[2615] | 1 | #include "sopnamsp.h"
|
---|
[729] | 2 | #include "machdefs.h"
|
---|
[2322] | 3 | #include <iostream>
|
---|
[729] | 4 | #include <math.h>
|
---|
| 5 | #include <complex>
|
---|
| 6 | #include "sphericaltransformserver.h"
|
---|
| 7 | #include "tvector.h"
|
---|
| 8 | #include "nbmath.h"
|
---|
[1683] | 9 | #include "timing.h"
|
---|
| 10 | //#include "spherehealpix.h"
|
---|
[729] | 11 |
|
---|
[1683] | 12 |
|
---|
[2808] | 13 | /*!
|
---|
| 14 | \ingroup Samba
|
---|
| 15 | \class SOPHYA::SphericalTransformServer
|
---|
| 16 |
|
---|
| 17 | \brief Analysis/synthesis in spherical harmonics server.
|
---|
[729] | 18 |
|
---|
[1218] | 19 | Class for performing analysis and synthesis of sky maps using spin-0 or spin-2 spherical harmonics.
|
---|
| 20 |
|
---|
[2808] | 21 | Maps must be SOPHYA SphericalMaps (SphereHEALPix or SphereThetaPhi or SphereECP).
|
---|
[3508] | 22 | When generating map contents (synthesis), specify PixelSizeIndex=-1 if you want to keep
|
---|
| 23 | the map pixelisation scheme (resolution, layout ...)
|
---|
[1218] | 24 |
|
---|
| 25 | Temperature and polarization (Stokes parameters) can be developped on spherical harmonics :
|
---|
| 26 | \f[
|
---|
| 27 | \frac{\Delta T}{T}(\hat{n})=\sum_{lm}a_{lm}^TY_l^m(\hat{n})
|
---|
| 28 | \f]
|
---|
| 29 | \f[
|
---|
| 30 | Q(\hat{n})=\frac{1}{\sqrt{2}}\sum_{lm}N_l\left(a_{lm}^EW_{lm}(\hat{n})+a_{lm}^BX_{lm}(\hat{n})\right)
|
---|
| 31 | \f]
|
---|
| 32 | \f[
|
---|
| 33 | U(\hat{n})=-\frac{1}{\sqrt{2}}\sum_{lm}N_l\left(a_{lm}^EX_{lm}(\hat{n})-a_{lm}^BW_{lm}(\hat{n})\right)
|
---|
| 34 | \f]
|
---|
| 35 | \f[
|
---|
| 36 | \left(Q \pm iU\right)(\hat{n})=\sum_{lm}a_{\pm 2lm}\, _{\pm 2}Y_l^m(\hat{n})
|
---|
| 37 | \f]
|
---|
| 38 |
|
---|
| 39 | \f[
|
---|
| 40 | Y_l^m(\hat{n})=\lambda_l^m(\theta)e^{im\phi}
|
---|
| 41 | \f]
|
---|
| 42 | \f[
|
---|
| 43 | _{\pm}Y_l^m(\hat{n})=_{\pm}\lambda_l^m(\theta)e^{im\phi}
|
---|
| 44 | \f]
|
---|
| 45 | \f[
|
---|
| 46 | W_{lm}(\hat{n})=\frac{1}{N_l}\,_{w}\lambda_l^m(\theta)e^{im\phi}
|
---|
| 47 | \f]
|
---|
| 48 | \f[
|
---|
| 49 | X_{lm}(\hat{n})=\frac{-i}{N_l}\,_{x}\lambda_l^m(\theta)e^{im\phi}
|
---|
| 50 | \f]
|
---|
| 51 |
|
---|
| 52 | (see LambdaLMBuilder, LambdaPMBuilder, LambdaWXBuilder classes)
|
---|
| 53 |
|
---|
| 54 | power spectra :
|
---|
| 55 |
|
---|
| 56 | \f[
|
---|
| 57 | C_l^T=\frac{1}{2l+1}\sum_{m=0}^{+ \infty }\left|a_{lm}^T\right|^2=\langle\left|a_{lm}^T\right|^2\rangle
|
---|
| 58 | \f]
|
---|
| 59 | \f[
|
---|
| 60 | C_l^E=\frac{1}{2l+1}\sum_{m=0}^{+\infty}\left|a_{lm}^E\right|^2=\langle\left|a_{lm}^E\right|^2\rangle
|
---|
| 61 | \f]
|
---|
| 62 | \f[
|
---|
| 63 | C_l^B=\frac{1}{2l+1}\sum_{m=0}^{+\infty}\left|a_{lm}^B\right|^2=\langle\left|a_{lm}^B\right|^2\rangle
|
---|
| 64 | \f]
|
---|
| 65 |
|
---|
| 66 | \arg
|
---|
| 67 | \b Synthesis : Get temperature and polarization maps from \f$a_{lm}\f$ coefficients or from power spectra, (methods GenerateFrom...).
|
---|
| 68 |
|
---|
| 69 | \b Temperature:
|
---|
| 70 | \f[
|
---|
| 71 | \frac{\Delta T}{T}(\hat{n})=\sum_{lm}a_{lm}^TY_l^m(\hat{n}) = \sum_{-\infty}^{+\infty}b_m(\theta)e^{im\phi}
|
---|
| 72 | \f]
|
---|
| 73 |
|
---|
| 74 | with
|
---|
| 75 | \f[
|
---|
| 76 | b_m(\theta)=\sum_{l=\left|m\right|}^{+\infty}a_{lm}^T\lambda_l^m(\theta)
|
---|
| 77 | \f]
|
---|
| 78 |
|
---|
| 79 | \b Polarisation
|
---|
| 80 | \f[
|
---|
| 81 | Q \pm iU = \sum_{-\infty}^{+\infty}b_m^{\pm}(\theta)e^{im\phi}
|
---|
| 82 | \f]
|
---|
| 83 |
|
---|
| 84 | where :
|
---|
| 85 | \f[
|
---|
| 86 | b_m^{\pm}(\theta) = \sum_{l=\left|m\right|}^{+\infty}a_{\pm 2lm}\,_{\pm}\lambda_l^m(\theta)
|
---|
| 87 | \f]
|
---|
| 88 |
|
---|
| 89 | or :
|
---|
| 90 | \f[
|
---|
| 91 | Q = \sum_{-\infty}^{+\infty}b_m^{Q}(\theta)e^{im\phi}
|
---|
| 92 | \f]
|
---|
| 93 | \f[
|
---|
| 94 | U = \sum_{-\infty}^{+\infty}b_m^{U}(\theta)e^{im\phi}
|
---|
| 95 | \f]
|
---|
| 96 |
|
---|
| 97 | where:
|
---|
| 98 | \f[
|
---|
| 99 | b_m^{Q}(\theta) = \frac{1}{\sqrt{2}}\sum_{l=\left|m\right|}^{+\infty}\left(a_{lm}^E\,_{w}\lambda_l^m(\theta)-ia_{lm}^B\,_{x}\lambda_l^m(\theta)\right)
|
---|
| 100 | \f]
|
---|
| 101 | \f[
|
---|
| 102 | b_m^{U}(\theta) = \frac{1}{\sqrt{2}}\sum_{l=\left|m\right|}^{+\infty}\left(ia_{lm}^E\,_{x}\lambda_l^m(\theta)+a_{lm}^B\,_{w}\lambda_l^m(\theta)\right)
|
---|
| 103 | \f]
|
---|
| 104 |
|
---|
| 105 | Since the pixelization provides "slices" with constant \f$\theta\f$ and \f$\phi\f$ equally distributed on \f$2\pi\f$ \f$\frac{\Delta T}{T}\f$, \f$Q\f$,\f$U\f$ can be computed by FFT.
|
---|
| 106 |
|
---|
| 107 |
|
---|
| 108 | \arg
|
---|
| 109 | \b Analysis : Get \f$a_{lm}\f$ coefficients or power spectra from temperature and polarization maps (methods DecomposeTo...).
|
---|
| 110 |
|
---|
| 111 | \b Temperature:
|
---|
| 112 | \f[
|
---|
| 113 | a_{lm}^T=\int\frac{\Delta T}{T}(\hat{n})Y_l^{m*}(\hat{n})d\hat{n}
|
---|
| 114 | \f]
|
---|
| 115 |
|
---|
| 116 | approximated as :
|
---|
| 117 | \f[
|
---|
| 118 | a_{lm}^T=\sum_{\theta_k}\omega_kC_m(\theta_k)\lambda_l^m(\theta_k)
|
---|
| 119 | \f]
|
---|
| 120 | where :
|
---|
| 121 | \f[
|
---|
| 122 | C_m (\theta _k)=\sum_{\phi _{k\prime}}\frac{\Delta T}{T}(\theta _k,\phi_{k\prime})e^{-im\phi _{k\prime}}
|
---|
| 123 | \f]
|
---|
| 124 | Since the pixelization provides "slices" with constant \f$\theta\f$ and \f$\phi\f$ equally distributed on \f$2\pi\f$ (\f$\omega_k\f$ is the solid angle of each pixel of the slice \f$\theta_k\f$) \f$C_m\f$ can be computed by FFT.
|
---|
| 125 |
|
---|
| 126 | \b polarisation:
|
---|
| 127 |
|
---|
| 128 | \f[
|
---|
| 129 | a_{\pm 2lm}=\sum_{\theta_k}\omega_kC_m^{\pm}(\theta_k)\,_{\pm}\lambda_l^m(\theta_k)
|
---|
| 130 | \f]
|
---|
| 131 | where :
|
---|
| 132 | \f[
|
---|
| 133 | C_m^{\pm} (\theta _k)=\sum_{\phi _{k\prime}}\left(Q \pm iU\right)(\theta _k,\phi_{k\prime})e^{-im\phi _{k\prime}}
|
---|
| 134 | \f]
|
---|
| 135 | or :
|
---|
| 136 |
|
---|
| 137 | \f[
|
---|
| 138 | a_{lm}^E=\frac{1}{\sqrt{2}}\sum_{\theta_k}\omega_k\left(C_m^{Q}(\theta_k)\,_{w}\lambda_l^m(\theta_k)-iC_m^{U}(\theta_k)\,_{x}\lambda_l^m(\theta_k)\right)
|
---|
| 139 | \f]
|
---|
| 140 | \f[
|
---|
| 141 | a_{lm}^B=\frac{1}{\sqrt{2}}\sum_{\theta_k}\omega_k\left(iC_m^{Q}(\theta_k)\,_{x}\lambda_l^m(\theta_k)+C_m^{U}(\theta_k)\,_{w}\lambda_l^m(\theta_k)\right)
|
---|
| 142 | \f]
|
---|
| 143 |
|
---|
| 144 | where :
|
---|
| 145 | \f[
|
---|
| 146 | C_m^{Q} (\theta _k)=\sum_{\phi _{k\prime}}Q(\theta _k,\phi_{k\prime})e^{-im\phi _{k\prime}}
|
---|
| 147 | \f]
|
---|
| 148 | \f[
|
---|
| 149 | C_m^{U} (\theta _k)=\sum_{\phi _{k\prime}}U(\theta _k,\phi_{k\prime})e^{-im\phi _{k\prime}}
|
---|
| 150 | \f]
|
---|
| 151 |
|
---|
| 152 | */
|
---|
| 153 |
|
---|
[3510] | 154 | //! Default constructor - Creates a non thread-safe RandomGenerator to be used by GenerateFromCl
|
---|
| 155 | template<class T>
|
---|
| 156 | SphericalTransformServer<T>::SphericalTransformServer()
|
---|
[3613] | 157 | : rgp_(RandomGeneratorInterface::GetGlobalRandGenP())
|
---|
[3510] | 158 | {
|
---|
| 159 | fftIntfPtr_=new FFTPackServer(true); // preserveinput = true
|
---|
| 160 | fftIntfPtr_->setNormalize(false);
|
---|
| 161 | }
|
---|
| 162 |
|
---|
| 163 | //! Constructor with the specification of a RandomGenerator object to be used by GenerateFromCl
|
---|
| 164 | template<class T>
|
---|
[3613] | 165 | SphericalTransformServer<T>::SphericalTransformServer(RandomGeneratorInterface& rg)
|
---|
| 166 | : rgp_(&rg)
|
---|
[3510] | 167 | {
|
---|
| 168 | fftIntfPtr_=new FFTPackServer(true); // preserveinput = true
|
---|
| 169 | fftIntfPtr_->setNormalize(false);
|
---|
| 170 | }
|
---|
| 171 |
|
---|
| 172 | template<class T>
|
---|
| 173 | SphericalTransformServer<T>::~SphericalTransformServer()
|
---|
| 174 | {
|
---|
| 175 | if (fftIntfPtr_!=NULL) delete fftIntfPtr_;
|
---|
| 176 | }
|
---|
| 177 |
|
---|
| 178 | /*!
