1 | #include "machdefs.h"
|
---|
2 | #include <iostream.h>
|
---|
3 | #include <math.h>
|
---|
4 | #include <complex>
|
---|
5 | #include "sphericaltransformserver.h"
|
---|
6 | #include "tvector.h"
|
---|
7 | #include "nbrandom.h"
|
---|
8 | #include "nbmath.h"
|
---|
9 |
|
---|
10 |
|
---|
11 | template<class T>
|
---|
12 | void SphericalTransformServer<T>::GenerateFromAlm( SphericalMap<T>& map, int_4 pixelSizeIndex, const Alm<T>& alm) const
|
---|
13 | {
|
---|
14 | /*=======================================================================
|
---|
15 | computes a map form its alm for the HEALPIX pixelisation
|
---|
16 | map(theta,phi) = sum_l_m a_lm Y_lm(theta,phi)
|
---|
17 | = sum_m {e^(i*m*phi) sum_l a_lm*lambda_lm(theta)}
|
---|
18 |
|
---|
19 | where Y_lm(theta,phi) = lambda(theta) * e^(i*m*phi)
|
---|
20 |
|
---|
21 | * the recurrence of Ylm is the standard one (cf Num Rec)
|
---|
22 | * the sum over m is done by FFT
|
---|
23 |
|
---|
24 | =======================================================================*/
|
---|
25 | int_4 nlmax=alm.Lmax();
|
---|
26 | int_4 nmmax=nlmax;
|
---|
27 | int_4 nsmax=0;
|
---|
28 | map.Resize(pixelSizeIndex);
|
---|
29 | char* sphere_type=map.TypeOfMap();
|
---|
30 | if (strncmp(sphere_type,"RING",4) == 0)
|
---|
31 | {
|
---|
32 | nsmax=map.SizeIndex();
|
---|
33 | }
|
---|
34 | else
|
---|
35 | // pour une sphere Gorski le nombre de pixels est 12*nsmax**2
|
---|
36 | // on calcule une quantite equivalente a nsmax pour la sphere-theta-phi
|
---|
37 | // en vue de l'application du critere Healpix : nlmax<=3*nsmax-1
|
---|
38 | // c'est approximatif ; a raffiner.
|
---|
39 | if (strncmp(sphere_type,"TETAFI",6) == 0)
|
---|
40 | {
|
---|
41 | nsmax=(int_4)sqrt(map.NbPixels()/12.);
|
---|
42 | }
|
---|
43 | else
|
---|
44 | {
|
---|
45 | cout << " unknown type of sphere : " << sphere_type << endl;
|
---|
46 | throw IOExc(" unknown type of sphere: " + (string)sphere_type );
|
---|
47 | }
|
---|
48 | cout << "GenerateFromAlm: the sphere is of type : " << sphere_type << endl;
|
---|
49 | cout << "GenerateFromAlm: size index (nside) of the sphere= " << nsmax << endl;
|
---|
50 | cout << "GenerateFromAlm: nlmax (from Alm) = " << nlmax << endl;
|
---|
51 | if (nlmax>3*nsmax-1)
|
---|
52 | {
|
---|
53 | cout << "GenerateFromAlm: nlmax should be <= 3*nside-1" << endl;
|
---|
54 | if (strncmp(sphere_type,"TETAFI",6) == 0)
|
---|
55 | {
|
---|
56 | cout << " (for this criterium, nsmax is computed as sqrt(nbPixels/12))" << endl;
|
---|
57 | }
|
---|
58 | }
|
---|
59 | Bm<complex<T> > b_m_theta(nmmax);
|
---|
60 |
|
---|
61 | // map.Resize(nsmax);
|
---|
62 |
|
---|
63 |
|
---|
64 | // pour chaque tranche en theta
|
---|
65 | for (int_4 ith = 0; ith < map.NbThetaSlices();ith++)
|
---|
66 | {
|
---|
67 | int_4 nph;
|
---|
68 | r_8 phi0;
|
---|
69 | r_8 theta;
|
---|
70 | TVector<int_4> pixNumber;
|
---|
71 | TVector<T> datan;
|
---|
72 |
|
---|
73 | map.GetThetaSlice(ith,theta,phi0, pixNumber,datan);
|
---|
74 | nph = pixNumber.NElts();
|
---|
75 |
|
---|
76 | // -----------------------------------------------------
|
---|
77 | // for each theta, and each m, computes
|
---|
78 | // b(m,theta) = sum_over_l>m (lambda_l_m(theta) * a_l_m)
|
---|
79 | // ------------------------------------------------------
|
---|
80 | LambdaLMBuilder lb(theta,nlmax,nmmax);
|
---|
81 | // somme sur m de 0 a l'infini
|
---|
82 | int m;
|
---|
83 | for (m = 0; m <= nmmax; m++)
|
---|
84 | {
|
---|
85 | // somme sur l de m a l'infini
|
---|
86 | b_m_theta(m) = (T)( lb.lamlm(m,m) ) * alm(m,m);
|
---|
87 | // if (ith==0 && m==0)
|
---|
88 | // {
|
---|
89 | // cout << " guy: lmm= " << lb.lamlm(m,m) << " alm " << alm(m,m) << "b00= " << b_m_theta(m) << endl;
|
---|
90 | // }
|
---|
91 | for (int l = m+1; l<= nlmax; l++)
|
---|
92 | {
|
---|
93 | b_m_theta(m) += (T)( lb.lamlm(l,m) ) * alm(l,m);
|
---|
94 |
|
---|
95 |
|
---|
96 | // if (ith==0 && m==0)
|
---|
97 | // {
|
---|
98 | // cout << " guy:l=" << l << " m= " << m << " lmm= " << lb.lamlm(l,m) << " alm " << alm(l,m) << "b00= " << b_m_theta(m) << endl;
|
---|
99 |
|
---|
100 | // }
|
---|
101 |
|
---|
102 | }
|
---|
103 | }
|
---|
104 |
|
---|
105 | // obtains the negative m of b(m,theta) (= complex conjugate)
|
---|
106 |
|
---|
107 | for (m=1;m<=nmmax;m++)
|
---|
108 | {
|
---|
109 | //compiler doesn't have conj()
|
---|
110 | b_m_theta(-m) = conj(b_m_theta(m));
|
---|
111 | }
|
---|
112 | // ---------------------------------------------------------------
|
---|
113 | // sum_m b(m,theta)*exp(i*m*phi) -> f(phi,theta)
|
---|
114 | // ---------------------------------------------------------------*/
|
---|
115 | // TVector<complex<T> > Temp = fourierSynthesisFromB(b_m_theta,nph,phi0);
|
---|
116 | TVector<T> Temp = RfourierSynthesisFromB(b_m_theta,nph,phi0);
|
---|
117 | for (int i=0;i< nph;i++)
|
---|
118 | {
|
---|
119 | // map(pixNumber(i))=Temp(i).real();
|
---|
120 | map(pixNumber(i))=Temp(i);
|
---|
121 | }
|
---|
122 | }
|
---|
123 | }
|
---|
124 |
|
---|
125 |
|
---|
126 |
|
---|
127 | template<class T>
|
---|
