               b_m_theta_p(m) +=  (T)(lambda_p)*(-alme(l,m)-im *almb(l,m));
 | 
|---|
 | 1223 |               b_m_theta_m(m) +=  (T)(lambda_m)*(-alme(l,m)+im *almb(l,m));
 | 
|---|
 | 1224 |             }
 | 
|---|
 | 1225 |         }
 | 
|---|
 | 1226 |       
 | 
|---|
 | 1227 |       //        obtains the negative m of b(m,theta) (= complex conjugate)
 | 
|---|
| [833] | 1228 |       for (m=1;m<=nmmax;m++)
 | 
|---|
| [729] | 1229 |         {
 | 
|---|
 | 1230 |           b_m_theta_p(-m) = conj(b_m_theta_m(m));
 | 
|---|
 | 1231 |           b_m_theta_m(-m) = conj(b_m_theta_p(m));
 | 
|---|
 | 1232 |         }
 | 
|---|
 | 1233 | 
 | 
|---|
 | 1234 |       TVector<complex<T> > Tempp = fourierSynthesisFromB(b_m_theta_p,nph,phi0);  
 | 
|---|
 | 1235 |       TVector<complex<T> > Tempm = fourierSynthesisFromB(b_m_theta_m,nph,phi0); 
 | 
|---|
 | 1236 | 
 | 
|---|
 | 1237 |       for (int i=0;i< nph;i++)
 | 
|---|
 | 1238 |         {
 | 
|---|
 | 1239 |                   mapq(pixNumber(i))=0.5*(Tempp(i)+Tempm(i)).real();
 | 
|---|
 | 1240 |                   mapu(pixNumber(i))=0.5*(Tempp(i)-Tempm(i)).imag();
 | 
|---|
 | 1241 |         }
 | 
|---|
 | 1242 |     }
 | 
|---|
 | 1243 | }
 | 
|---|
 | 1244 | 
 | 
|---|
 | 1245 | 
 | 
|---|
| [1218] | 1246 |   /*! \fn void SOPHYA::SphericalTransformServer::GenerateFromCl(SphericalMap<T>& sphq, 
 | 
|---|
 | 1247 |                                               SphericalMap<T>& sphu, 
 | 
|---|
 | 1248 |                                               int_4 pixelSizeIndex,
 | 
|---|
 | 1249 |                                               const TVector<T>& Cle, 
 | 
|---|
 | 1250 |                                               const TVector<T>& Clb, 
 | 
|---|
 | 1251 |                                               const r_8 fwhm) const
 | 
|---|
 | 1252 | 
 | 
|---|
 | 1253 | synthesis of a polarization  map from  power spectra electric-Cl and magnetic-Cl (Alm's are generated randomly, following a gaussian distribution). 
 | 
|---|
 | 1254 |   \param fwhm FWHM in arcmin for random generation of Alm's (eg. 5) 
 | 
|---|
 | 1255 | */
 | 
|---|
| [729] | 1256 | template<class T>
 | 
|---|
 | 1257 | void SphericalTransformServer<T>::GenerateFromCl(SphericalMap<T>& sphq, 
 | 
|---|
 | 1258 |                                               SphericalMap<T>& sphu, 
 | 
|---|
 | 1259 |                                               int_4 pixelSizeIndex,
 | 
|---|
 | 1260 |                                               const TVector<T>& Cle, 
 | 
|---|
 | 1261 |                                               const TVector<T>& Clb, 
 | 
|---|
 | 1262 |                                               const r_8 fwhm) const
 | 
|---|
 | 1263 | {
 | 
|---|
 | 1264 |   if (Cle.NElts() != Clb.NElts())
 | 
|---|
 | 1265 |     {
 | 
|---|
 | 1266 |       cout << " SphericalTransformServer: les deux tableaux Cl n'ont pas la meme taille" << endl;
 | 
|---|
 | 1267 |       throw SzMismatchError("SphericalTransformServer::GenerateFromCl :  two Cl arrays have not same size");
 | 
|---|
 | 1268 |     }
 | 
|---|
 | 1269 | 
 | 
|---|
 | 1270 |   //  Alm<T> a2lme,a2lmb;
 | 
|---|
 | 1271 |   //  almFromCl(a2lme, Cle, fwhm); 
 | 
|---|
 | 1272 |   //  almFromCl(a2lmb, Clb, fwhm); 
 | 
|---|
 | 1273 |   //  Alm<T> a2lme = almFromCl(Cle, fwhm);
 | 
|---|
 | 1274 |   // Alm<T> a2lmb = almFromCl(Clb, fwhm);
 | 
|---|
 | 1275 |   Alm<T> a2lme(Cle, fwhm);
 | 
|---|
 | 1276 |   Alm<T> a2lmb(Clb, fwhm);
 | 
|---|
 | 1277 | 
 | 
|---|
 | 1278 |   GenerateFromAlm(sphq,sphu,pixelSizeIndex,a2lme,a2lmb); 
 | 
|---|
 | 1279 | }
 | 
|---|
| [1218] | 1280 |  /*! \fn void SOPHYA::SphericalTransformServer::GenerateFromCl(SphericalMap<T>& sph,
 | 
|---|
 | 1281 |                                                  int_4 pixelSizeIndex, 
 | 
|---|
 | 1282 |                                               const TVector<T>& Cl, 
 | 
|---|