|
---|
| 179 | Set a fft server. The constructor sets a default fft server (fft-pack).
|
---|
| 180 | So it is not necessary to call this method for a standard use.
|
---|
| 181 | \warning The FFTServerInterface object should NOT overwrite the input arrays
|
---|
| 182 | */
|
---|
| 183 | template<class T>
|
---|
| 184 | void SphericalTransformServer<T>::SetFFTServer(FFTServerInterface* srv)
|
---|
| 185 | {
|
---|
| 186 | if (fftIntfPtr_!=NULL) delete fftIntfPtr_;
|
---|
| 187 | fftIntfPtr_=srv;
|
---|
| 188 | fftIntfPtr_->setNormalize(false);
|
---|
| 189 | }
|
---|
| 190 |
|
---|
| 191 |
|
---|
[1218] | 192 | /*! \fn void SOPHYA::SphericalTransformServer::GenerateFromAlm( SphericalMap<T>& map, int_4 pixelSizeIndex, const Alm<T>& alm) const
|
---|
| 193 |
|
---|
| 194 | synthesis of a temperature map from Alm coefficients
|
---|
| 195 | */
|
---|
[729] | 196 | template<class T>
|
---|
| 197 | void SphericalTransformServer<T>::GenerateFromAlm( SphericalMap<T>& map, int_4 pixelSizeIndex, const Alm<T>& alm) const
|
---|
| 198 | {
|
---|
| 199 | /*=======================================================================
|
---|
[1756] | 200 | computes a map from its alm for the HEALPIX pixelisation
|
---|
[729] | 201 | map(theta,phi) = sum_l_m a_lm Y_lm(theta,phi)
|
---|
| 202 | = sum_m {e^(i*m*phi) sum_l a_lm*lambda_lm(theta)}
|
---|
| 203 |
|
---|
| 204 | where Y_lm(theta,phi) = lambda(theta) * e^(i*m*phi)
|
---|
| 205 |
|
---|
| 206 | * the recurrence of Ylm is the standard one (cf Num Rec)
|
---|
| 207 | * the sum over m is done by FFT
|
---|
| 208 |
|
---|
| 209 | =======================================================================*/
|
---|
| 210 | int_4 nlmax=alm.Lmax();
|
---|
| 211 | int_4 nmmax=nlmax;
|
---|
[1756] | 212 | // le Resize est suppose mettre a zero
|
---|
[729] | 213 | map.Resize(pixelSizeIndex);
|
---|
[2291] | 214 | string sphere_type=map.TypeOfMap();
|
---|
[2984] | 215 | int premiereTranche = 0;
|
---|
| 216 | int derniereTranche = map.NbThetaSlices()-1;
|
---|
| 217 |
|
---|
[729] | 218 | Bm<complex<T> > b_m_theta(nmmax);
|
---|
| 219 |
|
---|
| 220 | // pour chaque tranche en theta
|
---|
[2991] | 221 | for (int_4 ith = premiereTranche; ith <= derniereTranche;ith++) {
|
---|
| 222 | int_4 nph;
|
---|
| 223 | r_8 phi0;
|
---|
| 224 | r_8 theta;
|
---|
| 225 | TVector<int_4> pixNumber;
|
---|
| 226 | TVector<T> datan;
|
---|
| 227 |
|
---|
| 228 | map.GetThetaSlice(ith,theta,phi0, pixNumber,datan);
|
---|
| 229 | nph = pixNumber.NElts();
|
---|
| 230 | if (nph < 2) continue; // On laisse tomber les tranches avec un point
|
---|
| 231 | // -----------------------------------------------------
|
---|
| 232 | // for each theta, and each m, computes
|
---|
| 233 | // b(m,theta) = sum_over_l>m (lambda_l_m(theta) * a_l_m)
|
---|
| 234 | // ------------------------------------------------------
|
---|
| 235 | // ===> Optimisation Reza, Mai 2006
|
---|
| 236 | /*--- Le bout de code suivant est remplace par l'appel a la nouvelle fonction
|
---|
| 237 | qui calcule la somme au vol
|
---|
[729] | 238 | LambdaLMBuilder lb(theta,nlmax,nmmax);
|
---|
| 239 | // somme sur m de 0 a l'infini
|
---|
[2991] | 240 | for (int_4 m = 0; m <= nmmax; m++) {
|
---|
| 241 | b_m_theta(m) = (T)( lb.lamlm(m,m) ) * alm(m,m);
|
---|
| 242 | for (int l = m+1; l<= nlmax; l++)
|
---|
| 243 | b_m_theta(m) += (T)( lb.lamlm(l,m) ) * alm(l,m);
|
---|
| 244 | }
|
---|
[2958] | 245 | ------- Fin version PRE-Mai2006 */
|
---|
[2991] | 246 | LambdaLMBuilder::ComputeBmFrAlm(theta,nlmax,nmmax, alm, b_m_theta);
|
---|
| 247 | //Fin Optimisation Reza, Mai 2006 <====
|
---|
[2958] | 248 |
|
---|
[729] | 249 | // obtains the negative m of b(m,theta) (= complex conjugate)
|
---|
[2991] | 250 | for (int_4 m=1;m<=nmmax;m++)
|
---|
| 251 | b_m_theta(-m) = conj(b_m_theta(m));
|
---|
| 252 | // ---------------------------------------------------------------
|
---|
| 253 | // sum_m b(m,theta)*exp(i*m*phi) -> f(phi,theta)
|
---|
| 254 | // ---------------------------------------------------------------*/
|
---|
[729] | 255 |
|
---|
[2991] | 256 | /* ----- Reza, Juin 2006 :
|
---|
| 257 | En verifiant la difference entre deux cartes
|
---|
| 258 | cl -> map -> alm -> map2 et mapdiff = map-map2
|
---|
| 259 | je me suis apercu qu'il y avait des differences importantes - dans les
|
---|
| 260 | deux zones 'polar cap' de HEALPix - qui utilisait RfourierSynthesisFromB
|
---|
| 261 | TF complex -> reel . Le probleme venant de l'ambiguite de taille, lie
|
---|
| 262 | a la partie imaginaire de la composante a f_nyquist , j'ai corrige et
|
---|
| 263 | tout mis en TF complexe -> reel
|
---|
| 264 | */
|
---|
| 265 | TVector<T> Temp = RfourierSynthesisFromB(b_m_theta,nph,phi0);
|
---|
| 266 | // Si on peut acceder directement les pixels d'un tranche, on le fait
|
---|
| 267 | T* pix = map.GetThetaSliceDataPtr(ith);
|
---|
| 268 | if (pix != NULL)
|
---|
| 269 | for (int_4 i=0;i< nph;i++) pix[i] = Temp(i);
|
---|
| 270 | else
|
---|
| 271 | for (int_4 i=0;i< nph;i++) map(pixNumber(i))=Temp(i);
|
---|
| 272 | }
|
---|
[729] | 273 | }
|
---|
| 274 |
|
---|
| 275 |
|
---|
| 276 |
|
---|
[1218] | 277 | /*! \fn TVector< complex<T> > SOPHYA::SphericalTransformServer::fourierSynthesisFromB(const Bm<complex<T> >& b_m, int_4 nph, r_8 phi0) const
|
---|
| 278 |
|
---|
| 279 | \return a vector with nph elements which are sums :\f$\sum_{m=-mmax}^{mmax}b_m(\theta)e^{im\varphi}\f$ for nph values of \f$\varphi\f$ regularly distributed in \f$[0,\pi]\f$ ( calculated by FFT)
|
---|
| 280 |
|
---|
| 281 | The object b_m (\f$b_m\f$) of the class Bm is a special vector which index goes from -mmax to mmax.
|
---|
| 282 | */
|
---|
[729] | 283 | template<class T>
|
---|
| 284 | TVector< complex<T> > SphericalTransformServer<T>::fourierSynthesisFromB(const Bm<complex<T> >& b_m, int_4 nph, r_8 phi0) const
|
---|
| 285 | {
|
---|
| 286 | /*=======================================================================
|
---|
| 287 | dataout(j) = sum_m datain(m) * exp(i*m*phi(j))
|
---|
| 288 | with phi(j) = j*2pi/nph + kphi0*pi/nph and kphi0 =0 or 1
|
---|
| 289 |
|
---|
| 290 | as the set of frequencies {m} is larger than nph,
|
---|
| 291 | we wrap frequencies within {0..nph-1}
|
---|
| 292 | ie m = k*nph + m' with m' in {0..nph-1}
|
---|
| 293 | then
|
---|
| 294 | noting bw(m') = exp(i*m'*phi0)
|
---|
| 295 | * sum_k (datain(k*nph+m') exp(i*k*pi*kphi0))
|
---|
| 296 | with bw(nph-m') = CONJ(bw(m')) (if datain(-m) = CONJ(datain(m)))
|
---|
| 297 | dataout(j) = sum_m' [ bw(m') exp (i*j*m'*2pi/nph) ]
|
---|
| 298 | = Fourier Transform of bw
|
---|
| 299 | is real
|
---|
| 300 |
|
---|
| 301 | NB nph is not necessarily a power of 2
|
---|
| 302 |
|
---|
| 303 | =======================================================================*/
|
---|
| 304 | //**********************************************************************
|
---|
| 305 | // pour une valeur de phi (indexee par j) la temperature est la transformee
|
---|
| 306 | // de Fourier de bm (somme sur m de -nmax a +nmmax de bm*exp(i*m*phi)).
|
---|
| 307 | // on demande nph (nombre de pixels sur la tranche) valeurs de transformees, pour nph valeurs de phi, regulierement reparties sur 2*pi. On a:
|
---|
| 308 | // DT/T(j) = sum_m b(m) * exp(i*m*phi(j))
|
---|
| 309 | // sommation de -infini a +infini, en fait limitee a -nmamx, +nmmax
|
---|
| 310 | // On pose m=k*nph + m', avec m' compris entre 0 et nph-1. Alors :
|
---|
| 311 | // DT/T(j) = somme_k somme_m' b(k*nph + m')*exp(i*(k*nph + m')*phi(j))
|
---|
| 312 | // somme_k : de -infini a +infini
|
---|
| 313 | // somme_m' : de 0 a nph-1
|
---|
| 314 | // On echange les sommations :
|
---|
[2625] | 315 | // DT/T(j) = somme_m' (exp(i*m'*phi(j)) somme_k b(k*nph + m')*exp(i*(k*nph*phi(j))
|
---|
[729] | 316 | // mais phi(j) est un multiple entier de 2*pi/nph, la seconde exponentielle
|
---|
| 317 | // vaut 1.
|
---|
| 318 | // Il reste a calculer les transformees de Fourier de somme_m' b(k*nph + m')
|
---|
| 319 | // si phi0 n'est pas nul, il y a juste un decalage a faire.