128 | TVector< complex<T> > SphericalTransformServer<T>::fourierSynthesisFromB(const Bm<complex<T> >& b_m, int_4 nph, r_8 phi0) const
|
---|
129 | {
|
---|
130 | /*=======================================================================
|
---|
131 | dataout(j) = sum_m datain(m) * exp(i*m*phi(j))
|
---|
132 | with phi(j) = j*2pi/nph + kphi0*pi/nph and kphi0 =0 or 1
|
---|
133 |
|
---|
134 | as the set of frequencies {m} is larger than nph,
|
---|
135 | we wrap frequencies within {0..nph-1}
|
---|
136 | ie m = k*nph + m' with m' in {0..nph-1}
|
---|
137 | then
|
---|
138 | noting bw(m') = exp(i*m'*phi0)
|
---|
139 | * sum_k (datain(k*nph+m') exp(i*k*pi*kphi0))
|
---|
140 | with bw(nph-m') = CONJ(bw(m')) (if datain(-m) = CONJ(datain(m)))
|
---|
141 | dataout(j) = sum_m' [ bw(m') exp (i*j*m'*2pi/nph) ]
|
---|
142 | = Fourier Transform of bw
|
---|
143 | is real
|
---|
144 |
|
---|
145 | NB nph is not necessarily a power of 2
|
---|
146 |
|
---|
147 | =======================================================================*/
|
---|
148 | //**********************************************************************
|
---|
149 | // pour une valeur de phi (indexee par j) la temperature est la transformee
|
---|
150 | // de Fourier de bm (somme sur m de -nmax a +nmmax de bm*exp(i*m*phi)).
|
---|
151 | // on demande nph (nombre de pixels sur la tranche) valeurs de transformees, pour nph valeurs de phi, regulierement reparties sur 2*pi. On a:
|
---|
152 | // DT/T(j) = sum_m b(m) * exp(i*m*phi(j))
|
---|
153 | // sommation de -infini a +infini, en fait limitee a -nmamx, +nmmax
|
---|
154 | // On pose m=k*nph + m', avec m' compris entre 0 et nph-1. Alors :
|
---|
155 | // DT/T(j) = somme_k somme_m' b(k*nph + m')*exp(i*(k*nph + m')*phi(j))
|
---|
156 | // somme_k : de -infini a +infini
|
---|
157 | // somme_m' : de 0 a nph-1
|
---|
158 | // On echange les sommations :
|
---|
159 | // DT/T(j) = somme_k (exp(i*m'*phi(j)) somme_m' b(k*nph + m')*exp(i*(k*nph*phi(j))
|
---|
160 | // mais phi(j) est un multiple entier de 2*pi/nph, la seconde exponentielle
|
---|
161 | // vaut 1.
|
---|
162 | // Il reste a calculer les transformees de Fourier de somme_m' b(k*nph + m')
|
---|
163 | // si phi0 n'est pas nul, il y a juste un decalage a faire.
|
---|
164 | //**********************************************************************
|
---|
165 |
|
---|
166 | TVector< complex<T> > bw(nph);
|
---|
167 | TVector< complex<T> > dataout(nph);
|
---|
168 | TVector< complex<T> > data(nph);
|
---|
169 |
|
---|
170 |
|
---|
171 | for (int kk=0; kk<bw.NElts(); kk++) bw(kk)=(T)0.;
|
---|
172 | int m;
|
---|
173 | for (m=-b_m.Mmax();m<=-1;m++)
|
---|
174 | {
|
---|
175 | int maux=m;
|
---|
176 | while (maux<0) maux+=nph;
|
---|
177 | int iw=maux%nph;
|
---|
178 | double aux=(m-iw)*phi0;
|
---|
179 | bw(iw) += b_m(m) * complex<T>( (T)cos(aux),(T)sin(aux) ) ;
|
---|
180 | }
|
---|
181 | for (m=0;m<=b_m.Mmax();m++)
|
---|
182 | {
|
---|
183 | // int iw=((m % nph) +nph) % nph; //between 0 and nph = m'
|
---|
184 | int iw=m%nph;
|
---|
185 | double aux=(m-iw)*phi0;
|
---|
186 | bw(iw)+=b_m(m) * complex<T>( (T)cos(aux),(T)sin(aux) );
|
---|
187 | }
|
---|
188 |
|
---|
189 | // applies the shift in position <-> phase factor in Fourier space
|
---|
190 | for (int mprime=0; mprime < nph; mprime++)
|
---|
191 | {
|
---|
192 | complex<double> aux(cos(mprime*phi0),sin(mprime*phi0));
|
---|
193 | data(mprime)=bw(mprime)*
|
---|
194 | (complex<T>)(complex<double>(cos(mprime*phi0),sin(mprime*phi0)));
|
---|
195 | }
|
---|
196 |
|
---|
197 | //sortie.ReSize(nph);
|
---|
198 | TVector< complex<T> > sortie(nph);
|
---|
199 | sortie.SetTemp(true);
|
---|
200 |
|
---|
201 | fftIntfPtr_-> FFTBackward(data, sortie);
|
---|
202 |
|
---|
203 | return sortie;
|
---|
204 | }
|
---|
205 |
|
---|
206 | //********************************************
|
---|
207 | template<class T>
|
---|
208 | TVector<T> SphericalTransformServer<T>::RfourierSynthesisFromB(const Bm<complex<T> >& b_m, int_4 nph, r_8 phi0) const
|
---|
209 | {
|
---|
210 | /*=======================================================================
|
---|
211 | dataout(j) = sum_m datain(m) * exp(i*m*phi(j))
|
---|
212 | with phi(j) = j*2pi/nph + kphi0*pi/nph and kphi0 =0 or 1
|
---|
213 |
|
---|
214 | as the set of frequencies {m} is larger than nph,
|
---|
215 | we wrap frequencies within {0..nph-1}
|
---|
216 | ie m = k*nph + m' with m' in {0..nph-1}
|
---|
217 | then
|
---|
218 | noting bw(m') = exp(i*m'*phi0)
|
---|
219 | * sum_k (datain(k*nph+m') exp(i*k*pi*kphi0))
|
---|
220 | with bw(nph-m') = CONJ(bw(m')) (if datain(-m) = CONJ(datain(m)))
|
---|
221 | dataout(j) = sum_m' [ bw(m') exp (i*j*m'*2pi/nph) ]
|
---|
222 | = Fourier Transform of bw
|
---|
223 | is real
|
---|
224 |
|
---|
225 | NB nph is not necessarily a power of 2
|
---|
226 |
|
---|
227 | =======================================================================*/
|
---|
228 | //**********************************************************************
|
---|
229 | // pour une valeur de phi (indexee par j) la temperature est la transformee
|
---|
230 | // de Fourier de bm (somme sur m de -nmax a +nmmax de bm*exp(i*m*phi)).
