1 | #include "machdefs.h"
|
---|
2 | #include <iostream.h>
|
---|
3 | #include <math.h>
|
---|
4 | #include <complex>
|
---|
5 | #include "sphericaltransformserver.h"
|
---|
6 | #include "tvector.h"
|
---|
7 | #include "nbrandom.h"
|
---|
8 | #include "nbmath.h"
|
---|
9 |
|
---|
10 | /*! \class SOPHYA::SphericalTransformServer
|
---|
11 |
|
---|
12 | Class for performing analysis and synthesis of sky maps using spin-0 or spin-2 spherical harmonics.
|
---|
13 |
|
---|
14 | Maps must be SOPHYA SphericalMaps (SphereGorski or SphereThetaPhi).
|
---|
15 |
|
---|
16 | Temperature and polarization (Stokes parameters) can be developped on spherical harmonics :
|
---|
17 | \f[
|
---|
18 | \frac{\Delta T}{T}(\hat{n})=\sum_{lm}a_{lm}^TY_l^m(\hat{n})
|
---|
19 | \f]
|
---|
20 | \f[
|
---|
21 | Q(\hat{n})=\frac{1}{\sqrt{2}}\sum_{lm}N_l\left(a_{lm}^EW_{lm}(\hat{n})+a_{lm}^BX_{lm}(\hat{n})\right)
|
---|
22 | \f]
|
---|
23 | \f[
|
---|
24 | U(\hat{n})=-\frac{1}{\sqrt{2}}\sum_{lm}N_l\left(a_{lm}^EX_{lm}(\hat{n})-a_{lm}^BW_{lm}(\hat{n})\right)
|
---|
25 | \f]
|
---|
26 | \f[
|
---|
27 | \left(Q \pm iU\right)(\hat{n})=\sum_{lm}a_{\pm 2lm}\, _{\pm 2}Y_l^m(\hat{n})
|
---|
28 | \f]
|
---|
29 |
|
---|
30 | \f[
|
---|
31 | Y_l^m(\hat{n})=\lambda_l^m(\theta)e^{im\phi}
|
---|
32 | \f]
|
---|
33 | \f[
|
---|
34 | _{\pm}Y_l^m(\hat{n})=_{\pm}\lambda_l^m(\theta)e^{im\phi}
|
---|
35 | \f]
|
---|
36 | \f[
|
---|
37 | W_{lm}(\hat{n})=\frac{1}{N_l}\,_{w}\lambda_l^m(\theta)e^{im\phi}
|
---|
38 | \f]
|
---|
39 | \f[
|
---|
40 | X_{lm}(\hat{n})=\frac{-i}{N_l}\,_{x}\lambda_l^m(\theta)e^{im\phi}
|
---|
41 | \f]
|
---|
42 |
|
---|
43 | (see LambdaLMBuilder, LambdaPMBuilder, LambdaWXBuilder classes)
|
---|
44 |
|
---|
45 | power spectra :
|
---|
46 |
|
---|
47 | \f[
|
---|
48 | C_l^T=\frac{1}{2l+1}\sum_{m=0}^{+ \infty }\left|a_{lm}^T\right|^2=\langle\left|a_{lm}^T\right|^2\rangle
|
---|
49 | \f]
|
---|
50 | \f[
|
---|
51 | C_l^E=\frac{1}{2l+1}\sum_{m=0}^{+\infty}\left|a_{lm}^E\right|^2=\langle\left|a_{lm}^E\right|^2\rangle
|
---|
52 | \f]
|
---|
53 | \f[
|
---|
54 | C_l^B=\frac{1}{2l+1}\sum_{m=0}^{+\infty}\left|a_{lm}^B\right|^2=\langle\left|a_{lm}^B\right|^2\rangle
|
---|
55 | \f]
|
---|
56 |
|
---|
57 | \arg
|
---|
58 | \b Synthesis : Get temperature and polarization maps from \f$a_{lm}\f$ coefficients or from power spectra, (methods GenerateFrom...).