|
---|
| 320 | //**********************************************************************
|
---|
| 321 |
|
---|
| 322 | TVector< complex<T> > bw(nph);
|
---|
| 323 | TVector< complex<T> > dataout(nph);
|
---|
| 324 | TVector< complex<T> > data(nph);
|
---|
| 325 |
|
---|
| 326 |
|
---|
| 327 | for (int kk=0; kk<bw.NElts(); kk++) bw(kk)=(T)0.;
|
---|
[833] | 328 | int m;
|
---|
| 329 | for (m=-b_m.Mmax();m<=-1;m++)
|
---|
[729] | 330 | {
|
---|
| 331 | int maux=m;
|
---|
| 332 | while (maux<0) maux+=nph;
|
---|
| 333 | int iw=maux%nph;
|
---|
| 334 | double aux=(m-iw)*phi0;
|
---|
| 335 | bw(iw) += b_m(m) * complex<T>( (T)cos(aux),(T)sin(aux) ) ;
|
---|
| 336 | }
|
---|
[833] | 337 | for (m=0;m<=b_m.Mmax();m++)
|
---|
[729] | 338 | {
|
---|
| 339 | // int iw=((m % nph) +nph) % nph; //between 0 and nph = m'
|
---|
| 340 | int iw=m%nph;
|
---|
| 341 | double aux=(m-iw)*phi0;
|
---|
| 342 | bw(iw)+=b_m(m) * complex<T>( (T)cos(aux),(T)sin(aux) );
|
---|
| 343 | }
|
---|
| 344 |
|
---|
| 345 | // applies the shift in position <-> phase factor in Fourier space
|
---|
| 346 | for (int mprime=0; mprime < nph; mprime++)
|
---|
| 347 | {
|
---|
| 348 | complex<double> aux(cos(mprime*phi0),sin(mprime*phi0));
|
---|
| 349 | data(mprime)=bw(mprime)*
|
---|
| 350 | (complex<T>)(complex<double>(cos(mprime*phi0),sin(mprime*phi0)));
|
---|
| 351 | }
|
---|
| 352 |
|
---|
| 353 | //sortie.ReSize(nph);
|
---|
| 354 | TVector< complex<T> > sortie(nph);
|
---|
| 355 |
|
---|
| 356 | fftIntfPtr_-> FFTBackward(data, sortie);
|
---|
| 357 |
|
---|
| 358 | return sortie;
|
---|
| 359 | }
|
---|
| 360 |
|
---|
| 361 | //********************************************
|
---|
[1218] | 362 | /*! \fn TVector<T> SOPHYA::SphericalTransformServer::RfourierSynthesisFromB(const Bm<complex<T> >& b_m, int_4 nph, r_8 phi0) const
|
---|
| 363 |
|
---|
| 364 | same as fourierSynthesisFromB, but return a real vector, taking into account the fact that b(-m) is conjugate of b(m) */
|
---|
[729] | 365 | template<class T>
|
---|
| 366 | TVector<T> SphericalTransformServer<T>::RfourierSynthesisFromB(const Bm<complex<T> >& b_m, int_4 nph, r_8 phi0) const
|
---|
| 367 | {
|
---|
| 368 | /*=======================================================================
|
---|
| 369 | dataout(j) = sum_m datain(m) * exp(i*m*phi(j))
|
---|
| 370 | with phi(j) = j*2pi/nph + kphi0*pi/nph and kphi0 =0 or 1
|
---|
| 371 |
|
---|
| 372 | as the set of frequencies {m} is larger than nph,
|
---|
| 373 | we wrap frequencies within {0..nph-1}
|
---|
| 374 | ie m = k*nph + m' with m' in {0..nph-1}
|
---|
| 375 | then
|
---|
| 376 | noting bw(m') = exp(i*m'*phi0)
|
---|
| 377 | * sum_k (datain(k*nph+m') exp(i*k*pi*kphi0))
|
---|
| 378 | with bw(nph-m') = CONJ(bw(m')) (if datain(-m) = CONJ(datain(m)))
|
---|
| 379 | dataout(j) = sum_m' [ bw(m') exp (i*j*m'*2pi/nph) ]
|
---|
| 380 | = Fourier Transform of bw
|
---|
| 381 | is real
|
---|
| 382 |
|
---|
| 383 | NB nph is not necessarily a power of 2
|
---|
| 384 |
|
---|
| 385 | =======================================================================*/
|
---|
| 386 | //**********************************************************************
|
---|
| 387 | // pour une valeur de phi (indexee par j) la temperature est la transformee
|
---|
| 388 | // de Fourier de bm (somme sur m de -nmax a +nmmax de bm*exp(i*m*phi)).
|
---|
| 389 | // on demande nph (nombre de pixels sur la tranche) valeurs de transformees, pour nph valeurs de phi, regulierement reparties sur 2*pi. On a:
|
---|
| 390 | // DT/T(j) = sum_m b(m) * exp(i*m*phi(j))
|
---|
| 391 | // sommation de -infini a +infini, en fait limitee a -nmamx, +nmmax
|
---|
| 392 | // On pose m=k*nph + m', avec m' compris entre 0 et nph-1. Alors :
|
---|
| 393 | // DT/T(j) = somme_k somme_m' b(k*nph + m')*exp(i*(k*nph + m')*phi(j))
|
---|
| 394 | // somme_k : de -infini a +infini
|
---|
| 395 | // somme_m' : de 0 a nph-1
|
---|
| 396 | // On echange les sommations :
|
---|
[2313] | 397 | // DT/T(j) = somme_m' (exp(i*m'*phi(j)) somme_k b(k*nph + m')*exp(i*(k*nph*phi(j))
|
---|
[729] | 398 | // mais phi(j) est un multiple entier de 2*pi/nph, la seconde exponentielle
|
---|
| 399 | // vaut 1.
|
---|
[2313] | 400 | // Il reste a calculer les transformees de Fourier de somme_k b(k*nph + m')
|
---|
[729] | 401 | // si phi0 n'est pas nul, il y a juste un decalage a faire.
|
---|
| 402 | //**********************************************************************
|
---|
| 403 | TVector< complex<T> > bw(nph);
|
---|
| 404 | TVector< complex<T> > data(nph/2+1);
|
---|
| 405 |
|
---|
| 406 | for (int kk=0; kk<bw.NElts(); kk++) bw(kk)=(T)0.;
|
---|
[833] | 407 | int m;
|
---|
[2991] | 408 | for (m=-b_m.Mmax();m<=-1;m++) {
|
---|
| 409 | int maux=m;
|
---|
| 410 | while (maux<0) maux+=nph;
|
---|
| 411 | int iw=maux%nph;
|
---|
| 412 | double aux=(m-iw)*phi0;
|
---|
| 413 | bw(iw) += b_m(m) * complex<T>( (T)cos(aux),(T)sin(aux) ) ;
|
---|
| 414 | }
|
---|
| 415 | for (m=0;m<=b_m.Mmax();m++) {
|
---|
| 416 | // int iw=((m % nph) +nph) % nph; //between 0 and nph = m'
|
---|
| 417 | int iw=m%nph;
|
---|
| 418 | double aux=(m-iw)*phi0;
|
---|
| 419 | bw(iw)+=b_m(m) * complex<T>( (T)cos(aux),(T)sin(aux) );
|
---|
| 420 | }
|
---|
[729] | 421 |
|
---|
| 422 | // applies the shift in position <-> phase factor in Fourier space
|
---|
[2991] | 423 | for (int mprime=0; mprime <= nph/2; mprime++)
|
---|
| 424 | data(mprime)=bw(mprime)*complex<T>((T)cos(mprime*phi0),(T)sin(mprime*phi0));
|
---|
| 425 | TVector<T> sortie(nph);
|
---|
| 426 | // On met la partie imaginaire du dernier element du data a zero pour nph pair
|
---|
| 427 | if (nph%2 == 0) data(nph/2) = complex<T>(data(nph/2).real(), (T)0.);
|
---|
| 428 | // et on impose l'utilisation de la taille en sortie pour FFTBack (..., ..., true)
|
---|
| 429 | fftIntfPtr_-> FFTBackward(data, sortie, true);
|
---|
[729] | 430 | return sortie;
|
---|
| 431 | }
|
---|
| 432 | //*******************************************
|
---|
| 433 |
|
---|
[1218] | 434 | /*! \fn Alm<T> SOPHYA::SphericalTransformServer::DecomposeToAlm(const SphericalMap<T>& map, int_4 nlmax, r_8 cos_theta_cut) const
|
---|
| 435 |
|
---|
[1756] | 436 | \return the Alm coefficients from analysis of a temperature map.
|
---|
[1218] | 437 |
|
---|
| 438 | \param<nlmax> : maximum value of the l index
|
---|
| 439 |
|
---|
| 440 | \param<cos_theta_cut> : cosinus of the symmetric cut EULER angle theta : cos_theta_cut=0 means no cut ; cos_theta_cut=1 all the sphere is cut.
|
---|
[1683] | 441 |
|
---|
[1756] | 442 | */
|
---|
[729] | 443 | template<class T>
|
---|
[1756] | 444 | void SphericalTransformServer<T>::DecomposeToAlm(const SphericalMap<T>& map, Alm<T>& alm, int_4 nlmax, r_8 cos_theta_cut) const
|
---|
| 445 | {
|
---|
| 446 | DecomposeToAlm(const_cast< SphericalMap<T>& >(map), alm, nlmax, cos_theta_cut, 0);
|
---|
| 447 | }
|
---|
| 448 | //*******************************************
|
---|
| 449 |
|
---|
| 450 | /*! \fn Alm<T> SOPHYA::SphericalTransformServer::DecomposeToAlm(const SphericalMap<T>& map, int_4 nlmax, r_8 cos_theta_cut, int iterationOrder) const
|
---|
| 451 |
|
---|
| 452 | \return the Alm coefficients from analysis of a temperature map. THE MAP CAN BE MODIFIED (if iterationOrder >0)
|
---|
| 453 |
|
---|
| 454 | \param<nlmax> : maximum value of the l index
|
---|
| 455 |
|
---|
| 456 | \param<cos_theta_cut> : cosinus of the symmetric cut EULER angle theta : cos_theta_cut=0 means no cut ; cos_theta_cut=1 all the sphere is cut.