|
---|
231 | // on demande nph (nombre de pixels sur la tranche) valeurs de transformees, pour nph valeurs de phi, regulierement reparties sur 2*pi. On a:
|
---|
232 | // DT/T(j) = sum_m b(m) * exp(i*m*phi(j))
|
---|
233 | // sommation de -infini a +infini, en fait limitee a -nmamx, +nmmax
|
---|
234 | // On pose m=k*nph + m', avec m' compris entre 0 et nph-1. Alors :
|
---|
235 | // DT/T(j) = somme_k somme_m' b(k*nph + m')*exp(i*(k*nph + m')*phi(j))
|
---|
236 | // somme_k : de -infini a +infini
|
---|
237 | // somme_m' : de 0 a nph-1
|
---|
238 | // On echange les sommations :
|
---|
239 | // DT/T(j) = somme_k (exp(i*m'*phi(j)) somme_m' b(k*nph + m')*exp(i*(k*nph*phi(j))
|
---|
240 | // mais phi(j) est un multiple entier de 2*pi/nph, la seconde exponentielle
|
---|
241 | // vaut 1.
|
---|
242 | // Il reste a calculer les transformees de Fourier de somme_m' b(k*nph + m')
|
---|
243 | // si phi0 n'est pas nul, il y a juste un decalage a faire.
|
---|
244 | //**********************************************************************
|
---|
245 |
|
---|
246 | TVector< complex<T> > bw(nph);
|
---|
247 | TVector< complex<T> > dataout(nph);
|
---|
248 | TVector< complex<T> > data(nph/2+1);
|
---|
249 |
|
---|
250 |
|
---|
251 | for (int kk=0; kk<bw.NElts(); kk++) bw(kk)=(T)0.;
|
---|
252 | int m;
|
---|
253 | for (m=-b_m.Mmax();m<=-1;m++)
|
---|
254 | {
|
---|
255 | int maux=m;
|
---|
256 | while (maux<0) maux+=nph;
|
---|
257 | int iw=maux%nph;
|
---|
258 | double aux=(m-iw)*phi0;
|
---|
259 | bw(iw) += b_m(m) * complex<T>( (T)cos(aux),(T)sin(aux) ) ;
|
---|
260 | }
|
---|
261 | for (m=0;m<=b_m.Mmax();m++)
|
---|
262 | {
|
---|
263 | // int iw=((m % nph) +nph) % nph; //between 0 and nph = m'
|
---|
264 | int iw=m%nph;
|
---|
265 | double aux=(m-iw)*phi0;
|
---|
266 | bw(iw)+=b_m(m) * complex<T>( (T)cos(aux),(T)sin(aux) );
|
---|
267 | }
|
---|
268 |
|
---|
269 | // applies the shift in position <-> phase factor in Fourier space
|
---|
270 | for (int mprime=0; mprime <= nph/2; mprime++)
|
---|
271 | {
|
---|
272 | complex<double> aux(cos(mprime*phi0),sin(mprime*phi0));
|
---|
273 | data(mprime)=bw(mprime)*
|
---|
274 | (complex<T>)(complex<double>(cos(mprime*phi0),sin(mprime*phi0)));
|
---|
275 | }
|
---|
276 |
|
---|
277 | //sortie.ReSize(nph);
|
---|
278 | TVector<T> sortie;
|
---|
279 | sortie.SetTemp(true);
|
---|
280 |
|
---|
281 | fftIntfPtr_-> FFTBackward(data, sortie);
|
---|
282 |
|
---|
283 | return sortie;
|
---|
284 | }
|
---|
285 | //*******************************************
|
---|
286 |
|
---|
287 | template<class T>
|
---|
288 | Alm<T> SphericalTransformServer<T>::DecomposeToAlm(const SphericalMap<T>& map, int_4 nlmax, r_8 cos_theta_cut) const
|
---|
289 | {
|
---|
290 |
|
---|
291 | /*-----------------------------------------------------------------------
|
---|
292 | computes the integral in phi : phas_m(theta)
|
---|
293 | for each parallele from north to south pole
|
---|
294 | -----------------------------------------------------------------------*/
|
---|
295 | TVector<T> data;
|
---|
296 | TVector<int_4> pixNumber;
|
---|
297 | int_4 nmmax = nlmax;
|
---|
298 | TVector< complex<T> > phase(nmmax+1);
|
---|
299 | Alm<T> alm;
|
---|
300 | alm.SetTemp(true);
|
---|
301 | alm.ReSizeToLmax(nlmax);
|
---|
302 | for (int_4 ith = 0; ith < map.NbThetaSlices(); ith++)
|
---|
303 | {
|
---|
304 | int_4 nph;
|
---|
305 | r_8 phi0;
|
---|
306 | r_8 theta;
|
---|
307 | map.GetThetaSlice(ith,theta,phi0,pixNumber ,data);
|
---|
308 | for (int i=0;i< nmmax+1;i++)
|
---|
309 | {
|
---|
310 | phase(i)=0;
|
---|
311 | }
|
---|
312 | nph = pixNumber.NElts();
|
---|
313 | double cth = cos(theta);
|
---|
314 |
|
---|
315 | //part of the sky out of the symetric cut
|
---|
316 | bool keep_it = (abs(cth) >= cos_theta_cut);
|
---|
317 |
|
---|
318 | if (keep_it)
|
---|
319 | {
|
---|
320 | // tableau datain a supprimer
|
---|
321 | // TVector<complex<T> > datain(nph);
|
---|
322 | // for(int kk=0; kk<nph; kk++) datain(kk)=complex<T>(data(kk),(T)0.);
|
---|
323 |
|
---|
324 | // phase = CFromFourierAnalysis(nmmax,datain,phi0);
|
---|