|
---|
59 |
|
---|
60 | \b Temperature:
|
---|
61 | \f[
|
---|
62 | \frac{\Delta T}{T}(\hat{n})=\sum_{lm}a_{lm}^TY_l^m(\hat{n}) = \sum_{-\infty}^{+\infty}b_m(\theta)e^{im\phi}
|
---|
63 | \f]
|
---|
64 |
|
---|
65 | with
|
---|
66 | \f[
|
---|
67 | b_m(\theta)=\sum_{l=\left|m\right|}^{+\infty}a_{lm}^T\lambda_l^m(\theta)
|
---|
68 | \f]
|
---|
69 |
|
---|
70 | \b Polarisation
|
---|
71 | \f[
|
---|
72 | Q \pm iU = \sum_{-\infty}^{+\infty}b_m^{\pm}(\theta)e^{im\phi}
|
---|
73 | \f]
|
---|
74 |
|
---|
75 | where :
|
---|
76 | \f[
|
---|
77 | b_m^{\pm}(\theta) = \sum_{l=\left|m\right|}^{+\infty}a_{\pm 2lm}\,_{\pm}\lambda_l^m(\theta)
|
---|
78 | \f]
|
---|
79 |
|
---|
80 | or :
|
---|
81 | \f[
|
---|
82 | Q = \sum_{-\infty}^{+\infty}b_m^{Q}(\theta)e^{im\phi}
|
---|
83 | \f]
|
---|
84 | \f[
|
---|
85 | U = \sum_{-\infty}^{+\infty}b_m^{U}(\theta)e^{im\phi}
|
---|
86 | \f]
|
---|
87 |
|
---|
88 | where:
|
---|
89 | \f[
|
---|
90 | b_m^{Q}(\theta) = \frac{1}{\sqrt{2}}\sum_{l=\left|m\right|}^{+\infty}\left(a_{lm}^E\,_{w}\lambda_l^m(\theta)-ia_{lm}^B\,_{x}\lambda_l^m(\theta)\right)
|
---|
91 | \f]
|
---|
92 | \f[
|
---|
93 | b_m^{U}(\theta) = \frac{1}{\sqrt{2}}\sum_{l=\left|m\right|}^{+\infty}\left(ia_{lm}^E\,_{x}\lambda_l^m(\theta)+a_{lm}^B\,_{w}\lambda_l^m(\theta)\right)
|
---|
94 | \f]
|
---|
95 |
|
---|
96 | Since the pixelization provides "slices" with constant \f$\theta\f$ and \f$\phi\f$ equally distributed on \f$2\pi\f$ \f$\frac{\Delta T}{T}\f$, \f$Q\f$,\f$U\f$ can be computed by FFT.
|
---|
97 |
|
---|
98 |
|
---|
99 | \arg
|
---|
100 | \b Analysis : Get \f$a_{lm}\f$ coefficients or power spectra from temperature and polarization maps (methods DecomposeTo...).
|
---|
101 |
|
---|
102 | \b Temperature:
|
---|
103 | \f[
|
---|
104 | a_{lm}^T=\int\frac{\Delta T}{T}(\hat{n})Y_l^{m*}(\hat{n})d\hat{n}
|
---|
105 | \f]
|
---|
106 |
|
---|
107 | approximated as :
|
---|
108 | \f[
|
---|
109 | a_{lm}^T=\sum_{\theta_k}\omega_kC_m(\theta_k)\lambda_l^m(\theta_k)
|
---|
110 | \f]
|
---|
111 | where :
|
---|
112 | \f[
|
---|
113 | C_m (\theta _k)=\sum_{\phi _{k\prime}}\frac{\Delta T}{T}(\theta _k,\phi_{k\prime})e^{-im\phi _{k\prime}}
|
---|
114 | \f]
|
---|
115 | Since the pixelization provides "slices" with constant \f$\theta\f$ and \f$\phi\f$ equally distributed on \f$2\pi\f$ (\f$\omega_k\f$ is the solid angle of each pixel of the slice \f$\theta_k\f$) \f$C_m\f$ can be computed by FFT.