|
---|
| 457 |
|
---|
| 458 | \param<iterationOrder> : 1,2,3,4.... order of an iterative analysis. (Default : 0 -> standard analysis). If iterationOrder is not null, the method works with SphereHEALPix but NOT WITH SphereThetaPhi maps ! */
|
---|
| 459 | template<class T>
|
---|
[1683] | 460 | void SphericalTransformServer<T>::DecomposeToAlm(SphericalMap<T>& map, Alm<T>& alm, int_4 nlmax, r_8 cos_theta_cut, int iterationOrder) const
|
---|
[729] | 461 | {
|
---|
[1683] | 462 | int_4 nmmax = nlmax;
|
---|
| 463 | // PrtTim("appel carteVersAlm");
|
---|
| 464 | carteVersAlm(map, nlmax, cos_theta_cut, alm);
|
---|
| 465 | // PrtTim("retour carteVersAlm");
|
---|
| 466 | if (iterationOrder > 0)
|
---|
| 467 | {
|
---|
| 468 | TVector<int_4> fact(iterationOrder+2);
|
---|
| 469 | fact(0) = 1;
|
---|
[1715] | 470 | int k;
|
---|
| 471 | for (k=1; k <= iterationOrder+1; k++)
|
---|
[1683] | 472 | {
|
---|
| 473 | fact(k) = fact(k-1)*k;
|
---|
| 474 | }
|
---|
| 475 | Alm<T> alm2(alm);
|
---|
| 476 | T Tzero = (T)0.;
|
---|
| 477 | complex<T> complexZero = complex<T>(Tzero, Tzero);
|
---|
| 478 | alm = complexZero;
|
---|
| 479 | int signe = 1;
|
---|
| 480 | int nbIteration = iterationOrder+1;
|
---|
[1715] | 481 | for (k=1; k <= nbIteration; k++)
|
---|
[1683] | 482 | {
|
---|
| 483 | T facMult = (T)(0.5*signe*fact(iterationOrder)*(2*nbIteration-k)/(fact(k)*fact(nbIteration-k)));
|
---|
| 484 | for (int m = 0; m <= nmmax; m++)
|
---|
| 485 | {
|
---|
| 486 | for (int l = m; l<= nlmax; l++)
|
---|
| 487 | {
|
---|
| 488 | alm(l,m) += facMult*alm2(l,m);
|
---|
| 489 | }
|
---|
| 490 | }
|
---|
| 491 | if (k == nbIteration) break;
|
---|
| 492 | signe = -signe;
|
---|
| 493 | for (int k=0; k< map.NbPixels(); k++) map(k) = (T)0.;
|
---|
| 494 | // synthetize a map from the estimated alm
|
---|
| 495 | // PrtTim("appel GenerateFromAlm");
|
---|
| 496 | GenerateFromAlm( map, map.SizeIndex(), alm2);
|
---|
| 497 | // PrtTim("retour GenerateFromAlm");
|
---|
| 498 | alm2 = complexZero;
|
---|
| 499 | // analyse the new map
|
---|
| 500 | // PrtTim("appel carteVersAlm");
|
---|
| 501 | carteVersAlm(map, nlmax, cos_theta_cut, alm2);
|
---|
| 502 | // PrtTim("retour carteVersAlm");
|
---|
| 503 | }
|
---|
| 504 | }
|
---|
| 505 | }
|
---|
| 506 |
|
---|
| 507 | template<class T>
|
---|
| 508 | void SphericalTransformServer<T>::carteVersAlm(const SphericalMap<T>& map, int_4 nlmax, r_8 cos_theta_cut, Alm<T>& alm) const
|
---|
| 509 | {
|
---|
[729] | 510 |
|
---|
| 511 | /*-----------------------------------------------------------------------
|
---|
| 512 | computes the integral in phi : phas_m(theta)
|
---|
| 513 | for each parallele from north to south pole
|
---|
| 514 | -----------------------------------------------------------------------*/
|
---|
| 515 | TVector<T> data;
|
---|
| 516 | TVector<int_4> pixNumber;
|
---|
| 517 | int_4 nmmax = nlmax;
|
---|
| 518 | TVector< complex<T> > phase(nmmax+1);
|
---|
[1683] | 519 |
|
---|
[729] | 520 | alm.ReSizeToLmax(nlmax);
|
---|
[3572] | 521 | for (uint_4 ith = 0; ith < map.NbThetaSlices(); ith++)
|
---|
[729] | 522 | {
|
---|
| 523 | r_8 phi0;
|
---|
| 524 | r_8 theta;
|
---|
[1683] | 525 | // PrtTim("debut 1ere tranche ");
|
---|
[729] | 526 | map.GetThetaSlice(ith,theta,phi0,pixNumber ,data);
|
---|
[1683] | 527 | phase = complex<T>((T)0.,(T)0.);
|
---|
[729] | 528 | double cth = cos(theta);
|
---|
| 529 |
|
---|
| 530 | //part of the sky out of the symetric cut
|
---|
[1428] | 531 | bool keep_it = (fabs(cth) >= cos_theta_cut);
|
---|
[1683] | 532 |
|
---|
| 533 | // PrtTim("fin 1ere tranche ");
|
---|
| 534 |
|
---|
[729] | 535 | if (keep_it)
|
---|
| 536 | {
|
---|
[1683] | 537 | // phase = CFromFourierAnalysis(nmmax,data,phi0);
|
---|
| 538 | // PrtTim("avant Fourier ");
|
---|
| 539 | CFromFourierAnalysis(nmmax,data,phase, phi0);
|
---|
| 540 | // PrtTim("apres Fourier ");
|
---|
[729] | 541 |
|
---|
| 542 | }
|
---|
| 543 |
|
---|
[1683] | 544 | // ---------------------------------------------------------------------
|
---|
| 545 | // computes the a_lm by integrating over theta
|
---|
| 546 | // lambda_lm(theta) * phas_m(theta)
|
---|
| 547 | // for each m and l
|
---|
| 548 | // -----------------------------------------------------------------------
|
---|
[2958] | 549 |
|
---|
| 550 | // ===> Optimisation Reza, Mai 2006
|
---|
| 551 | /*--- Le bout de code suivant est remplace par l'appel a la nouvelle fonction
|
---|
| 552 | qui calcule la somme au vol
|
---|
[1683] | 553 | // PrtTim("avant instanciation LM ");
|
---|
[729] | 554 | LambdaLMBuilder lb(theta,nlmax,nmmax);
|
---|
[1683] | 555 | // PrtTim("apres instanciation LM ");
|
---|
[729] | 556 | r_8 domega=map.PixSolAngle(map.PixIndexSph(theta,phi0));
|
---|
[1683] | 557 |
|
---|
| 558 | // PrtTim("avant mise a jour Alm ");
|
---|
| 559 | complex<T> fi;
|
---|
| 560 | T facteur;
|
---|
| 561 | int index;
|
---|
[729] | 562 | for (int m = 0; m <= nmmax; m++)
|
---|
| 563 | {
|
---|
[1683] | 564 | fi = phase(m);
|
---|
| 565 | for (int l = m; l<= nlmax; l++)
|
---|
[729] | 566 | {
|
---|
[1683] | 567 | index = alm.indexOfElement(l,m);
|
---|
| 568 | // facteur = (T)(lb.lamlm(l,m) * domega);
|
---|
| 569 | facteur = (T)(lb.lamlm(index) * domega);
|
---|
| 570 | // alm(l,m) += facteur * fi ;
|
---|
| 571 | alm(index) += facteur * fi ;
|
---|
[729] | 572 | }
|
---|
| 573 | }
|
---|
[2958] | 574 | ------- Fin version PRE-Mai2006 */
|
---|
| 575 | r_8 domega=map.PixSolAngle(map.PixIndexSph(theta,phi0));
|
---|
| 576 | phase *= complex<T>((T)domega, 0.);
|
---|
| 577 | LambdaLMBuilder::ComputeAlmFrPhase(theta,nlmax,nmmax, phase, alm);
|
---|
| 578 | //Fin Optimisation Reza, Mai 2006 <====
|
---|
[1683] | 579 |
|
---|
| 580 |
|
---|
| 581 |
|
---|
| 582 | //
|
---|
| 583 | //
|
---|
| 584 | // PrtTim("apres mise a jour Alm ");
|
---|
[729] | 585 | }
|
---|
| 586 | }
|
---|
[1218] | 587 | /*! \fn TVector< complex<T> > SOPHYA::SphericalTransformServer::CFromFourierAnalysis(int_4 nmmax, const TVector<complex<T> >datain, r_8 phi0) const
|
---|
| 588 |
|
---|
| 589 | \return a vector with mmax elements which are sums :
|
---|
| 590 | \f$\sum_{k=0}^{nphi}datain(\theta,\varphi_k)e^{im\varphi_k}\f$ for (mmax+1) values of \f$m\f$ from 0 to mmax.
|
---|
| 591 | */
|
---|
[729] | 592 | template<class T>
|
---|
[746] | 593 | TVector< complex<T> > SphericalTransformServer<T>::CFromFourierAnalysis(int_4 nmmax, const TVector<complex<T> >datain, r_8 phi0) const
|
---|
[729] | 594 | {
|
---|
| 595 | /*=======================================================================
|
---|
| 596 | integrates (data * phi-dependence-of-Ylm) over phi
|
---|
| 597 | --> function of m can be computed by FFT
|
---|
| 598 |
|
---|
| 599 | datain est modifie
|
---|
| 600 | =======================================================================*/
|
---|
| 601 | int_4 nph=datain.NElts();
|
---|
| 602 | if (nph <= 0)
|
---|
| 603 | {
|
---|
| 604 | throw PException("bizarre : vecteur datain de longueur nulle (CFromFourierAnalysis)");
|
---|
| 605 | }
|
---|
| 606 | TVector<complex<T> > transformedData(nph);
|
---|
[3003] | 607 | // Il faut avoir instancie le serveur de FFT avec l'option preserveinput=true
|
---|
| 608 | fftIntfPtr_-> FFTForward(const_cast<TVector< complex<T> > &>(datain), transformedData);
|
---|
[729] | 609 |
|
---|
| 610 | TVector< complex<T> > dataout(nmmax+1);
|
---|
| 611 |
|
---|
| 612 | int im_max=min(nph,nmmax+1);
|
---|
[833] | 613 | int i;
|
---|
[1683] | 614 | dataout = complex<T>((T)0.,(T)0.);
|
---|
| 615 | // for (i=0;i< dataout.NElts();i++) dataout(i)=complex<T>((T)0.,(T)0.);
|
---|
[833] | 616 | for (i=0;i<im_max;i++) dataout(i)=transformedData(i);
|
---|
[729] | 617 |
|
---|
| 618 |
|
---|
| 619 | for (int kk=nph; kk<dataout.NElts(); kk++) dataout(kk)=dataout(kk%nph);
|
---|
[833] | 620 | for (i = 0;i <dataout.NElts();i++){
|
---|
[729] | 621 | dataout(i)*= (complex<T>)(complex<double>(cos(-i*phi0),sin(-i*phi0)));
|
---|
| 622 | }
|
---|
| 623 | return dataout;
|
---|
| 624 | }
|
---|
| 625 |
|
---|
| 626 | //&&&&&&&&& nouvelle version
|
---|
[1218] | 627 | /* \fn TVector< complex<T> > SOPHYA::SphericalTransformServer::CFromFourierAnalysis(int_4 nmmax, const TVector<T> datain, r_8 phi0) const
|
---|
| 628 |
|
---|
| 629 | same as previous one, but with a "datain" which is real (not complex) */
|
---|
[729] | 630 | template<class T>
|
---|
[1683] | 631 | void SphericalTransformServer<T>::CFromFourierAnalysis(int_4 nmmax, const TVector<T> datain, TVector< complex<T> >& dataout, r_8 phi0) const
|
---|
[729] | 632 | {
|
---|
| 633 | //=======================================================================
|
---|
| 634 | // integrates (data * phi-dependence-of-Ylm) over phi
|
---|
| 635 | // --> function of m can be computed by FFT
|
---|
| 636 | // ! with 0<= m <= npoints/2 (: Nyquist)
|
---|
| 637 | // ! because the data is real the negative m are the conjugate of the
|
---|
| 638 | // ! positive ones
|
---|
| 639 |
|
---|
| 640 | // datain est modifie
|
---|
| 641 | //
|
---|
| 642 | // =======================================================================
|
---|
| 643 | int_4 nph=datain.NElts();
|
---|
| 644 | if (nph <= 0)
|
---|
| 645 | {
|
---|
| 646 | throw PException("bizarre : vecteur datain de longueur nulle (CFromFourierAnalysis)");
|
---|
| 647 | }
|
---|
[1756] | 648 | // if (nph%2 != 0 )
|
---|
| 649 | // {
|
---|
| 650 | // throw PException("SphericalTransformServer<T>::CFromFourierAnalysis : longueur de datain impair ?");
|
---|
| 651 | // }
|
---|
[729] | 652 | TVector<complex<T> > transformedData;
|
---|
| 653 |
|
---|
[1683] | 654 | // la taille du vecteur complexe retourne est nph/2+1 (si la taille
|
---|
| 655 | // du vecteur reel entre est nph)
|
---|
[1756] | 656 | // cout << " longueur de datain = " << nph << endl;
|
---|
[3003] | 657 | // Il faut avoir instancie le serveur de FFT avec l'option preserveinput=true
|
---|
| 658 | fftIntfPtr_-> FFTForward(const_cast< TVector<T> &>(datain), transformedData);
|
---|
[1756] | 659 | // cout << " taille de la transformee " << transformedData.Size() << endl;
|
---|
[1683] | 660 | // TVector< complex<T> > dataout(nmmax+1);
|
---|
| 661 | dataout.ReSize(nmmax+1);
|
---|
[729] | 662 |
|
---|
| 663 | // on transfere le resultat de la fft dans dataout.