325 | phase = CFromFourierAnalysis(nmmax,data,phi0);
|
---|
326 |
|
---|
327 | }
|
---|
328 |
|
---|
329 | /*-----------------------------------------------------------------------
|
---|
330 | computes the a_lm by integrating over theta
|
---|
331 | lambda_lm(theta) * phas_m(theta)
|
---|
332 | for each m and l
|
---|
333 | -----------------------------------------------------------------------*/
|
---|
334 | // LambdaBuilder lb(theta,nlmax,nmmax);
|
---|
335 | LambdaLMBuilder lb(theta,nlmax,nmmax);
|
---|
336 | r_8 domega=map.PixSolAngle(map.PixIndexSph(theta,phi0));
|
---|
337 | for (int m = 0; m <= nmmax; m++)
|
---|
338 | {
|
---|
339 | alm(m,m) += (T)lb.lamlm(m,m) * phase(m) * (T)domega; //m,m even
|
---|
340 | for (int l = m+1; l<= nlmax; l++)
|
---|
341 | {
|
---|
342 | alm(l,m) += (T)lb.lamlm(l,m) * phase(m)*(T)domega;
|
---|
343 | }
|
---|
344 | }
|
---|
345 | }
|
---|
346 | return alm;
|
---|
347 | }
|
---|
348 | template<class T>
|
---|
349 | TVector< complex<T> > SphericalTransformServer<T>::CFromFourierAnalysis(int_4 nmmax, const TVector<complex<T> >datain, r_8 phi0) const
|
---|
350 | {
|
---|
351 | /*=======================================================================
|
---|
352 | integrates (data * phi-dependence-of-Ylm) over phi
|
---|
353 | --> function of m can be computed by FFT
|
---|
354 |
|
---|
355 | datain est modifie
|
---|
356 | =======================================================================*/
|
---|
357 | int_4 nph=datain.NElts();
|
---|
358 | if (nph <= 0)
|
---|
359 | {
|
---|
360 | throw PException("bizarre : vecteur datain de longueur nulle (CFromFourierAnalysis)");
|
---|
361 | }
|
---|
362 | TVector<complex<T> > transformedData(nph);
|
---|
363 | fftIntfPtr_-> FFTForward(datain, transformedData);
|
---|
364 |
|
---|
365 | //dataout.ReSize(nmmax+1);
|
---|
366 | TVector< complex<T> > dataout(nmmax+1);
|
---|
367 | // dataout.SetTemp(true);
|
---|
368 |
|
---|
369 | int im_max=min(nph,nmmax+1);
|
---|
370 | int i;
|
---|
371 | for (i=0;i< dataout.NElts();i++) dataout(i)=complex<T>((T)0.,(T)0.);
|
---|
372 | for (i=0;i<im_max;i++) dataout(i)=transformedData(i);
|
---|
373 |
|
---|
374 |
|
---|
375 | // for (int i = 0;i <im_max;i++){
|
---|
376 | // dataout(i)*= (complex<T>)(complex<double>(cos(-i*phi0),sin(-i*phi0)));
|
---|
377 | // }
|
---|
378 | for (int kk=nph; kk<dataout.NElts(); kk++) dataout(kk)=dataout(kk%nph);
|
---|
379 | for (i = 0;i <dataout.NElts();i++){
|
---|
380 | dataout(i)*= (complex<T>)(complex<double>(cos(-i*phi0),sin(-i*phi0)));
|
---|
381 | }
|
---|
382 | return dataout;
|
---|
383 | }
|
---|
384 |
|
---|
385 | //&&&&&&&&& nouvelle version
|
---|
386 | template<class T>
|
---|
387 | TVector< complex<T> > SphericalTransformServer<T>::CFromFourierAnalysis(int_4 nmmax, const TVector<T> datain, r_8 phi0) const
|
---|
388 | {
|
---|
389 | //=======================================================================
|
---|
390 | // integrates (data * phi-dependence-of-Ylm) over phi
|
---|
391 | // --> function of m can be computed by FFT
|
---|
392 | // ! with 0<= m <= npoints/2 (: Nyquist)
|
---|
393 | // ! because the data is real the negative m are the conjugate of the
|
---|
394 | // ! positive ones
|
---|
395 |
|
---|
396 | // datain est modifie
|
---|
397 | //
|
---|
398 | // =======================================================================
|
---|
399 | int_4 nph=datain.NElts();
|
---|
400 | if (nph <= 0)
|
---|
401 | {
|
---|
402 | throw PException("bizarre : vecteur datain de longueur nulle (CFromFourierAnalysis)");
|
---|
403 | }
|
---|
404 | TVector<complex<T> > transformedData;
|
---|
405 | // a remodifier
|
---|
406 | //FFTPackServer ffts;
|
---|
407 | //ffts.setNormalize(false);
|
---|
408 | //ffts.FFTForward(datain, transformedData);
|
---|
409 |
|
---|
410 | fftIntfPtr_-> FFTForward(datain, transformedData);
|
---|
411 | //
|
---|
412 |
|
---|
413 | //dataout.ReSize(nmmax+1);
|
---|
414 | TVector< complex<T> > dataout(nmmax+1);
|
---|
415 | // dataout.SetTemp(true);
|
---|
416 |
|
---|
417 | // on transfere le resultat de la fft dans dataout.