|
---|
116 |
|
---|
117 | \b polarisation:
|
---|
118 |
|
---|
119 | \f[
|
---|
120 | a_{\pm 2lm}=\sum_{\theta_k}\omega_kC_m^{\pm}(\theta_k)\,_{\pm}\lambda_l^m(\theta_k)
|
---|
121 | \f]
|
---|
122 | where :
|
---|
123 | \f[
|
---|
124 | C_m^{\pm} (\theta _k)=\sum_{\phi _{k\prime}}\left(Q \pm iU\right)(\theta _k,\phi_{k\prime})e^{-im\phi _{k\prime}}
|
---|
125 | \f]
|
---|
126 | or :
|
---|
127 |
|
---|
128 | \f[
|
---|
129 | a_{lm}^E=\frac{1}{\sqrt{2}}\sum_{\theta_k}\omega_k\left(C_m^{Q}(\theta_k)\,_{w}\lambda_l^m(\theta_k)-iC_m^{U}(\theta_k)\,_{x}\lambda_l^m(\theta_k)\right)
|
---|
130 | \f]
|
---|
131 | \f[
|
---|
132 | a_{lm}^B=\frac{1}{\sqrt{2}}\sum_{\theta_k}\omega_k\left(iC_m^{Q}(\theta_k)\,_{x}\lambda_l^m(\theta_k)+C_m^{U}(\theta_k)\,_{w}\lambda_l^m(\theta_k)\right)
|
---|
133 | \f]
|
---|
134 |
|
---|
135 | where :
|
---|
136 | \f[
|
---|
137 | C_m^{Q} (\theta _k)=\sum_{\phi _{k\prime}}Q(\theta _k,\phi_{k\prime})e^{-im\phi _{k\prime}}
|
---|
138 | \f]
|
---|
139 | \f[
|
---|
140 | C_m^{U} (\theta _k)=\sum_{\phi _{k\prime}}U(\theta _k,\phi_{k\prime})e^{-im\phi _{k\prime}}
|
---|
141 | \f]
|
---|
142 |
|
---|
143 | */
|
---|
144 |
|
---|
145 | /*! \fn void SOPHYA::SphericalTransformServer::GenerateFromAlm( SphericalMap<T>& map, int_4 pixelSizeIndex, const Alm<T>& alm) const
|
---|
146 |
|
---|
147 | synthesis of a temperature map from Alm coefficients
|
---|
148 | */
|
---|
149 | template<class T>
|
---|
150 | void SphericalTransformServer<T>::GenerateFromAlm( SphericalMap<T>& map, int_4 pixelSizeIndex, const Alm<T>& alm) const
|
---|
151 | {
|
---|
152 | /*=======================================================================
|
---|
153 | computes a map form its alm for the HEALPIX pixelisation
|
---|
154 | map(theta,phi) = sum_l_m a_lm Y_lm(theta,phi)
|
---|
155 | = sum_m {e^(i*m*phi) sum_l a_lm*lambda_lm(theta)}
|
---|
156 |
|
---|
157 | where Y_lm(theta,phi) = lambda(theta) * e^(i*m*phi)
|
---|
158 |
|
---|
159 | * the recurrence of Ylm is the standard one (cf Num Rec)
|
---|
160 | * the sum over m is done by FFT
|
---|
161 |
|
---|
162 | =======================================================================*/
|
---|
163 | int_4 nlmax=alm.Lmax();
|
---|
164 | int_4 nmmax=nlmax;
|
---|
165 | int_4 nsmax=0;
|
---|
166 | map.Resize(pixelSizeIndex);
|
---|
167 | char* sphere_type=map.TypeOfMap();
|
---|
168 | if (strncmp(sphere_type,"RING",4) == 0)
|
---|
169 | {
|
---|
170 | nsmax=map.SizeIndex();
|
---|
171 | }
|
---|
172 | else
|
---|
173 | // pour une sphere Gorski le nombre de pixels est 12*nsmax**2
|
---|
174 | // on calcule une quantite equivalente a nsmax pour la sphere-theta-phi
|
---|
175 | // en vue de l'application du critere Healpix : nlmax<=3*nsmax-1
|
---|
176 | // c'est approximatif ; a raffiner.