|
---|
[1683] | 664 |
|
---|
| 665 | int maxFreqAccessiblesParFFT = min(nph/2,nmmax);
|
---|
[833] | 666 | int i;
|
---|
[1683] | 667 | for (i=0;i<=maxFreqAccessiblesParFFT;i++) dataout(i)=transformedData(i);
|
---|
[729] | 668 |
|
---|
| 669 |
|
---|
[1683] | 670 | // si dataout n'est pas plein, on complete jusqu'a nph+1 valeurs (a moins
|
---|
[729] | 671 | // que dataout ne soit plein avant d'atteindre nph)
|
---|
[1683] | 672 | if (maxFreqAccessiblesParFFT != nmmax )
|
---|
[729] | 673 | {
|
---|
[1683] | 674 | int maxMfft = min(nph,nmmax);
|
---|
| 675 | for (i=maxFreqAccessiblesParFFT+1; i<=maxMfft; i++)
|
---|
[729] | 676 | {
|
---|
| 677 | dataout(i) = conj(dataout(nph-i) );
|
---|
| 678 | }
|
---|
| 679 | // on conplete, si necessaire, par periodicite
|
---|
[1683] | 680 | if ( maxMfft != nmmax )
|
---|
[729] | 681 | {
|
---|
[1683] | 682 | for (int kk=nph+1; kk <= nmmax; kk++)
|
---|
| 683 | {
|
---|
| 684 | dataout(kk)=dataout(kk%nph);
|
---|
| 685 | }
|
---|
[729] | 686 | }
|
---|
| 687 | }
|
---|
[1683] | 688 | for (i = 0;i <dataout.NElts();i++)
|
---|
| 689 | {
|
---|
| 690 | dataout(i)*= (complex<T>)(complex<double>(cos(-i*phi0),sin(-i*phi0)));
|
---|
| 691 | }
|
---|
| 692 | // return dataout;
|
---|
[729] | 693 | }
|
---|
| 694 |
|
---|
[1218] | 695 | /*! \fn void SOPHYA::SphericalTransformServer::GenerateFromAlm(SphericalMap<T>& mapq,
|
---|
| 696 | SphericalMap<T>& mapu,
|
---|
| 697 | int_4 pixelSizeIndex,
|
---|
| 698 | const Alm<T>& alme,
|
---|
| 699 | const Alm<T>& almb) const
|
---|
| 700 |
|
---|
| 701 | synthesis of a polarization map from Alm coefficients. The spheres mapq and mapu contain respectively the Stokes parameters. */
|
---|
[729] | 702 | template<class T>
|
---|
| 703 | void SphericalTransformServer<T>::GenerateFromAlm(SphericalMap<T>& mapq,
|
---|
| 704 | SphericalMap<T>& mapu,
|
---|
| 705 | int_4 pixelSizeIndex,
|
---|
| 706 | const Alm<T>& alme,
|
---|
| 707 | const Alm<T>& almb) const
|
---|
| 708 | {
|
---|
| 709 | /*=======================================================================
|
---|
| 710 | computes a map form its alm for the HEALPIX pixelisation
|
---|
| 711 | map(theta,phi) = sum_l_m a_lm Y_lm(theta,phi)
|
---|
| 712 | = sum_m {e^(i*m*phi) sum_l a_lm*lambda_lm(theta)}
|
---|
| 713 |
|
---|
| 714 | where Y_lm(theta,phi) = lambda(theta) * e^(i*m*phi)
|
---|
| 715 |
|
---|
| 716 | * the recurrence of Ylm is the standard one (cf Num Rec)
|
---|
| 717 | * the sum over m is done by FFT
|
---|
| 718 |
|
---|
| 719 | =======================================================================*/
|
---|
| 720 | int_4 nlmax=alme.Lmax();
|
---|
| 721 | if (nlmax != almb.Lmax())
|
---|
| 722 | {
|
---|
| 723 | cout << " SphericalTransformServer: les deux tableaux alm n'ont pas la meme taille" << endl;
|
---|
| 724 | throw SzMismatchError("SphericalTransformServer: les deux tableaux alm n'ont pas la meme taille");
|
---|
| 725 | }
|
---|
| 726 | int_4 nmmax=nlmax;
|
---|
| 727 | int_4 nsmax=0;
|
---|
| 728 | mapq.Resize(pixelSizeIndex);
|
---|
| 729 | mapu.Resize(pixelSizeIndex);
|
---|
[2291] | 730 | string sphere_type=mapq.TypeOfMap();
|
---|
| 731 | if (sphere_type != mapu.TypeOfMap())
|
---|
[729] | 732 | {
|
---|
| 733 | cout << " SphericalTransformServer: les deux spheres ne sont pas de meme type" << endl;
|
---|
| 734 | cout << " type 1 " << sphere_type << endl;
|
---|
| 735 | cout << " type 2 " << mapu.TypeOfMap() << endl;
|
---|
| 736 | throw SzMismatchError("SphericalTransformServer: les deux spheres ne sont pas de meme type");
|
---|
| 737 |
|
---|
| 738 | }
|
---|
[2313] | 739 | bool healpix = true;
|
---|
[2291] | 740 | if (sphere_type.substr(0,4) == "RING")
|
---|
[729] | 741 | {
|
---|
| 742 | nsmax=mapq.SizeIndex();
|
---|
| 743 | }
|
---|
| 744 | else
|
---|
| 745 | // pour une sphere Gorski le nombre de pixels est 12*nsmax**2
|
---|
| 746 | // on calcule une quantite equivalente a nsmax pour la sphere-theta-phi
|
---|
| 747 | // en vue de l'application du critere Healpix : nlmax<=3*nsmax-1
|
---|
| 748 | // c'est approximatif ; a raffiner.
|
---|
[2313] | 749 | healpix = false;
|
---|
[2291] | 750 | if (sphere_type.substr(0,6) == "TETAFI")
|
---|
[729] | 751 | {
|
---|
| 752 | nsmax=(int_4)sqrt(mapq.NbPixels()/12.);
|
---|
| 753 | }
|
---|
| 754 | else
|
---|
| 755 | {
|
---|
| 756 | cout << " unknown type of sphere : " << sphere_type << endl;
|
---|
| 757 | throw IOExc(" unknown type of sphere ");
|
---|
| 758 | }
|
---|
| 759 | cout << "GenerateFromAlm: the spheres are of type : " << sphere_type << endl;
|
---|
| 760 | cout << "GenerateFromAlm: size indices (nside) of spheres= " << nsmax << endl;
|
---|
| 761 | cout << "GenerateFromAlm: nlmax (from Alm) = " << nlmax << endl;
|
---|
| 762 | if (nlmax>3*nsmax-1)
|
---|
| 763 | {
|
---|
| 764 | cout << "GenerateFromAlm: nlmax should be <= 3*nside-1" << endl;
|
---|
[2291] | 765 | if (sphere_type.substr(0,6) == "TETAFI")
|
---|
[729] | 766 | {
|
---|
| 767 | cout << " (for this criterium, nsmax is computed as sqrt(nbPixels/12))" << endl;
|
---|
| 768 | }
|
---|
| 769 | }
|
---|
| 770 | if (alme.Lmax()!=almb.Lmax())
|
---|
| 771 | {
|
---|
| 772 | cout << "GenerateFromAlm: arrays Alme and Almb have not the same size ? " << endl;
|
---|
| 773 | throw SzMismatchError("SphericalTransformServer: arrays Alme and Almb have not the same size ? ");
|
---|
| 774 | }
|
---|
[2313] | 775 | mapFromWX(nlmax, nmmax, mapq, mapu, alme, almb, healpix);
|
---|
[729] | 776 | // mapFromPM(nlmax, nmmax, mapq, mapu, alme, almb);
|
---|
| 777 | }
|
---|
[1756] | 778 | /*! \fn void SOPHYA::SphericalTransformServer::DecomposeToAlm(const SphericalMap<T>& mapq,
|
---|
| 779 | const SphericalMap<T>& mapu,
|
---|
| 780 | Alm<T>& alme,
|
---|
| 781 | Alm<T>& almb,
|
---|
| 782 | int_4 nlmax,
|
---|
| 783 | r_8 cos_theta_cut) const
|
---|
[729] | 784 |
|
---|
[1756] | 785 | analysis of a polarization map into Alm coefficients.
|
---|
[729] | 786 |
|
---|
[1756] | 787 | The spheres \c mapq and \c mapu contain respectively the Stokes parameters.
|
---|
| 788 |
|
---|
| 789 | \c a2lme and \c a2lmb will receive respectively electric and magnetic Alm's
|
---|
| 790 | nlmax : maximum value of the l index
|
---|
| 791 |
|
---|
| 792 | \c cos_theta_cut : cosinus of the symmetric cut EULER angle theta : cos_theta_cut=0 means no cut ; cos_theta_cut=1 all the sphere is cut.
|
---|
| 793 |
|
---|
| 794 |
|
---|
| 795 | */
|
---|
| 796 | template<class T>
|
---|
| 797 | void SphericalTransformServer<T>::DecomposeToAlm(const SphericalMap<T>& mapq,
|
---|
[1218] | 798 | const SphericalMap<T>& mapu,
|
---|
| 799 | Alm<T>& alme,
|
---|
| 800 | Alm<T>& almb,
|
---|
| 801 | int_4 nlmax,
|
---|
| 802 | r_8 cos_theta_cut) const
|
---|
[1756] | 803 | {
|
---|
| 804 | DecomposeToAlm(const_cast< SphericalMap<T>& >(mapq), const_cast< SphericalMap<T>& >(mapu), alme, almb, nlmax, cos_theta_cut);
|
---|
| 805 | }
|
---|
[1218] | 806 |
|
---|
[1756] | 807 | /*! \fn void SOPHYA::SphericalTransformServer::DecomposeToAlm(const SphericalMap<T>& mapq,
|
---|
| 808 | const SphericalMap<T>& mapu,
|
---|
| 809 | Alm<T>& alme,
|
---|
| 810 | Alm<T>& almb,
|
---|
| 811 | int_4 nlmax,
|
---|
| 812 | r_8 cos_theta_cut,
|
---|
| 813 | int iterationOrder) const
|
---|
| 814 |
|
---|
[1218] | 815 | analysis of a polarization map into Alm coefficients.
|
---|
| 816 |
|
---|
| 817 | The spheres \c mapq and \c mapu contain respectively the Stokes parameters.
|
---|
| 818 |
|
---|
| 819 | \c a2lme and \c a2lmb will receive respectively electric and magnetic Alm's
|
---|
| 820 | nlmax : maximum value of the l index
|
---|
| 821 |
|
---|
| 822 | \c cos_theta_cut : cosinus of the symmetric cut EULER angle theta : cos_theta_cut=0 means no cut ; cos_theta_cut=1 all the sphere is cut.
|
---|
[1756] | 823 |
|
---|
| 824 | \param<iterationOrder> : 1,2,3,4.... order of an iterative analysis. (Default : 0 -> standard analysis). If iterationOrder is not null, the method works with SphereHEALPix but NOT WITH SphereThetaPhi maps !