|
---|
418 | // on s'assure que ca ne depasse pas la taille de dataout
|
---|
419 | int sizeOfTransformToGet = min(transformedData.NElts(),nmmax+1);
|
---|
420 | // int im_max=min(transformedData.NElts()-1,nmmax);
|
---|
421 | int i;
|
---|
422 | for (i=0;i<sizeOfTransformToGet;i++) dataout(i)=transformedData(i);
|
---|
423 |
|
---|
424 |
|
---|
425 | // si dataout n'est pas plein, on complete jusqu'a nph valeurs (a moins
|
---|
426 | // que dataout ne soit plein avant d'atteindre nph)
|
---|
427 | if (sizeOfTransformToGet == (transformedData.NElts()))
|
---|
428 | {
|
---|
429 | for (i=transformedData.NElts(); i<min(nph,dataout.NElts()); i++)
|
---|
430 | {
|
---|
431 |
|
---|
432 | // dataout(i) = conj(dataout(2*sizeOfTransformToGet-i-2) );
|
---|
433 | dataout(i) = conj(dataout(nph-i) );
|
---|
434 | }
|
---|
435 | // on conplete, si necessaire, par periodicite
|
---|
436 | for (int kk=nph; kk<dataout.NElts(); kk++)
|
---|
437 | {
|
---|
438 | dataout(kk)=dataout(kk%nph);
|
---|
439 | }
|
---|
440 | }
|
---|
441 | for (i = 0;i <dataout.NElts();i++){
|
---|
442 | dataout(i)*= (complex<T>)(complex<double>(cos(-i*phi0),sin(-i*phi0)));
|
---|
443 | }
|
---|
444 | return dataout;
|
---|
445 | }
|
---|
446 |
|
---|
447 | template<class T>
|
---|
448 | void SphericalTransformServer<T>::GenerateFromAlm(SphericalMap<T>& mapq,
|
---|
449 | SphericalMap<T>& mapu,
|
---|
450 | int_4 pixelSizeIndex,
|
---|
451 | const Alm<T>& alme,
|
---|
452 | const Alm<T>& almb) const
|
---|
453 | {
|
---|
454 | /*=======================================================================
|
---|
455 | computes a map form its alm for the HEALPIX pixelisation
|
---|
456 | map(theta,phi) = sum_l_m a_lm Y_lm(theta,phi)
|
---|
457 | = sum_m {e^(i*m*phi) sum_l a_lm*lambda_lm(theta)}
|
---|
458 |
|
---|
459 | where Y_lm(theta,phi) = lambda(theta) * e^(i*m*phi)
|
---|
460 |
|
---|
461 | * the recurrence of Ylm is the standard one (cf Num Rec)
|
---|
462 | * the sum over m is done by FFT
|
---|
463 |
|
---|
464 | =======================================================================*/
|
---|
465 | int_4 nlmax=alme.Lmax();
|
---|
466 | if (nlmax != almb.Lmax())
|
---|
467 | {
|
---|
468 | cout << " SphericalTransformServer: les deux tableaux alm n'ont pas la meme taille" << endl;
|
---|
469 | throw SzMismatchError("SphericalTransformServer: les deux tableaux alm n'ont pas la meme taille");
|
---|
470 | }
|
---|
471 | int_4 nmmax=nlmax;
|
---|
472 | int_4 nsmax=0;
|
---|
473 | mapq.Resize(pixelSizeIndex);
|
---|
474 | mapu.Resize(pixelSizeIndex);
|
---|
475 | char* sphere_type=mapq.TypeOfMap();
|
---|
476 | if (strncmp(sphere_type,mapu.TypeOfMap(),4) != 0)
|
---|
477 | {
|
---|
478 | cout << " SphericalTransformServer: les deux spheres ne sont pas de meme type" << endl;
|
---|
479 | cout << " type 1 " << sphere_type << endl;
|
---|
480 | cout << " type 2 " << mapu.TypeOfMap() << endl;
|
---|
481 | throw SzMismatchError("SphericalTransformServer: les deux spheres ne sont pas de meme type");
|
---|
482 |
|
---|
483 | }
|
---|
484 | if (strncmp(sphere_type,"RING",4) == 0)
|
---|
485 | {
|
---|
486 | nsmax=mapq.SizeIndex();
|
---|
487 | }
|
---|
488 | else
|
---|
489 | // pour une sphere Gorski le nombre de pixels est 12*nsmax**2
|
---|
490 | // on calcule une quantite equivalente a nsmax pour la sphere-theta-phi
|
---|
491 | // en vue de l'application du critere Healpix : nlmax<=3*nsmax-1
|
---|
492 | // c'est approximatif ; a raffiner.
|
---|
493 | if (strncmp(sphere_type,"TETAFI",6) == 0)
|
---|
494 | {
|
---|
495 | nsmax=(int_4)sqrt(mapq.NbPixels()/12.);
|
---|
496 | }
|
---|
497 | else
|
---|
498 | {
|
---|
499 | cout << " unknown type of sphere : " << sphere_type << endl;
|
---|
500 | throw IOExc(" unknown type of sphere ");
|
---|
501 | }
|
---|
502 | cout << "GenerateFromAlm: the spheres are of type : " << sphere_type << endl;
|
---|
503 | cout << "GenerateFromAlm: size indices (nside) of spheres= " << nsmax << endl;
|
---|
504 | cout << "GenerateFromAlm: nlmax (from Alm) = " << nlmax << endl;
|
---|
505 | if (nlmax>3*nsmax-1)
|
---|
506 | {
|
---|
507 | cout << "GenerateFromAlm: nlmax should be <= 3*nside-1" << endl;
|
---|
508 | if (strncmp(sphere_type,"TETAFI",6) == 0)
|
---|
509 | {
|
---|
510 | cout << " (for this criterium, nsmax is computed as sqrt(nbPixels/12))" << endl;
|
---|
511 | }
|
---|
512 | }
|
---|
513 | if (alme.Lmax()!=almb.Lmax())
|
---|
514 | {
|
---|
515 | cout << "GenerateFromAlm: arrays Alme and Almb have not the same size ? " << endl;
|
---|
516 | throw SzMismatchError("SphericalTransformServer: arrays Alme and Almb have not the same size ? ");
|
---|
517 | }
|
---|