|
---|
177 | if (strncmp(sphere_type,"TETAFI",6) == 0)
|
---|
178 | {
|
---|
179 | nsmax=(int_4)sqrt(map.NbPixels()/12.);
|
---|
180 | }
|
---|
181 | else
|
---|
182 | {
|
---|
183 | cout << " unknown type of sphere : " << sphere_type << endl;
|
---|
184 | throw IOExc(" unknown type of sphere: " + (string)sphere_type );
|
---|
185 | }
|
---|
186 | cout << "GenerateFromAlm: the sphere is of type : " << sphere_type << endl;
|
---|
187 | cout << "GenerateFromAlm: size index (nside) of the sphere= " << nsmax << endl;
|
---|
188 | cout << "GenerateFromAlm: nlmax (from Alm) = " << nlmax << endl;
|
---|
189 | if (nlmax>3*nsmax-1)
|
---|
190 | {
|
---|
191 | cout << "GenerateFromAlm: nlmax should be <= 3*nside-1" << endl;
|
---|
192 | if (strncmp(sphere_type,"TETAFI",6) == 0)
|
---|
193 | {
|
---|
194 | cout << " (for this criterium, nsmax is computed as sqrt(nbPixels/12))" << endl;
|
---|
195 | }
|
---|
196 | }
|
---|
197 | Bm<complex<T> > b_m_theta(nmmax);
|
---|
198 |
|
---|
199 | // map.Resize(nsmax);
|
---|
200 |
|
---|
201 |
|
---|
202 | // pour chaque tranche en theta
|
---|
203 | for (int_4 ith = 0; ith < map.NbThetaSlices();ith++)
|
---|
204 | {
|
---|
205 | int_4 nph;
|
---|
206 | r_8 phi0;
|
---|
207 | r_8 theta;
|
---|
208 | TVector<int_4> pixNumber;
|
---|
209 | TVector<T> datan;
|
---|
210 |
|
---|
211 | map.GetThetaSlice(ith,theta,phi0, pixNumber,datan);
|
---|
212 | nph = pixNumber.NElts();
|
---|
213 |
|
---|
214 | // -----------------------------------------------------
|
---|
215 | // for each theta, and each m, computes
|
---|
216 | // b(m,theta) = sum_over_l>m (lambda_l_m(theta) * a_l_m)
|
---|
217 | // ------------------------------------------------------
|
---|
218 | LambdaLMBuilder lb(theta,nlmax,nmmax);
|
---|
219 | // somme sur m de 0 a l'infini
|
---|
220 | int m;
|
---|
221 | for (m = 0; m <= nmmax; m++)
|
---|
222 | {
|
---|
223 | // somme sur l de m a l'infini
|
---|
224 | b_m_theta(m) = (T)( lb.lamlm(m,m) ) * alm(m,m);
|
---|
225 | // if (ith==0 && m==0)
|
---|
226 | // {
|
---|
227 | // cout << " guy: lmm= " << lb.lamlm(m,m) << " alm " << alm(m,m) << "b00= " << b_m_theta(m) << endl;
|
---|
228 | // }
|
---|
229 | for (int l = m+1; l<= nlmax; l++)
|
---|
230 | {
|
---|
231 | b_m_theta(m) += (T)( lb.lamlm(l,m) ) * alm(l,m);
|
---|
232 |
|
---|
233 |
|
---|
234 | // if (ith==0 && m==0)
|
---|
235 | // {
|
---|
236 | // cout << " guy:l=" << l << " m= " << m << " lmm= " << lb.lamlm(l,m) << " alm " << alm(l,m) << "b00= " << b_m_theta(m) << endl;
|
---|
237 |
|
---|
238 | // }
|
---|
239 |
|
---|
240 | }
|
---|
241 | }
|
---|
242 |
|
---|
243 | // obtains the negative m of b(m,theta) (= complex conjugate)
|
---|
244 |
|
---|
245 | for (m=1;m<=nmmax;m++)
|
---|
246 | {
|
---|
247 | //compiler doesn't have conj()
|
---|
248 | b_m_theta(-m) = conj(b_m_theta(m));
|
---|
249 | }
|
---|
250 | // ---------------------------------------------------------------
|
---|
251 | // sum_m b(m,theta)*exp(i*m*phi) -> f(phi,theta)
|
---|
252 | // ---------------------------------------------------------------*/
|
---|
253 | // TVector<complex<T> > Temp = fourierSynthesisFromB(b_m_theta,nph,phi0);
|
---|
254 | TVector<T> Temp = RfourierSynthesisFromB(b_m_theta,nph,phi0);
|
---|
255 | for (int i=0;i< nph;i++)
|
---|
256 | {
|
---|
257 | // map(pixNumber(i))=Temp(i).real();
|
---|
258 | map(pixNumber(i))=Temp(i);
|
---|
259 | }
|
---|
260 | }
|
---|
261 | }
|
---|
262 |
|
---|
263 |
|
---|
264 |
|
---|
265 | /*! \fn TVector< complex<T> > SOPHYA::SphericalTransformServer::fourierSynthesisFromB(const Bm<complex<T> >& b_m, int_4 nph, r_8 phi0) const
|
---|
266 |
|
---|
267 | \return a vector with nph elements which are sums :\f$\sum_{m=-mmax}^{mmax}b_m(\theta)e^{im\varphi}\f$ for nph values of \f$\varphi\f$ regularly distributed in \f$[0,\pi]\f$ ( calculated by FFT)
|
---|
268 |
|
---|
269 | The object b_m (\f$b_m\f$) of the class Bm is a special vector which index goes from -mmax to mmax.