 | 1283 |                                                  const r_8 fwhm)  const
 | 
|---|
 | 1284 | 
 | 
|---|
 | 1285 | synthesis of a temperature  map from  power spectrum Cl (Alm's are generated randomly, following a gaussian distribution). */
 | 
|---|
| [729] | 1286 | template<class T>
 | 
|---|
 | 1287 | void SphericalTransformServer<T>::GenerateFromCl(SphericalMap<T>& sph,
 | 
|---|
 | 1288 |                                                  int_4 pixelSizeIndex, 
 | 
|---|
 | 1289 |                                               const TVector<T>& Cl, 
 | 
|---|
 | 1290 |                                                  const r_8 fwhm)  const
 | 
|---|
 | 1291 | {
 | 
|---|
 | 1292 | 
 | 
|---|
 | 1293 |   Alm<T> alm(Cl, fwhm);
 | 
|---|
 | 1294 |   GenerateFromAlm(sph,pixelSizeIndex, alm ); 
 | 
|---|
 | 1295 | }
 | 
|---|
 | 1296 | 
 | 
|---|
 | 1297 | 
 | 
|---|
 | 1298 | 
 | 
|---|
| [1756] | 1299 | /*! \fn TVector<T>  SOPHYA::SphericalTransformServer::DecomposeToCl(SphericalMap<T>& sph, int_4 nlmax, r_8 cos_theta_cut, int iterationOrder) const
 | 
|---|
| [1218] | 1300 | 
 | 
|---|
| [1683] | 1301 | \return power spectrum from analysis of a temperature map. THE MAP CAN BE MODIFIED (if iterationOrder >0) 
 | 
|---|
| [1218] | 1302 | 
 | 
|---|
 | 1303 |      \param<nlmax> : maximum value of the l index
 | 
|---|
 | 1304 | 
 | 
|---|
 | 1305 |      \param<cos_theta_cut> : cosinus of the symmetric cut EULER angle theta : cos_theta_cut=0 means no cut ; cos_theta_cut=1 all the sphere is cut.
 | 
|---|
| [1683] | 1306 | 
 | 
|---|
| [1756] | 1307 | \param<iterationOrder> : 1,2,3,4.... order of an iterative analysis. If iterationOrder is not null, the method works with SphereHEALPix but NOT WITH SphereThetaPhi maps !
 | 
|---|
| [1683] | 1308 | 
 | 
|---|
| [1218] | 1309 |   */ 
 | 
|---|
| [729] | 1310 | template <class T>
 | 
|---|
| [1683] | 1311 | TVector<T>  SphericalTransformServer<T>::DecomposeToCl(SphericalMap<T>& sph, int_4 nlmax, r_8 cos_theta_cut, int iterationOrder) const
 | 
|---|
| [729] | 1312 | {
 | 
|---|
| [1683] | 1313 |   Alm<T> alm;
 | 
|---|
 | 1314 |   DecomposeToAlm( sph, alm, nlmax, cos_theta_cut, iterationOrder);
 | 
|---|
| [729] | 1315 |   // power spectrum
 | 
|---|
 | 1316 |      return  alm.powerSpectrum();
 | 
|---|
 | 1317 | }
 | 
|---|
 | 1318 | 
 | 
|---|
| [1756] | 1319 | 
 | 
|---|
 | 1320 | /*! \fn TVector<T>  SOPHYA::SphericalTransformServer::DecomposeToCl(const SphericalMap<T>& sph, int_4 nlmax, r_8 cos_theta_cut) const
 | 
|---|
 | 1321 | 
 | 
|---|
 | 1322 | \return power spectrum from analysis of a temperature map. 
 | 
|---|
 | 1323 | 
 | 
|---|
 | 1324 |      \param<nlmax> : maximum value of the l index
 | 
|---|
 | 1325 | 
 | 
|---|
 | 1326 |      \param<cos_theta_cut> : cosinus of the symmetric cut EULER angle theta : cos_theta_cut=0 means no cut ; cos_theta_cut=1 all the sphere is cut.
 | 
|---|
 | 1327 | 
 | 
|---|
 | 1328 | 
 | 
|---|
 | 1329 |   */ 
 | 
|---|
 | 1330 | 
 | 
|---|
 | 1331 | 
 | 
|---|
 | 1332 | template <class T>
 | 
|---|
 | 1333 | TVector<T>  SphericalTransformServer<T>::DecomposeToCl(const SphericalMap<T>& sph, int_4 nlmax, r_8 cos_theta_cut) const
 | 
|---|
 | 1334 | {
 | 
|---|
 | 1335 |   Alm<T> alm;
 | 
|---|
 | 1336 |   DecomposeToAlm( sph, alm, nlmax, cos_theta_cut);
 | 
|---|
 | 1337 |   // power spectrum
 | 
|---|
 | 1338 |      return  alm.powerSpectrum();
 | 
|---|
 | 1339 | }
 | 
|---|
 | 1340 | 
 | 
|---|
| [729] | 1341 | #ifdef __CXX_PRAGMA_TEMPLATES__
 | 
|---|
 | 1342 | #pragma define_template SphericalTransformServer<r_8>
 | 
|---|
 | 1343 | #pragma define_template SphericalTransformServer<r_4>
 | 
|---|
 | 1344 | #endif
 | 
|---|
 | 1345 | #if defined(ANSI_TEMPLATES) || defined(GNU_TEMPLATES)
 | 
|---|
| [2872] | 1346 | template class SOPHYA::SphericalTransformServer<r_8>;
 | 
|---|
 | 1347 | template class SOPHYA::SphericalTransformServer<r_4>;
 | 
|---|
| [729] | 1348 | #endif
 | 
|---|