518 | mapFromWX(nlmax, nmmax, mapq, mapu, alme, almb);
|
---|
519 | // mapFromPM(nlmax, nmmax, mapq, mapu, alme, almb);
|
---|
520 | }
|
---|
521 |
|
---|
522 |
|
---|
523 | template<class T>
|
---|
524 | void SphericalTransformServer<T>::DecomposeToAlm(const SphericalMap<T>& mapq,
|
---|
525 | const SphericalMap<T>& mapu,
|
---|
526 | Alm<T>& alme,
|
---|
527 | Alm<T>& almb,
|
---|
528 | int_4 nlmax,
|
---|
529 | r_8 cos_theta_cut) const
|
---|
530 | {
|
---|
531 | int_4 nmmax = nlmax;
|
---|
532 | // resize et remise a zero
|
---|
533 | alme.ReSizeToLmax(nlmax);
|
---|
534 | almb.ReSizeToLmax(nlmax);
|
---|
535 |
|
---|
536 |
|
---|
537 | TVector<T> dataq;
|
---|
538 | TVector<T> datau;
|
---|
539 | TVector<int_4> pixNumber;
|
---|
540 |
|
---|
541 | char* sphere_type=mapq.TypeOfMap();
|
---|
542 | if (strncmp(sphere_type,mapu.TypeOfMap(),4) != 0)
|
---|
543 | {
|
---|
544 | cout << " SphericalTransformServer: les deux spheres ne sont pas de meme type" << endl;
|
---|
545 | cout << " type 1 " << sphere_type << endl;
|
---|
546 | cout << " type 2 " << mapu.TypeOfMap() << endl;
|
---|
547 | throw SzMismatchError("SphericalTransformServer: les deux spheres ne sont pas de meme type");
|
---|
548 |
|
---|
549 | }
|
---|
550 | if (mapq.NbPixels()!=mapu.NbPixels())
|
---|
551 | {
|
---|
552 | cout << " DecomposeToAlm: map Q and map U have not same size ?" << endl;
|
---|
553 | throw SzMismatchError("SphericalTransformServer::DecomposeToAlm: map Q and map U have not same size ");
|
---|
554 | }
|
---|
555 | for (int_4 ith = 0; ith < mapq.NbThetaSlices(); ith++)
|
---|
556 | {
|
---|
557 | int_4 nph;
|
---|
558 | r_8 phi0;
|
---|
559 | r_8 theta;
|
---|
560 | mapq.GetThetaSlice(ith,theta,phi0, pixNumber,dataq);
|
---|
561 | mapu.GetThetaSlice(ith,theta,phi0, pixNumber,datau);
|
---|
562 | if (dataq.NElts() != datau.NElts() )
|
---|
563 | {
|
---|
564 | throw SzMismatchError("the spheres have not the same pixelization");
|
---|
565 | }
|
---|
566 | nph = pixNumber.NElts();
|
---|
567 | r_8 domega=mapq.PixSolAngle(mapq.PixIndexSph(theta,phi0));
|
---|
568 | double cth = cos(theta);
|
---|
569 | //part of the sky out of the symetric cut
|
---|
570 | bool keep_it = (abs(cth) >= cos_theta_cut);
|
---|
571 | if (keep_it)
|
---|
572 | {
|
---|
573 | // almFromPM(nph, nlmax, nmmax, phi0, domega, theta, dataq, datau, alme, almb);
|
---|
574 | almFromWX(nlmax, nmmax, phi0, domega, theta, dataq, datau, alme, almb);
|
---|
575 | }
|
---|
576 | }
|
---|
577 | }
|
---|
578 |
|
---|
579 |
|
---|
580 | template<class T>
|
---|
581 | void SphericalTransformServer<T>::almFromWX(int_4 nlmax, int_4 nmmax,
|
---|
582 | r_8 phi0, r_8 domega,
|
---|
583 | r_8 theta,
|
---|
584 | const TVector<T>& dataq,
|
---|
585 | const TVector<T>& datau,
|
---|
586 | Alm<T>& alme,
|
---|
587 | Alm<T>& almb) const
|
---|
588 | {
|
---|
589 | TVector< complex<T> > phaseq(nmmax+1);
|
---|
590 | TVector< complex<T> > phaseu(nmmax+1);
|
---|
591 | // TVector<complex<T> > datain(nph);
|
---|
592 | for (int i=0;i< nmmax+1;i++)
|
---|
593 | {
|
---|
594 | phaseq(i)=0;
|
---|
595 | phaseu(i)=0;
|
---|
596 | }
|
---|
597 | // for(int kk=0; kk<nph; kk++) datain(kk)=complex<T>(dataq(kk),0.);
|
---|
598 |
|
---|
599 | // phaseq = CFromFourierAnalysis(nmmax,datain,phi0);
|
---|
600 | phaseq = CFromFourierAnalysis(nmmax,dataq,phi0);
|
---|
601 |
|
---|
602 | // for(int kk=0; kk<nph; kk++) datain(kk)=complex<T>(datau(kk),0.);
|
---|
603 |
|
---|
604 | // phaseu= CFromFourierAnalysis(nlmax,nmmax,datain,phi0);
|
---|
605 | phaseu= CFromFourierAnalysis(nmmax,datau,phi0);
|
---|
606 |
|
---|
607 | LambdaWXBuilder lwxb(theta,nlmax,nmmax);
|
---|
608 |
|
---|
609 | r_8 sqr2inv=1/Rac2;
|
---|
610 | for (int m = 0; m <= nmmax; m++)
|
---|
611 | {
|
---|
612 | r_8 lambda_w=0.;
|
---|
613 | r_8 lambda_x=0.;
|
---|
614 | lwxb.lam_wx(m, m, lambda_w, lambda_x);
|
---|
615 | complex<T> zi_lam_x((T)0., (T)lambda_x);
|
---|
616 | alme(m,m) += ( (T)(lambda_w)*phaseq(m)-zi_lam_x*phaseu(m) )*(T)(domega*sqr2inv);
|
---|
617 | almb(m,m) += ( (T)(lambda_w)*phaseu(m)+zi_lam_x*phaseq(m) )*(T)(domega*sqr2inv);
|
---|
618 |
|
---|
619 | for (int l = m+1; l<= nlmax; l++)
|
---|
620 | {
|
---|
621 | lwxb.lam_wx(l, m, lambda_w, lambda_x);
|
---|
622 | zi_lam_x = complex<T>((T)0., (T)lambda_x);
|
---|
623 | alme(l,m) += ( (T)(lambda_w)*phaseq(m)-zi_lam_x*phaseu(m) )*(T)(domega*sqr2inv);
|
---|
624 | almb(l,m) += ( (T)(lambda_w)*phaseu(m)+zi_lam_x*phaseq(m) )*(T)(domega*sqr2inv);
|
---|
625 | }
|
---|
626 | }
|
---|
627 | }
|
---|
628 |
|
---|
629 |
|
---|
630 | template<class T>
|
---|
631 | void SphericalTransformServer<T>::almFromPM(int_4 nph, int_4 nlmax, int_4 nmmax,