|
---|
| 825 |
|
---|
| 826 | THE INPUT MAPS CAN BE MODIFIED (only if iterationOrder >0)
|
---|
| 827 |
|
---|
[1218] | 828 | */
|
---|
[729] | 829 | template<class T>
|
---|
[1683] | 830 | void SphericalTransformServer<T>::DecomposeToAlm(SphericalMap<T>& mapq,
|
---|
| 831 | SphericalMap<T>& mapu,
|
---|
| 832 | Alm<T>& alme,
|
---|
| 833 | Alm<T>& almb,
|
---|
| 834 | int_4 nlmax,
|
---|
| 835 | r_8 cos_theta_cut,
|
---|
| 836 | int iterationOrder) const
|
---|
| 837 | {
|
---|
| 838 | int_4 nmmax = nlmax;
|
---|
| 839 | carteVersAlm(mapq, mapu, alme, almb, nlmax, cos_theta_cut);
|
---|
| 840 | if (iterationOrder > 0)
|
---|
| 841 | {
|
---|
| 842 | TVector<int_4> fact(iterationOrder+2);
|
---|
| 843 | fact(0) = 1;
|
---|
[1715] | 844 | int k;
|
---|
| 845 | for (k=1; k <= iterationOrder+1; k++)
|
---|
[1683] | 846 | {
|
---|
| 847 | fact(k) = fact(k-1)*k;
|
---|
| 848 | }
|
---|
| 849 | Alm<T> alme2(alme);
|
---|
| 850 | Alm<T> almb2(almb);
|
---|
| 851 | T Tzero = (T)0.;
|
---|
| 852 | complex<T> complexZero = complex<T>(Tzero, Tzero);
|
---|
| 853 | alme = complexZero;
|
---|
| 854 | almb = complexZero;
|
---|
| 855 | int signe = 1;
|
---|
| 856 | int nbIteration = iterationOrder+1;
|
---|
[1715] | 857 | for (k=1; k <= nbIteration; k++)
|
---|
[1683] | 858 | {
|
---|
| 859 | T facMult = (T)(0.5*signe*fact(iterationOrder)*(2*nbIteration-k)/(fact(k)*fact(nbIteration-k)));
|
---|
| 860 | for (int m = 0; m <= nmmax; m++)
|
---|
| 861 | {
|
---|
| 862 | for (int l = m; l<= nlmax; l++)
|
---|
| 863 | {
|
---|
| 864 | alme(l,m) += facMult*alme2(l,m);
|
---|
| 865 | almb(l,m) += facMult*almb2(l,m);
|
---|
| 866 | }
|
---|
| 867 | }
|
---|
| 868 | if (k == nbIteration) break;
|
---|
| 869 | signe = -signe;
|
---|
| 870 | for (int k=0; k< mapq.NbPixels(); k++)
|
---|
| 871 | {
|
---|
| 872 | mapq(k) = (T)0.;
|
---|
| 873 | mapu(k) = (T)0.;
|
---|
| 874 | }
|
---|
| 875 | // synthetize a map from the estimated alm
|
---|
| 876 | GenerateFromAlm(mapq,mapu,mapq.SizeIndex(),alme2,almb2);
|
---|
| 877 | alme2 = complexZero;
|
---|
| 878 | almb2 = complexZero;
|
---|
| 879 | // analyse the new map
|
---|
| 880 | carteVersAlm(mapq, mapu, alme2, almb2, nlmax, cos_theta_cut);
|
---|
| 881 | }
|
---|
| 882 | }
|
---|
| 883 | }
|
---|
| 884 |
|
---|
| 885 | template<class T>
|
---|
| 886 | void SphericalTransformServer<T>::carteVersAlm(const SphericalMap<T>& mapq,
|
---|
[729] | 887 | const SphericalMap<T>& mapu,
|
---|
| 888 | Alm<T>& alme,
|
---|
| 889 | Alm<T>& almb,
|
---|
| 890 | int_4 nlmax,
|
---|
| 891 | r_8 cos_theta_cut) const
|
---|
| 892 | {
|
---|
| 893 | int_4 nmmax = nlmax;
|
---|
| 894 | // resize et remise a zero
|
---|
| 895 | alme.ReSizeToLmax(nlmax);
|
---|
| 896 | almb.ReSizeToLmax(nlmax);
|
---|
| 897 |
|
---|
| 898 |
|
---|
| 899 | TVector<T> dataq;
|
---|
| 900 | TVector<T> datau;
|
---|
| 901 | TVector<int_4> pixNumber;
|
---|
| 902 |
|
---|
[2291] | 903 | string sphere_type=mapq.TypeOfMap();
|
---|
| 904 | if (sphere_type != mapu.TypeOfMap())
|
---|
[729] | 905 | {
|
---|
| 906 | cout << " SphericalTransformServer: les deux spheres ne sont pas de meme type" << endl;
|
---|
| 907 | cout << " type 1 " << sphere_type << endl;
|
---|
| 908 | cout << " type 2 " << mapu.TypeOfMap() << endl;
|
---|
| 909 | throw SzMismatchError("SphericalTransformServer: les deux spheres ne sont pas de meme type");
|
---|
| 910 |
|
---|
| 911 | }
|
---|
| 912 | if (mapq.NbPixels()!=mapu.NbPixels())
|
---|
| 913 | {
|
---|
| 914 | cout << " DecomposeToAlm: map Q and map U have not same size ?" << endl;
|
---|
| 915 | throw SzMismatchError("SphericalTransformServer::DecomposeToAlm: map Q and map U have not same size ");
|
---|
| 916 | }
|
---|
[3572] | 917 | for (uint_4 ith = 0; ith < mapq.NbThetaSlices(); ith++)
|
---|
[729] | 918 | {
|
---|
| 919 | r_8 phi0;
|
---|
| 920 | r_8 theta;
|
---|
| 921 | mapq.GetThetaSlice(ith,theta,phi0, pixNumber,dataq);
|
---|
| 922 | mapu.GetThetaSlice(ith,theta,phi0, pixNumber,datau);
|
---|
| 923 | if (dataq.NElts() != datau.NElts() )
|
---|
| 924 | {
|
---|
| 925 | throw SzMismatchError("the spheres have not the same pixelization");
|
---|
| 926 | }
|
---|
| 927 | r_8 domega=mapq.PixSolAngle(mapq.PixIndexSph(theta,phi0));
|
---|
| 928 | double cth = cos(theta);
|
---|
| 929 | //part of the sky out of the symetric cut
|
---|
[1428] | 930 | bool keep_it = (fabs(cth) >= cos_theta_cut);
|
---|
[729] | 931 | if (keep_it)
|
---|
| 932 | {
|
---|
[1328] | 933 | // almFromPM(pixNumber.NElts(), nlmax, nmmax, phi0, domega, theta, dataq, datau, alme, almb);
|
---|
[746] | 934 | almFromWX(nlmax, nmmax, phi0, domega, theta, dataq, datau, alme, almb);
|
---|
[729] | 935 | }
|
---|
| 936 | }
|
---|
| 937 | }
|
---|
| 938 |
|
---|
| 939 |
|
---|
[1218] | 940 | /*! \fn void SOPHYA::SphericalTransformServer::almFromWX(int_4 nlmax, int_4 nmmax,
|
---|
| 941 | r_8 phi0, r_8 domega,
|
---|
| 942 | r_8 theta,
|
---|
| 943 | const TVector<T>& dataq,
|
---|
| 944 | const TVector<T>& datau,
|
---|
| 945 | Alm<T>& alme,
|
---|
| 946 | Alm<T>& almb) const
|
---|
| 947 |
|
---|
| 948 | Compute polarized Alm's as :
|
---|
| 949 | \f[
|
---|
| 950 | a_{lm}^E=\frac{1}{\sqrt{2}}\sum_{slices}{\omega_{pix}\left(\,_{w}\lambda_l^m\tilde{Q}-i\,_{x}\lambda_l^m\tilde{U}\right)}
|
---|
| 951 | \f]
|
---|
| 952 | \f[
|
---|
| 953 | a_{lm}^B=\frac{1}{\sqrt{2}}\sum_{slices}{\omega_{pix}\left(i\,_{x}\lambda_l^m\tilde{Q}+\,_{w}\lambda_l^m\tilde{U}\right)}
|
---|
| 954 | \f]
|
---|
| 955 |
|
---|
| 956 | where \f$\tilde{Q}\f$ and \f$\tilde{U}\f$ are C-coefficients computed by FFT (method CFromFourierAnalysis, called by present method) from the Stokes parameters.
|
---|
| 957 |
|
---|
| 958 | \f$\omega_{pix}\f$ are solid angle of each pixel.
|
---|
| 959 |
|
---|
| 960 | dataq, datau : Stokes parameters.
|
---|
| 961 |
|
---|
| 962 | */
|
---|
[729] | 963 | template<class T>
|
---|
[746] | 964 | void SphericalTransformServer<T>::almFromWX(int_4 nlmax, int_4 nmmax,
|
---|
[729] | 965 | r_8 phi0, r_8 domega,
|
---|
| 966 | r_8 theta,
|
---|
| 967 | const TVector<T>& dataq,
|
---|
| 968 | const TVector<T>& datau,
|
---|
| 969 | Alm<T>& alme,
|
---|
| 970 | Alm<T>& almb) const
|
---|
| 971 | {
|
---|
| 972 | TVector< complex<T> > phaseq(nmmax+1);
|
---|
| 973 | TVector< complex<T> > phaseu(nmmax+1);
|
---|
| 974 | // TVector<complex<T> > datain(nph);
|
---|
| 975 | for (int i=0;i< nmmax+1;i++)
|
---|
| 976 | {
|
---|
| 977 | phaseq(i)=0;
|
---|
| 978 | phaseu(i)=0;
|
---|
| 979 | }
|
---|
| 980 | // for(int kk=0; kk<nph; kk++) datain(kk)=complex<T>(dataq(kk),0.);
|
---|
| 981 |
|
---|
[1683] | 982 | // phaseq = CFromFourierAnalysis(nmmax,dataq,phi0);
|
---|
| 983 | CFromFourierAnalysis(nmmax,dataq,phaseq, phi0);
|
---|
[729] | 984 |
|
---|
[1683] | 985 | // phaseu= CFromFourierAnalysis(nmmax,datau,phi0);
|
---|
| 986 | CFromFourierAnalysis(nmmax,datau,phaseu, phi0);
|
---|
[729] | 987 |
|
---|
| 988 | LambdaWXBuilder lwxb(theta,nlmax,nmmax);
|
---|
| 989 |
|
---|
| 990 | r_8 sqr2inv=1/Rac2;
|
---|
| 991 | for (int m = 0; m <= nmmax; m++)
|
---|
| 992 | {
|
---|
| 993 | r_8 lambda_w=0.;
|
---|
| 994 | r_8 lambda_x=0.;
|
---|
| 995 | lwxb.lam_wx(m, m, lambda_w, lambda_x);
|
---|
| 996 | complex<T> zi_lam_x((T)0., (T)lambda_x);
|
---|
| 997 | alme(m,m) += ( (T)(lambda_w)*phaseq(m)-zi_lam_x*phaseu(m) )*(T)(domega*sqr2inv);
|
---|
| 998 | almb(m,m) += ( (T)(lambda_w)*phaseu(m)+zi_lam_x*phaseq(m) )*(T)(domega*sqr2inv);
|
---|
| 999 |
|
---|
| 1000 | for (int l = m+1; l<= nlmax; l++)
|
---|
| 1001 | {
|
---|
| 1002 | lwxb.lam_wx(l, m, lambda_w, lambda_x);
|
---|
| 1003 | zi_lam_x = complex<T>((T)0., (T)lambda_x);
|
---|
| 1004 | alme(l,m) += ( (T)(lambda_w)*phaseq(m)-zi_lam_x*phaseu(m) )*(T)(domega*sqr2inv);
|
---|
| 1005 | almb(l,m) += ( (T)(lambda_w)*phaseu(m)+zi_lam_x*phaseq(m) )*(T)(domega*sqr2inv);
|
---|
| 1006 | }
|
---|
| 1007 | }
|
---|
| 1008 | }
|
---|
| 1009 |
|
---|
| 1010 |
|
---|
[1218] | 1011 | /*! \fn void SOPHYA::SphericalTransformServer::almFromPM(int_4 nph, int_4 nlmax,
|
---|
| 1012 | int_4 nmmax,
|
---|
| 1013 | r_8 phi0, r_8 domega,
|
---|
| 1014 | r_8 theta,
|
---|
| 1015 | const TVector<T>& dataq,
|
---|
| 1016 | const TVector<T>& datau,
|
---|
| 1017 | Alm<T>& alme,
|
---|
| 1018 | Alm<T>& almb) const
|
---|
| 1019 |
|
---|
| 1020 | Compute polarized Alm's as :
|
---|
| 1021 | \f[
|
---|
| 1022 | a_{lm}^E=-\frac{1}{2}\sum_{slices}{\omega_{pix}\left(\,_{+}\lambda_l^m\tilde{P^+}+\,_{-}\lambda_l^m\tilde{P^-}\right)}
|
---|
| 1023 | \f]
|
---|
| 1024 | \f[
|
---|
| 1025 | a_{lm}^B=\frac{i}{2}\sum_{slices}{\omega_{pix}\left(\,_{+}\lambda_l^m\tilde{P^+}-\,_{-}\lambda_l^m\tilde{P^-}\right)}
|
---|
| 1026 | \f]
|
---|
| 1027 |
|
---|
| 1028 | where \f$\tilde{P^{\pm}}=\tilde{Q}\pm\tilde{U}\f$ computed by FFT (method CFromFourierAnalysis, called by present method) from the Stokes parameters,\f$Q\f$ and \f$U\f$ .
|
---|
| 1029 |
|
---|
| 1030 | \f$\omega_{pix}\f$ are solid angle of each pixel.
|
---|
| 1031 |
|
---|
| 1032 | dataq, datau : Stokes parameters.