|
---|
270 | */
|
---|
271 | template<class T>
|
---|
272 | TVector< complex<T> > SphericalTransformServer<T>::fourierSynthesisFromB(const Bm<complex<T> >& b_m, int_4 nph, r_8 phi0) const
|
---|
273 | {
|
---|
274 | /*=======================================================================
|
---|
275 | dataout(j) = sum_m datain(m) * exp(i*m*phi(j))
|
---|
276 | with phi(j) = j*2pi/nph + kphi0*pi/nph and kphi0 =0 or 1
|
---|
277 |
|
---|
278 | as the set of frequencies {m} is larger than nph,
|
---|
279 | we wrap frequencies within {0..nph-1}
|
---|
280 | ie m = k*nph + m' with m' in {0..nph-1}
|
---|
281 | then
|
---|
282 | noting bw(m') = exp(i*m'*phi0)
|
---|
283 | * sum_k (datain(k*nph+m') exp(i*k*pi*kphi0))
|
---|
284 | with bw(nph-m') = CONJ(bw(m')) (if datain(-m) = CONJ(datain(m)))
|
---|
285 | dataout(j) = sum_m' [ bw(m') exp (i*j*m'*2pi/nph) ]
|
---|
286 | = Fourier Transform of bw
|
---|
287 | is real
|
---|
288 |
|
---|
289 | NB nph is not necessarily a power of 2
|
---|
290 |
|
---|
291 | =======================================================================*/
|
---|
292 | //**********************************************************************
|
---|
293 | // pour une valeur de phi (indexee par j) la temperature est la transformee
|
---|
294 | // de Fourier de bm (somme sur m de -nmax a +nmmax de bm*exp(i*m*phi)).
|
---|
295 | // on demande nph (nombre de pixels sur la tranche) valeurs de transformees, pour nph valeurs de phi, regulierement reparties sur 2*pi. On a:
|
---|
296 | // DT/T(j) = sum_m b(m) * exp(i*m*phi(j))
|
---|
297 | // sommation de -infini a +infini, en fait limitee a -nmamx, +nmmax
|
---|
298 | // On pose m=k*nph + m', avec m' compris entre 0 et nph-1. Alors :
|
---|
299 | // DT/T(j) = somme_k somme_m' b(k*nph + m')*exp(i*(k*nph + m')*phi(j))
|
---|
300 | // somme_k : de -infini a +infini
|
---|
301 | // somme_m' : de 0 a nph-1
|
---|
302 | // On echange les sommations :
|
---|
303 | // DT/T(j) = somme_k (exp(i*m'*phi(j)) somme_m' b(k*nph + m')*exp(i*(k*nph*phi(j))
|
---|
304 | // mais phi(j) est un multiple entier de 2*pi/nph, la seconde exponentielle
|
---|
305 | // vaut 1.
|
---|
306 | // Il reste a calculer les transformees de Fourier de somme_m' b(k*nph + m')
|
---|
307 | // si phi0 n'est pas nul, il y a juste un decalage a faire.