|
---|
632 | r_8 phi0, r_8 domega,
|
---|
633 | r_8 theta,
|
---|
634 | const TVector<T>& dataq,
|
---|
635 | const TVector<T>& datau,
|
---|
636 | Alm<T>& alme,
|
---|
637 | Alm<T>& almb) const
|
---|
638 | {
|
---|
639 | TVector< complex<T> > phasep(nmmax+1);
|
---|
640 | TVector< complex<T> > phasem(nmmax+1);
|
---|
641 | TVector<complex<T> > datain(nph);
|
---|
642 | for (int i=0;i< nmmax+1;i++)
|
---|
643 | {
|
---|
644 | phasep(i)=0;
|
---|
645 | phasem(i)=0;
|
---|
646 | }
|
---|
647 | int kk;
|
---|
648 | for(kk=0; kk<nph; kk++) datain(kk)=complex<T>(dataq(kk),datau(kk));
|
---|
649 |
|
---|
650 | phasep = CFromFourierAnalysis(nmmax,datain,phi0);
|
---|
651 |
|
---|
652 | for(kk=0; kk<nph; kk++) datain(kk)=complex<T>(dataq(kk),-datau(kk));
|
---|
653 | phasem = CFromFourierAnalysis(nmmax,datain,phi0);
|
---|
654 | LambdaPMBuilder lpmb(theta,nlmax,nmmax);
|
---|
655 |
|
---|
656 | for (int m = 0; m <= nmmax; m++)
|
---|
657 | {
|
---|
658 | r_8 lambda_p=0.;
|
---|
659 | r_8 lambda_m=0.;
|
---|
660 | complex<T> im((T)0.,(T)1.);
|
---|
661 | lpmb.lam_pm(m, m, lambda_p, lambda_m);
|
---|
662 |
|
---|
663 | alme(m,m) += -( (T)(lambda_p)*phasep(m) + (T)(lambda_m)*phasem(m) )*(T)(domega*0.5);
|
---|
664 | almb(m,m) += im*( (T)(lambda_p)*phasep(m) - (T)(lambda_m)*phasem(m) )*(T)(domega*0.5);
|
---|
665 | for (int l = m+1; l<= nlmax; l++)
|
---|
666 | {
|
---|
667 | lpmb.lam_pm(l, m, lambda_p, lambda_m);
|
---|
668 | alme(l,m) += -( (T)(lambda_p)*phasep(m) + (T)(lambda_m)*phasem(m) )*(T)(domega*0.5);
|
---|
669 | almb(l,m) += im* ( (T)(lambda_p)*phasep(m) - (T)(lambda_m)*phasem(m) )*(T)(domega*0.5);
|
---|
670 | }
|
---|
671 | }
|
---|
672 | }
|
---|
673 |
|
---|
674 |
|
---|
675 | template<class T>
|
---|
676 | void SphericalTransformServer<T>::mapFromWX(int_4 nlmax, int_4 nmmax,
|
---|
677 | SphericalMap<T>& mapq,
|
---|
678 | SphericalMap<T>& mapu,
|
---|
679 | const Alm<T>& alme,
|
---|
680 | const Alm<T>& almb) const
|
---|
681 | {
|
---|
682 | Bm<complex<T> > b_m_theta_q(nmmax);
|
---|
683 | Bm<complex<T> > b_m_theta_u(nmmax);
|
---|
684 |
|
---|
685 | for (int_4 ith = 0; ith < mapq.NbThetaSlices();ith++)
|
---|
686 | {
|
---|
687 | int_4 nph;
|
---|
688 | r_8 phi0;
|
---|
689 | r_8 theta;
|
---|
690 | TVector<int_4> pixNumber;
|
---|
691 | TVector<T> datan;
|
---|
692 |
|
---|
693 | mapq.GetThetaSlice(ith,theta,phi0, pixNumber,datan);
|
---|
694 | nph = pixNumber.NElts();
|
---|
695 | // -----------------------------------------------------
|
---|
696 | // for each theta, and each m, computes
|
---|
697 | // b(m,theta) = sum_over_l>m (lambda_l_m(theta) * a_l_m)
|
---|
698 | // ------------------------------------------------------
|
---|
699 | LambdaWXBuilder lwxb(theta,nlmax,nmmax);
|
---|
700 | // LambdaPMBuilder lpmb(theta,nlmax,nmmax);
|
---|
701 | r_8 sqr2inv=1/Rac2;
|
---|
702 | int m;
|
---|
703 | for (m = 0; m <= nmmax; m++)
|
---|
704 | {
|
---|
705 | r_8 lambda_w=0.;
|
---|
706 | r_8 lambda_x=0.;
|
---|
707 | lwxb.lam_wx(m, m, lambda_w, lambda_x);
|
---|
708 | complex<T> zi_lam_x((T)0., (T)lambda_x);
|
---|
709 |
|
---|
710 | b_m_theta_q(m) = ( (T)(lambda_w) * alme(m,m) - zi_lam_x * almb(m,m))*(T)sqr2inv ;
|
---|
711 | b_m_theta_u(m) = ( (T)(lambda_w) * almb(m,m) + zi_lam_x * alme(m,m))*(T)sqr2inv;
|
---|
712 |
|
---|
713 |
|
---|
714 | for (int l = m+1; l<= nlmax; l++)
|
---|
715 | {
|
---|
716 |
|
---|
717 | lwxb.lam_wx(l, m, lambda_w, lambda_x);
|
---|
718 | zi_lam_x= complex<T>((T)0., (T)lambda_x);
|
---|
719 |
|
---|
720 | b_m_theta_q(m) += ((T)(lambda_w)*alme(l,m)-zi_lam_x *almb(l,m))*(T)sqr2inv;
|
---|
721 | b_m_theta_u(m) += ((T)(lambda_w)*almb(l,m)+zi_lam_x *alme(l,m))*(T)sqr2inv;
|
---|
722 |
|
---|
723 | }
|
---|
724 | }
|
---|
725 | // obtains the negative m of b(m,theta) (= complex conjugate)
|
---|
726 | for (m=1;m<=nmmax;m++)
|
---|
727 | {
|
---|
728 | b_m_theta_q(-m) = conj(b_m_theta_q(m));
|
---|
729 | b_m_theta_u(-m) = conj(b_m_theta_u(m));
|
---|
730 | }
|
---|
731 |
|
---|
732 | // TVector<complex<T> > Tempq = fourierSynthesisFromB(b_m_theta_q,nph,phi0);
|
---|
733 | // TVector<complex<T> > Tempu = fourierSynthesisFromB(b_m_theta_u,nph,phi0);
|
---|
734 | TVector<T> Tempq = RfourierSynthesisFromB(b_m_theta_q,nph,phi0);
|
---|
735 | TVector<T> Tempu = RfourierSynthesisFromB(b_m_theta_u,nph,phi0);
|
---|
736 | for (int i=0;i< nph;i++)
|
---|
737 | {
|
---|
738 | // mapq(pixNumber(i))=Tempq(i).real();
|
---|
739 | // mapu(pixNumber(i))=Tempu(i).real();
|
---|
740 | mapq(pixNumber(i))=Tempq(i);
|
---|
741 | mapu(pixNumber(i))=Tempu(i);
|
---|
742 |
|
---|
743 | }
|
---|
744 | }
|
---|
745 | }
|
---|