|
---|
| 1033 |
|
---|
| 1034 | */
|
---|
[729] | 1035 | template<class T>
|
---|
[1218] | 1036 | void SphericalTransformServer<T>::almFromPM(int_4 nph, int_4 nlmax,
|
---|
| 1037 | int_4 nmmax,
|
---|
[729] | 1038 | r_8 phi0, r_8 domega,
|
---|
| 1039 | r_8 theta,
|
---|
| 1040 | const TVector<T>& dataq,
|
---|
| 1041 | const TVector<T>& datau,
|
---|
| 1042 | Alm<T>& alme,
|
---|
| 1043 | Alm<T>& almb) const
|
---|
| 1044 | {
|
---|
| 1045 | TVector< complex<T> > phasep(nmmax+1);
|
---|
| 1046 | TVector< complex<T> > phasem(nmmax+1);
|
---|
| 1047 | TVector<complex<T> > datain(nph);
|
---|
| 1048 | for (int i=0;i< nmmax+1;i++)
|
---|
| 1049 | {
|
---|
| 1050 | phasep(i)=0;
|
---|
| 1051 | phasem(i)=0;
|
---|
| 1052 | }
|
---|
[833] | 1053 | int kk;
|
---|
| 1054 | for(kk=0; kk<nph; kk++) datain(kk)=complex<T>(dataq(kk),datau(kk));
|
---|
[729] | 1055 |
|
---|
[746] | 1056 | phasep = CFromFourierAnalysis(nmmax,datain,phi0);
|
---|
[729] | 1057 |
|
---|
[833] | 1058 | for(kk=0; kk<nph; kk++) datain(kk)=complex<T>(dataq(kk),-datau(kk));
|
---|
[746] | 1059 | phasem = CFromFourierAnalysis(nmmax,datain,phi0);
|
---|
[729] | 1060 | LambdaPMBuilder lpmb(theta,nlmax,nmmax);
|
---|
| 1061 |
|
---|
| 1062 | for (int m = 0; m <= nmmax; m++)
|
---|
| 1063 | {
|
---|
| 1064 | r_8 lambda_p=0.;
|
---|
| 1065 | r_8 lambda_m=0.;
|
---|
| 1066 | complex<T> im((T)0.,(T)1.);
|
---|
| 1067 | lpmb.lam_pm(m, m, lambda_p, lambda_m);
|
---|
| 1068 |
|
---|
| 1069 | alme(m,m) += -( (T)(lambda_p)*phasep(m) + (T)(lambda_m)*phasem(m) )*(T)(domega*0.5);
|
---|
| 1070 | almb(m,m) += im*( (T)(lambda_p)*phasep(m) - (T)(lambda_m)*phasem(m) )*(T)(domega*0.5);
|
---|
| 1071 | for (int l = m+1; l<= nlmax; l++)
|
---|
| 1072 | {
|
---|
| 1073 | lpmb.lam_pm(l, m, lambda_p, lambda_m);
|
---|
| 1074 | alme(l,m) += -( (T)(lambda_p)*phasep(m) + (T)(lambda_m)*phasem(m) )*(T)(domega*0.5);
|
---|
| 1075 | almb(l,m) += im* ( (T)(lambda_p)*phasep(m) - (T)(lambda_m)*phasem(m) )*(T)(domega*0.5);
|
---|
| 1076 | }
|
---|
| 1077 | }
|
---|
| 1078 | }
|
---|
| 1079 |
|
---|
| 1080 |
|
---|
[1218] | 1081 | /*! \fn void SOPHYA::SphericalTransformServer::mapFromWX(int_4 nlmax, int_4 nmmax,
|
---|
| 1082 | SphericalMap<T>& mapq,
|
---|
| 1083 | SphericalMap<T>& mapu,
|
---|
| 1084 | const Alm<T>& alme,
|
---|
[2313] | 1085 | const Alm<T>& almb, bool healpix) const
|
---|
[1218] | 1086 |
|
---|
| 1087 | synthesis of Stokes parameters following formulae :
|
---|
| 1088 |
|
---|
| 1089 | \f[
|
---|
| 1090 | Q=\sum_{m=-mmax}^{mmax}b_m^qe^{im\varphi}
|
---|
| 1091 | \f]
|
---|
| 1092 | \f[
|
---|
| 1093 | U=\sum_{m=-mmax}^{mmax}b_m^ue^{im\varphi}
|
---|
| 1094 | \f]
|
---|
| 1095 |
|
---|
| 1096 | computed by FFT (method fourierSynthesisFromB called by the present one)
|
---|
| 1097 |
|
---|
| 1098 | with :
|
---|
| 1099 |
|
---|
| 1100 | \f[
|
---|
| 1101 | b_m^q=-\frac{1}{\sqrt{2}}\sum_{l=|m|}^{lmax}{\left(\,_{w}\lambda_l^ma_{lm}^E-i\,_{x}\lambda_l^ma_{lm}^B\right) }
|
---|
| 1102 | \f]
|
---|
| 1103 | \f[
|
---|
| 1104 | b_m^u=\frac{1}{\sqrt{2}}\sum_{l=|m|}^{lmax}{\left(i\,_{x}\lambda_l^ma_{lm}^E+\,_{w}\lambda_l^ma_{lm}^B\right) }
|
---|
| 1105 | \f]
|
---|
| 1106 | */
|
---|
[729] | 1107 | template<class T>
|
---|
| 1108 | void SphericalTransformServer<T>::mapFromWX(int_4 nlmax, int_4 nmmax,
|
---|
| 1109 | SphericalMap<T>& mapq,
|
---|
| 1110 | SphericalMap<T>& mapu,
|
---|
| 1111 | const Alm<T>& alme,
|
---|
[2313] | 1112 | const Alm<T>& almb, bool healpix) const
|
---|
[729] | 1113 | {
|
---|
[2313] | 1114 | int i;
|
---|
| 1115 |
|
---|
[729] | 1116 | Bm<complex<T> > b_m_theta_q(nmmax);
|
---|
| 1117 | Bm<complex<T> > b_m_theta_u(nmmax);
|
---|
| 1118 |
|
---|
[3572] | 1119 | for (uint_4 ith = 0; ith < mapq.NbThetaSlices();ith++)
|
---|
[729] | 1120 | {
|
---|
| 1121 | int_4 nph;
|
---|
| 1122 | r_8 phi0;
|
---|
| 1123 | r_8 theta;
|
---|
| 1124 | TVector<int_4> pixNumber;
|
---|
| 1125 | TVector<T> datan;
|
---|
| 1126 |
|
---|
| 1127 | mapq.GetThetaSlice(ith,theta,phi0, pixNumber,datan);
|
---|
| 1128 | nph = pixNumber.NElts();
|
---|
| 1129 | // -----------------------------------------------------
|
---|
| 1130 | // for each theta, and each m, computes
|
---|
| 1131 | // b(m,theta) = sum_over_l>m (lambda_l_m(theta) * a_l_m)
|
---|
| 1132 | // ------------------------------------------------------
|
---|
| 1133 | LambdaWXBuilder lwxb(theta,nlmax,nmmax);
|
---|
| 1134 | // LambdaPMBuilder lpmb(theta,nlmax,nmmax);
|
---|
| 1135 | r_8 sqr2inv=1/Rac2;
|
---|
[833] | 1136 | int m;
|
---|
| 1137 | for (m = 0; m <= nmmax; m++)
|
---|
[729] | 1138 | {
|
---|
| 1139 | r_8 lambda_w=0.;
|
---|
| 1140 | r_8 lambda_x=0.;
|
---|
| 1141 | lwxb.lam_wx(m, m, lambda_w, lambda_x);
|
---|
| 1142 | complex<T> zi_lam_x((T)0., (T)lambda_x);
|
---|
| 1143 |
|
---|
| 1144 | b_m_theta_q(m) = ( (T)(lambda_w) * alme(m,m) - zi_lam_x * almb(m,m))*(T)sqr2inv ;
|
---|
| 1145 | b_m_theta_u(m) = ( (T)(lambda_w) * almb(m,m) + zi_lam_x * alme(m,m))*(T)sqr2inv;
|
---|
| 1146 |
|
---|
| 1147 |
|
---|
| 1148 | for (int l = m+1; l<= nlmax; l++)
|
---|
| 1149 | {
|
---|
| 1150 |
|
---|
| 1151 | lwxb.lam_wx(l, m, lambda_w, lambda_x);
|
---|
| 1152 | zi_lam_x= complex<T>((T)0., (T)lambda_x);
|
---|
| 1153 |
|
---|
| 1154 | b_m_theta_q(m) += ((T)(lambda_w)*alme(l,m)-zi_lam_x *almb(l,m))*(T)sqr2inv;
|
---|
| 1155 | b_m_theta_u(m) += ((T)(lambda_w)*almb(l,m)+zi_lam_x *alme(l,m))*(T)sqr2inv;
|
---|
| 1156 |
|
---|
| 1157 | }
|
---|
| 1158 | }
|
---|
| 1159 | // obtains the negative m of b(m,theta) (= complex conjugate)
|
---|
[833] | 1160 | for (m=1;m<=nmmax;m++)
|
---|
[729] | 1161 | {
|
---|
| 1162 | b_m_theta_q(-m) = conj(b_m_theta_q(m));
|
---|
| 1163 | b_m_theta_u(-m) = conj(b_m_theta_u(m));
|
---|
| 1164 | }
|
---|
[2313] | 1165 | if (healpix)
|
---|
[729] | 1166 | {
|
---|
[2313] | 1167 | TVector<T> Tempq = RfourierSynthesisFromB(b_m_theta_q,nph,phi0);
|
---|
| 1168 | TVector<T> Tempu = RfourierSynthesisFromB(b_m_theta_u,nph,phi0);
|
---|
| 1169 | for (i=0;i< nph;i++)
|
---|
| 1170 | {
|
---|
| 1171 | mapq(pixNumber(i))=Tempq(i);
|
---|
| 1172 | mapu(pixNumber(i))=Tempu(i);
|
---|
| 1173 | }
|
---|
[729] | 1174 | }
|
---|
[2313] | 1175 | else
|
---|
| 1176 | // pour des pixelisations quelconques (autres que HEALPix
|
---|
| 1177 | // nph n'est pas toujours pair
|
---|
| 1178 | // ca fait des problemes pour les transformees de Fourier
|
---|
| 1179 | // car le server de TF ajuste la longueur du vecteur reel
|
---|
| 1180 | // en sortie de TF, bref, la securite veut qu'on prenne une
|
---|
| 1181 | // TF complexe
|
---|
| 1182 | {
|
---|
| 1183 | TVector<complex<T> > Tempq = fourierSynthesisFromB(b_m_theta_q,nph,phi0);
|
---|
| 1184 | TVector<complex<T> > Tempu = fourierSynthesisFromB(b_m_theta_u,nph,phi0);
|
---|
| 1185 | for (i=0;i< nph;i++)
|
---|
| 1186 | {
|
---|
| 1187 | mapq(pixNumber(i))=Tempq(i).real();
|
---|
| 1188 | mapu(pixNumber(i))=Tempu(i).real();
|
---|
| 1189 | }
|
---|
| 1190 | }
|
---|
[729] | 1191 | }
|
---|
| 1192 | }
|
---|
[1218] | 1193 | /*! \fn void SOPHYA::SphericalTransformServer::mapFromPM(int_4 nlmax, int_4 nmmax,
|
---|
| 1194 | SphericalMap<T>& mapq,
|
---|
| 1195 | SphericalMap<T>& mapu,
|
---|
| 1196 | const Alm<T>& alme,
|
---|
| 1197 | const Alm<T>& almb) const
|
---|
| 1198 |
|
---|
| 1199 | synthesis of polarizations following formulae :
|
---|
| 1200 |
|
---|
| 1201 | \f[
|
---|
| 1202 | P^+ = \sum_{m=-mmax}^{mmax} {b_m^+e^{im\varphi} }
|
---|
| 1203 | \f]
|
---|
| 1204 | \f[
|
---|
| 1205 | P^- = \sum_{m=-mmax}^{mmax} {b_m^-e^{im\varphi} }
|
---|
| 1206 | \f]
|
---|
| 1207 |
|
---|
| 1208 | computed by FFT (method fourierSynthesisFromB called by the present one)
|
---|
| 1209 |
|
---|
| 1210 | with :
|
---|
| 1211 |
|
---|
| 1212 | \f[
|
---|
| 1213 | b_m^+=-\sum_{l=|m|}^{lmax}{\,_{+}\lambda_l^m \left( a_{lm}^E+ia_{lm}^B \right) }
|
---|
| 1214 | \f]
|
---|
| 1215 | \f[
|
---|
| 1216 | b_m^-=-\sum_{l=|m|}^{lmax}{\,_{+}\lambda_l^m \left( a_{lm}^E-ia_{lm}^B \right) }
|
---|
| 1217 | \f]
|
---|
| 1218 | */
|
---|