|
---|
308 | //**********************************************************************
|
---|
309 |
|
---|
310 | TVector< complex<T> > bw(nph);
|
---|
311 | TVector< complex<T> > dataout(nph);
|
---|
312 | TVector< complex<T> > data(nph);
|
---|
313 |
|
---|
314 |
|
---|
315 | for (int kk=0; kk<bw.NElts(); kk++) bw(kk)=(T)0.;
|
---|
316 | int m;
|
---|
317 | for (m=-b_m.Mmax();m<=-1;m++)
|
---|
318 | {
|
---|
319 | int maux=m;
|
---|
320 | while (maux<0) maux+=nph;
|
---|
321 | int iw=maux%nph;
|
---|
322 | double aux=(m-iw)*phi0;
|
---|
323 | bw(iw) += b_m(m) * complex<T>( (T)cos(aux),(T)sin(aux) ) ;
|
---|
324 | }
|
---|
325 | for (m=0;m<=b_m.Mmax();m++)
|
---|
326 | {
|
---|
327 | // int iw=((m % nph) +nph) % nph; //between 0 and nph = m'
|
---|
328 | int iw=m%nph;
|
---|
329 | double aux=(m-iw)*phi0;
|
---|
330 | bw(iw)+=b_m(m) * complex<T>( (T)cos(aux),(T)sin(aux) );
|
---|
331 | }
|
---|
332 |
|
---|
333 | // applies the shift in position <-> phase factor in Fourier space
|
---|
334 | for (int mprime=0; mprime < nph; mprime++)
|
---|
335 | {
|
---|
336 | complex<double> aux(cos(mprime*phi0),sin(mprime*phi0));
|
---|
337 | data(mprime)=bw(mprime)*
|
---|
338 | (complex<T>)(complex<double>(cos(mprime*phi0),sin(mprime*phi0)));
|
---|
339 | }
|
---|
340 |
|
---|
341 | //sortie.ReSize(nph);
|
---|
342 | TVector< complex<T> > sortie(nph);
|
---|
343 |
|
---|
344 | fftIntfPtr_-> FFTBackward(data, sortie);
|
---|
345 |
|
---|
346 | return sortie;
|
---|
347 | }
|
---|
348 |
|
---|
349 | //********************************************
|
---|
350 | /*! \fn TVector<T> SOPHYA::SphericalTransformServer::RfourierSynthesisFromB(const Bm<complex<T> >& b_m, int_4 nph, r_8 phi0) const
|
---|
351 |
|
---|
352 | same as fourierSynthesisFromB, but return a real vector, taking into account the fact that b(-m) is conjugate of b(m) */
|
---|
353 | template<class T>
|
---|
354 | TVector<T> SphericalTransformServer<T>::RfourierSynthesisFromB(const Bm<complex<T> >& b_m, int_4 nph, r_8 phi0) const
|
---|
355 | {
|
---|
356 | /*=======================================================================
|
---|
357 | dataout(j) = sum_m datain(m) * exp(i*m*phi(j))
|
---|
358 | with phi(j) = j*2pi/nph + kphi0*pi/nph and kphi0 =0 or 1
|
---|
359 |
|
---|
360 | as the set of frequencies {m} is larger than nph,
|
---|
361 | we wrap frequencies within {0..nph-1}
|
---|
362 | ie m = k*nph + m' with m' in {0..nph-1}
|
---|
363 | then
|
---|
364 | noting bw(m') = exp(i*m'*phi0)
|
---|
365 | * sum_k (datain(k*nph+m') exp(i*k*pi*kphi0))
|
---|
366 | with bw(nph-m') = CONJ(bw(m')) (if datain(-m) = CONJ(datain(m)))
|
---|
367 | dataout(j) = sum_m' [ bw(m') exp (i*j*m'*2pi/nph) ]
|
---|
368 | = Fourier Transform of bw
|
---|
369 | is real
|
---|
370 |
|
---|
371 | NB nph is not necessarily a power of 2
|
---|
372 |
|
---|
373 | =======================================================================*/
|
---|
374 | //**********************************************************************
|
---|
375 | // pour une valeur de phi (indexee par j) la temperature est la transformee
|
---|
376 | // de Fourier de bm (somme sur m de -nmax a +nmmax de bm*exp(i*m*phi)).
|
---|
377 | // on demande nph (nombre de pixels sur la tranche) valeurs de transformees, pour nph valeurs de phi, regulierement reparties sur 2*pi. On a:
|
---|
378 | // DT/T(j) = sum_m b(m) * exp(i*m*phi(j))
|
---|
379 | // sommation de -infini a +infini, en fait limitee a -nmamx, +nmmax
|
---|
380 | // On pose m=k*nph + m', avec m' compris entre 0 et nph-1. Alors :
|
---|
381 | // DT/T(j) = somme_k somme_m' b(k*nph + m')*exp(i*(k*nph + m')*phi(j))
|
---|
382 | // somme_k : de -infini a +infini
|
---|
383 | // somme_m' : de 0 a nph-1
|
---|
384 | // On echange les sommations :
|
---|
385 | // DT/T(j) = somme_k (exp(i*m'*phi(j)) somme_m' b(k*nph + m')*exp(i*(k*nph*phi(j))
|
---|
386 | // mais phi(j) est un multiple entier de 2*pi/nph, la seconde exponentielle
|
---|
387 | // vaut 1.