746 | template<class T>
|
---|
747 | void SphericalTransformServer<T>::mapFromPM(int_4 nlmax, int_4 nmmax,
|
---|
748 | SphericalMap<T>& mapq,
|
---|
749 | SphericalMap<T>& mapu,
|
---|
750 | const Alm<T>& alme,
|
---|
751 | const Alm<T>& almb) const
|
---|
752 | {
|
---|
753 | Bm<complex<T> > b_m_theta_p(nmmax);
|
---|
754 | Bm<complex<T> > b_m_theta_m(nmmax);
|
---|
755 | for (int_4 ith = 0; ith < mapq.NbThetaSlices();ith++)
|
---|
756 | {
|
---|
757 | int_4 nph;
|
---|
758 | r_8 phi0;
|
---|
759 | r_8 theta;
|
---|
760 | TVector<int_4> pixNumber;
|
---|
761 | TVector<T> datan;
|
---|
762 |
|
---|
763 | mapq.GetThetaSlice(ith,theta,phi0, pixNumber,datan);
|
---|
764 | nph = pixNumber.NElts();
|
---|
765 |
|
---|
766 | // -----------------------------------------------------
|
---|
767 | // for each theta, and each m, computes
|
---|
768 | // b(m,theta) = sum_over_l>m (lambda_l_m(theta) * a_l_m)
|
---|
769 | //------------------------------------------------------
|
---|
770 |
|
---|
771 | LambdaPMBuilder lpmb(theta,nlmax,nmmax);
|
---|
772 | int m;
|
---|
773 | for (m = 0; m <= nmmax; m++)
|
---|
774 | {
|
---|
775 | r_8 lambda_p=0.;
|
---|
776 | r_8 lambda_m=0.;
|
---|
777 | lpmb.lam_pm(m, m, lambda_p, lambda_m);
|
---|
778 | complex<T> im((T)0.,(T)1.);
|
---|
779 |
|
---|
780 | b_m_theta_p(m) = (T)(lambda_p )* (-alme(m,m) - im * almb(m,m));
|
---|
781 | b_m_theta_m(m) = (T)(lambda_m) * (-alme(m,m) + im * almb(m,m));
|
---|
782 |
|
---|
783 |
|
---|
784 | for (int l = m+1; l<= nlmax; l++)
|
---|
785 | {
|
---|
786 | lpmb.lam_pm(l, m, lambda_p, lambda_m);
|
---|
787 | b_m_theta_p(m) += (T)(lambda_p)*(-alme(l,m)-im *almb(l,m));
|
---|
788 | b_m_theta_m(m) += (T)(lambda_m)*(-alme(l,m)+im *almb(l,m));
|
---|
789 | }
|
---|
790 | }
|
---|
791 |
|
---|
792 | // obtains the negative m of b(m,theta) (= complex conjugate)
|
---|
793 | for (m=1;m<=nmmax;m++)
|
---|
794 | {
|
---|
795 | b_m_theta_p(-m) = conj(b_m_theta_m(m));
|
---|
796 | b_m_theta_m(-m) = conj(b_m_theta_p(m));
|
---|
797 | }
|
---|
798 |
|
---|
799 | TVector<complex<T> > Tempp = fourierSynthesisFromB(b_m_theta_p,nph,phi0);
|
---|
800 | TVector<complex<T> > Tempm = fourierSynthesisFromB(b_m_theta_m,nph,phi0);
|
---|
801 |
|
---|
802 | for (int i=0;i< nph;i++)
|
---|
803 | {
|
---|
804 | mapq(pixNumber(i))=0.5*(Tempp(i)+Tempm(i)).real();
|
---|
805 | mapu(pixNumber(i))=0.5*(Tempp(i)-Tempm(i)).imag();
|
---|
806 | }
|
---|
807 | }
|
---|
808 | }
|
---|
809 |
|
---|
810 |
|
---|
811 | template<class T>
|
---|
812 | void SphericalTransformServer<T>::GenerateFromCl(SphericalMap<T>& sphq,
|
---|
813 | SphericalMap<T>& sphu,
|
---|
814 | int_4 pixelSizeIndex,
|
---|
815 | const TVector<T>& Cle,
|
---|
816 | const TVector<T>& Clb,
|
---|
817 | const r_8 fwhm) const
|
---|
818 | {
|
---|
819 | if (Cle.NElts() != Clb.NElts())
|
---|
820 | {
|
---|
821 | cout << " SphericalTransformServer: les deux tableaux Cl n'ont pas la meme taille" << endl;
|
---|
822 | throw SzMismatchError("SphericalTransformServer::GenerateFromCl : two Cl arrays have not same size");
|
---|
823 | }
|
---|
824 |
|
---|
825 | // Alm<T> a2lme,a2lmb;
|
---|
826 | // almFromCl(a2lme, Cle, fwhm);
|
---|
827 | // almFromCl(a2lmb, Clb, fwhm);
|
---|
828 | // Alm<T> a2lme = almFromCl(Cle, fwhm);
|
---|
829 | // Alm<T> a2lmb = almFromCl(Clb, fwhm);
|
---|
830 | Alm<T> a2lme(Cle, fwhm);
|
---|
831 | Alm<T> a2lmb(Clb, fwhm);
|
---|
832 |
|
---|
833 | GenerateFromAlm(sphq,sphu,pixelSizeIndex,a2lme,a2lmb);
|
---|
834 | }
|
---|
835 | template<class T>
|
---|
836 | void SphericalTransformServer<T>::GenerateFromCl(SphericalMap<T>& sph,
|
---|
837 | int_4 pixelSizeIndex,
|
---|
838 | const TVector<T>& Cl,
|
---|
839 | const r_8 fwhm) const
|
---|
840 | {
|
---|
841 |
|
---|
842 | Alm<T> alm(Cl, fwhm);
|
---|
843 | GenerateFromAlm(sph,pixelSizeIndex, alm );
|
---|
844 | }
|
---|
845 |
|
---|
846 |
|
---|
847 |
|
---|
848 | template <class T>
|
---|
849 | TVector<T> SphericalTransformServer<T>::DecomposeToCl(const SphericalMap<T>& sph, int_4 nlmax, r_8 cos_theta_cut) const
|
---|
850 | {
|
---|
851 | Alm<T> alm=DecomposeToAlm( sph, nlmax, cos_theta_cut);
|
---|
852 | // power spectrum
|
---|
853 | return alm.powerSpectrum();
|
---|
854 | }
|
---|
855 |
|
---|
856 | #ifdef __CXX_PRAGMA_TEMPLATES__
|
---|
857 | #pragma define_template SphericalTransformServer<r_8>
|
---|
858 | #pragma define_template SphericalTransformServer<r_4>
|
---|
859 | #endif
|
---|
860 | #if defined(ANSI_TEMPLATES) || defined(GNU_TEMPLATES)
|
---|
861 | template class SphericalTransformServer<r_8>;
|
---|
862 | template class SphericalTransformServer<r_4>;
|
---|
863 | #endif
|
---|