[729] | 1219 | template<class T>
|
---|
| 1220 | void SphericalTransformServer<T>::mapFromPM(int_4 nlmax, int_4 nmmax,
|
---|
| 1221 | SphericalMap<T>& mapq,
|
---|
| 1222 | SphericalMap<T>& mapu,
|
---|
| 1223 | const Alm<T>& alme,
|
---|
| 1224 | const Alm<T>& almb) const
|
---|
| 1225 | {
|
---|
| 1226 | Bm<complex<T> > b_m_theta_p(nmmax);
|
---|
| 1227 | Bm<complex<T> > b_m_theta_m(nmmax);
|
---|
[3572] | 1228 | for (uint_4 ith = 0; ith < mapq.NbThetaSlices();ith++)
|
---|
[729] | 1229 | {
|
---|
| 1230 | int_4 nph;
|
---|
| 1231 | r_8 phi0;
|
---|
| 1232 | r_8 theta;
|
---|
| 1233 | TVector<int_4> pixNumber;
|
---|
| 1234 | TVector<T> datan;
|
---|
| 1235 |
|
---|
| 1236 | mapq.GetThetaSlice(ith,theta,phi0, pixNumber,datan);
|
---|
| 1237 | nph = pixNumber.NElts();
|
---|
| 1238 |
|
---|
| 1239 | // -----------------------------------------------------
|
---|
| 1240 | // for each theta, and each m, computes
|
---|
| 1241 | // b(m,theta) = sum_over_l>m (lambda_l_m(theta) * a_l_m)
|
---|
| 1242 | //------------------------------------------------------
|
---|
| 1243 |
|
---|
| 1244 | LambdaPMBuilder lpmb(theta,nlmax,nmmax);
|
---|
[833] | 1245 | int m;
|
---|
| 1246 | for (m = 0; m <= nmmax; m++)
|
---|
[729] | 1247 | {
|
---|
| 1248 | r_8 lambda_p=0.;
|
---|
| 1249 | r_8 lambda_m=0.;
|
---|
| 1250 | lpmb.lam_pm(m, m, lambda_p, lambda_m);
|
---|
| 1251 | complex<T> im((T)0.,(T)1.);
|
---|
| 1252 |
|
---|
| 1253 | b_m_theta_p(m) = (T)(lambda_p )* (-alme(m,m) - im * almb(m,m));
|
---|
| 1254 | b_m_theta_m(m) = (T)(lambda_m) * (-alme(m,m) + im * almb(m,m));
|
---|
| 1255 |
|
---|
| 1256 |
|
---|
| 1257 | for (int l = m+1; l<= nlmax; l++)
|
---|
| 1258 | {
|
---|
| 1259 | lpmb.lam_pm(l, m, lambda_p, lambda_m);
|
---|
| 1260 | b_m_theta_p(m) += (T)(lambda_p)*(-alme(l,m)-im *almb(l,m));
|
---|
| 1261 | b_m_theta_m(m) += (T)(lambda_m)*(-alme(l,m)+im *almb(l,m));
|
---|
| 1262 | }
|
---|
| 1263 | }
|
---|
| 1264 |
|
---|
| 1265 | // obtains the negative m of b(m,theta) (= complex conjugate)
|
---|
[833] | 1266 | for (m=1;m<=nmmax;m++)
|
---|
[729] | 1267 | {
|
---|
| 1268 | b_m_theta_p(-m) = conj(b_m_theta_m(m));
|
---|
| 1269 | b_m_theta_m(-m) = conj(b_m_theta_p(m));
|
---|
| 1270 | }
|
---|
| 1271 |
|
---|
| 1272 | TVector<complex<T> > Tempp = fourierSynthesisFromB(b_m_theta_p,nph,phi0);
|
---|
| 1273 | TVector<complex<T> > Tempm = fourierSynthesisFromB(b_m_theta_m,nph,phi0);
|
---|
| 1274 |
|
---|
| 1275 | for (int i=0;i< nph;i++)
|
---|
| 1276 | {
|
---|
| 1277 | mapq(pixNumber(i))=0.5*(Tempp(i)+Tempm(i)).real();
|
---|
| 1278 | mapu(pixNumber(i))=0.5*(Tempp(i)-Tempm(i)).imag();
|
---|
| 1279 | }
|
---|
| 1280 | }
|
---|
| 1281 | }
|
---|
| 1282 |
|
---|
| 1283 |
|
---|
[1218] | 1284 | /*! \fn void SOPHYA::SphericalTransformServer::GenerateFromCl(SphericalMap<T>& sphq,
|
---|
| 1285 | SphericalMap<T>& sphu,
|
---|
| 1286 | int_4 pixelSizeIndex,
|
---|
| 1287 | const TVector<T>& Cle,
|
---|
| 1288 | const TVector<T>& Clb,
|
---|
| 1289 | const r_8 fwhm) const
|
---|
| 1290 |
|
---|
| 1291 | synthesis of a polarization map from power spectra electric-Cl and magnetic-Cl (Alm's are generated randomly, following a gaussian distribution).
|
---|
| 1292 | \param fwhm FWHM in arcmin for random generation of Alm's (eg. 5)
|
---|
| 1293 | */
|
---|
[729] | 1294 | template<class T>
|
---|
| 1295 | void SphericalTransformServer<T>::GenerateFromCl(SphericalMap<T>& sphq,
|
---|
| 1296 | SphericalMap<T>& sphu,
|
---|
| 1297 | int_4 pixelSizeIndex,
|
---|
| 1298 | const TVector<T>& Cle,
|
---|
| 1299 | const TVector<T>& Clb,
|
---|
| 1300 | const r_8 fwhm) const
|
---|
| 1301 | {
|
---|
| 1302 | if (Cle.NElts() != Clb.NElts())
|
---|
| 1303 | {
|
---|
| 1304 | cout << " SphericalTransformServer: les deux tableaux Cl n'ont pas la meme taille" << endl;
|
---|
| 1305 | throw SzMismatchError("SphericalTransformServer::GenerateFromCl : two Cl arrays have not same size");
|
---|
| 1306 | }
|
---|
| 1307 |
|
---|
| 1308 | // Alm<T> a2lme,a2lmb;
|
---|
| 1309 | // almFromCl(a2lme, Cle, fwhm);
|
---|
| 1310 | // almFromCl(a2lmb, Clb, fwhm);
|
---|
| 1311 | // Alm<T> a2lme = almFromCl(Cle, fwhm);
|
---|
| 1312 | // Alm<T> a2lmb = almFromCl(Clb, fwhm);
|
---|
[3613] | 1313 | Alm<T> a2lme(Cle, fwhm, *rgp_);
|
---|
| 1314 | Alm<T> a2lmb(Clb, fwhm, *rgp_);
|
---|
[729] | 1315 |
|
---|
| 1316 | GenerateFromAlm(sphq,sphu,pixelSizeIndex,a2lme,a2lmb);
|
---|
| 1317 | }
|
---|
[1218] | 1318 | /*! \fn void SOPHYA::SphericalTransformServer::GenerateFromCl(SphericalMap<T>& sph,
|
---|
| 1319 | int_4 pixelSizeIndex,
|
---|
| 1320 | const TVector<T>& Cl,
|
---|
| 1321 | const r_8 fwhm) const
|
---|
| 1322 |
|
---|
| 1323 | synthesis of a temperature map from power spectrum Cl (Alm's are generated randomly, following a gaussian distribution). */
|
---|
[729] | 1324 | template<class T>
|
---|
| 1325 | void SphericalTransformServer<T>::GenerateFromCl(SphericalMap<T>& sph,
|
---|
| 1326 | int_4 pixelSizeIndex,
|
---|
| 1327 | const TVector<T>& Cl,
|
---|
| 1328 | const r_8 fwhm) const
|
---|
| 1329 | {
|
---|
| 1330 |
|
---|
[3613] | 1331 | Alm<T> alm(Cl, fwhm, *rgp_);
|
---|
[729] | 1332 | GenerateFromAlm(sph,pixelSizeIndex, alm );
|
---|
| 1333 | }
|
---|
| 1334 |
|
---|
| 1335 |
|
---|
| 1336 |
|
---|
[1756] | 1337 | /*! \fn TVector<T> SOPHYA::SphericalTransformServer::DecomposeToCl(SphericalMap<T>& sph, int_4 nlmax, r_8 cos_theta_cut, int iterationOrder) const
|
---|
[1218] | 1338 |
|
---|
[1683] | 1339 | \return power spectrum from analysis of a temperature map. THE MAP CAN BE MODIFIED (if iterationOrder >0)
|
---|
[1218] | 1340 |
|
---|
| 1341 | \param<nlmax> : maximum value of the l index
|
---|
| 1342 |
|
---|
| 1343 | \param<cos_theta_cut> : cosinus of the symmetric cut EULER angle theta : cos_theta_cut=0 means no cut ; cos_theta_cut=1 all the sphere is cut.
|
---|
[1683] | 1344 |
|
---|
[1756] | 1345 | \param<iterationOrder> : 1,2,3,4.... order of an iterative analysis. If iterationOrder is not null, the method works with SphereHEALPix but NOT WITH SphereThetaPhi maps !
|
---|
[1683] | 1346 |
|
---|
[1218] | 1347 | */
|
---|
[729] | 1348 | template <class T>
|
---|
[1683] | 1349 | TVector<T> SphericalTransformServer<T>::DecomposeToCl(SphericalMap<T>& sph, int_4 nlmax, r_8 cos_theta_cut, int iterationOrder) const
|
---|
[729] | 1350 | {
|
---|
[1683] | 1351 | Alm<T> alm;
|
---|
| 1352 | DecomposeToAlm( sph, alm, nlmax, cos_theta_cut, iterationOrder);
|
---|
[729] | 1353 | // power spectrum
|
---|
| 1354 | return alm.powerSpectrum();
|
---|
| 1355 | }
|
---|
| 1356 |
|
---|
[1756] | 1357 |
|
---|
| 1358 | /*! \fn TVector<T> SOPHYA::SphericalTransformServer::DecomposeToCl(const SphericalMap<T>& sph, int_4 nlmax, r_8 cos_theta_cut) const
|
---|
| 1359 |
|
---|
| 1360 | \return power spectrum from analysis of a temperature map.
|
---|
| 1361 |
|
---|
| 1362 | \param<nlmax> : maximum value of the l index
|
---|
| 1363 |
|
---|
| 1364 | \param<cos_theta_cut> : cosinus of the symmetric cut EULER angle theta : cos_theta_cut=0 means no cut ; cos_theta_cut=1 all the sphere is cut.
|
---|
| 1365 |
|
---|
| 1366 |
|
---|
| 1367 | */
|
---|
| 1368 |
|
---|
| 1369 |
|
---|
| 1370 | template <class T>
|
---|
| 1371 | TVector<T> SphericalTransformServer<T>::DecomposeToCl(const SphericalMap<T>& sph, int_4 nlmax, r_8 cos_theta_cut) const
|
---|
| 1372 | {
|
---|
| 1373 | Alm<T> alm;
|
---|
| 1374 | DecomposeToAlm( sph, alm, nlmax, cos_theta_cut);
|
---|
| 1375 | // power spectrum
|
---|
| 1376 | return alm.powerSpectrum();
|
---|
| 1377 | }
|
---|
| 1378 |
|
---|
[729] | 1379 | #ifdef __CXX_PRAGMA_TEMPLATES__
|
---|
| 1380 | #pragma define_template SphericalTransformServer<r_8>
|
---|
| 1381 | #pragma define_template SphericalTransformServer<r_4>
|
---|
| 1382 | #endif
|
---|
| 1383 | #if defined(ANSI_TEMPLATES) || defined(GNU_TEMPLATES)
|
---|
[2872] | 1384 | template class SOPHYA::SphericalTransformServer<r_8>;
|
---|
| 1385 | template class SOPHYA::SphericalTransformServer<r_4>;
|
---|
[729] | 1386 | #endif
|
---|