|
---|
388 | // Il reste a calculer les transformees de Fourier de somme_m' b(k*nph + m')
|
---|
389 | // si phi0 n'est pas nul, il y a juste un decalage a faire.
|
---|
390 | //**********************************************************************
|
---|
391 |
|
---|
392 | TVector< complex<T> > bw(nph);
|
---|
393 | TVector< complex<T> > dataout(nph);
|
---|
394 | TVector< complex<T> > data(nph/2+1);
|
---|
395 |
|
---|
396 |
|
---|
397 | for (int kk=0; kk<bw.NElts(); kk++) bw(kk)=(T)0.;
|
---|
398 | int m;
|
---|
399 | for (m=-b_m.Mmax();m<=-1;m++)
|
---|
400 | {
|
---|
401 | int maux=m;
|
---|
402 | while (maux<0) maux+=nph;
|
---|
403 | int iw=maux%nph;
|
---|
404 | double aux=(m-iw)*phi0;
|
---|
405 | bw(iw) += b_m(m) * complex<T>( (T)cos(aux),(T)sin(aux) ) ;
|
---|
406 | }
|
---|
407 | for (m=0;m<=b_m.Mmax();m++)
|
---|
408 | {
|
---|
409 | // int iw=((m % nph) +nph) % nph; //between 0 and nph = m'
|
---|
410 | int iw=m%nph;
|
---|
411 | double aux=(m-iw)*phi0;
|
---|
412 | bw(iw)+=b_m(m) * complex<T>( (T)cos(aux),(T)sin(aux) );
|
---|
413 | }
|
---|
414 |
|
---|
415 | // applies the shift in position <-> phase factor in Fourier space
|
---|
416 | for (int mprime=0; mprime <= nph/2; mprime++)
|
---|
417 | {
|
---|
418 | complex<double> aux(cos(mprime*phi0),sin(mprime*phi0));
|
---|
419 | data(mprime)=bw(mprime)*
|
---|
420 | (complex<T>)(complex<double>(cos(mprime*phi0),sin(mprime*phi0)));
|
---|
421 | }
|
---|
422 |
|
---|
423 | //sortie.ReSize(nph);
|
---|
424 | TVector<T> sortie;
|
---|
425 |
|
---|
426 | fftIntfPtr_-> FFTBackward(data, sortie);
|
---|
427 |
|
---|
428 | return sortie;
|
---|
429 | }
|
---|
430 | //*******************************************
|
---|
431 |
|
---|
432 | /*! \fn Alm<T> SOPHYA::SphericalTransformServer::DecomposeToAlm(const SphericalMap<T>& map, int_4 nlmax, r_8 cos_theta_cut) const
|
---|
433 |
|
---|
434 | \return the Alm coefficients from analysis of a temperature map.
|
---|
435 |
|
---|
436 | \param<nlmax> : maximum value of the l index
|
---|
437 |
|
---|
438 | \param<cos_theta_cut> : cosinus of the symmetric cut EULER angle theta : cos_theta_cut=0 means no cut ; cos_theta_cut=1 all the sphere is cut.
|
---|
439 | */
|
---|
440 | template<class T>
|
---|
441 | Alm<T> SphericalTransformServer<T>::DecomposeToAlm(const SphericalMap<T>& map, int_4 nlmax, r_8 cos_theta_cut) const
|
---|
442 | {
|
---|
443 |
|
---|
444 | /*-----------------------------------------------------------------------
|
---|
445 | computes the integral in phi : phas_m(theta)
|
---|
446 | for each parallele from north to south pole
|
---|
447 | -----------------------------------------------------------------------*/
|
---|
448 | TVector<T> data;
|
---|
449 | TVector<int_4> pixNumber;
|
---|
450 | int_4 nmmax = nlmax;
|
---|
451 | TVector< complex<T> > phase(nmmax+1);
|
---|
452 | Alm<T> alm;
|
---|
453 | alm.ReSizeToLmax(nlmax);
|
---|
454 | for (int_4 ith = 0; ith < map.NbThetaSlices(); ith++)
|
---|
455 | {
|
---|
456 | r_8 phi0;
|
---|
457 | r_8 theta;
|
---|
458 | map.GetThetaSlice(ith,theta,phi0,pixNumber ,data);
|
---|
459 | for (int i=0;i< nmmax+1;i++)
|
---|
460 | {
|
---|
461 | phase(i)=0;
|
---|
462 | }
|
---|
463 | double cth = cos(theta);
|
---|
464 |
|
---|
465 | //part of the sky out of the symetric cut
|
---|
466 | bool keep_it = (fabs(cth) >= cos_theta_cut);
|
---|
467 |
|
---|
468 | if (keep_it)
|
---|
469 | {
|
---|
470 | // tableau datain a supprimer
|
---|
471 | // TVector<complex<T> > datain(pixNumber.NElts());
|
---|
472 | // for(int kk=0; kk<nph; kk++) datain(kk)=complex<T>(data(kk),(T)0.);
|
---|
473 |
|
---|
474 | // phase = CFromFourierAnalysis(nmmax,datain,phi0);
|
---|
475 | phase = CFromFourierAnalysis(nmmax,data,phi0);
|
---|
476 |
|
---|
477 | }
|
---|
478 |
|
---|
479 | /*-----------------------------------------------------------------------
|
---|
480 | computes the a_lm by integrating over theta
|
---|
481 | lambda_lm(theta) * phas_m(theta)
|
---|
482 | for each m and l
|
---|
483 | -----------------------------------------------------------------------*/
|
---|
484 | // LambdaBuilder lb(theta,nlmax,nmmax);
|
---|
485 | LambdaLMBuilder lb(theta,nlmax,nmmax);
|
---|
486 | r_8 domega=map.PixSolAngle(map.PixIndexSph(theta,phi0));
|
---|
487 | for (int m = 0; m <= nmmax; m++)
|
---|
488 | {
|
---|
489 | alm(m,m) += (T)lb.lamlm(m,m) * phase(m) * (T)domega; //m,m even
|
---|
490 | for (int l = m+1; l<= nlmax; l++)
|
---|
491 | {
|
---|
492 | alm(l,m) += (T)lb.lamlm(l,m) * phase(m)*(T)domega;
|
---|
493 | }
|
---|
494 | }
|
---|
495 | }
|
---|
496 | return alm;
|
---|
497 | }
|
---|
498 | /*! \fn TVector< complex<T> > SOPHYA::SphericalTransformServer::CFromFourierAnalysis(int_4 nmmax, const TVector<complex<T> >datain, r_8 phi0) const
|
---|
499 |
|
---|
500 | \return a vector with mmax elements which are sums :
|
---|
501 | \f$\sum_{k=0}^{nphi}datain(\theta,\varphi_k)e^{im\varphi_k}\f$ for (mmax+1) values of \f$m\f$ from 0 to mmax.
|
---|
502 | */
|
---|
503 | template<class T>
|
---|
504 | TVector< complex<T> > SphericalTransformServer<T>::CFromFourierAnalysis(int_4 nmmax, const TVector<complex<T> >datain, r_8 phi0) const
|
---|
505 | {
|
---|
506 | /*=======================================================================
|
---|
507 | integrates (data * phi-dependence-of-Ylm) over phi
|
---|
508 | --> function of m can be computed by FFT
|
---|
509 |
|
---|
510 | datain est modifie
|
---|
511 | =======================================================================*/
|
---|
512 | int_4 nph=datain.NElts();
|
---|
513 | if (nph <= 0)
|
---|
514 | {
|
---|
515 | throw PException("bizarre : vecteur datain de longueur nulle (CFromFourierAnalysis)");
|
---|
516 | }
|
---|
517 | TVector<complex<T> > transformedData(nph);
|
---|
518 | fftIntfPtr_-> FFTForward(datain, transformedData);
|
---|
519 |
|
---|
520 | //dataout.ReSize(nmmax+1);
|
---|
521 | TVector< complex<T> > dataout(nmmax+1);
|
---|
522 |
|
---|
523 | int im_max=min(nph,nmmax+1);
|
---|
524 | int i;
|
---|
525 | for (i=0;i< dataout.NElts();i++) dataout(i)=complex<T>((T)0.,(T)0.);
|
---|
526 | for (i=0;i<im_max;i++) dataout(i)=transformedData(i);
|
---|
527 |
|
---|
528 |
|
---|
529 | // for (int i = 0;i <im_max;i++){
|
---|
530 | // dataout(i)*= (complex<T>)(complex<double>(cos(-i*phi0),sin(-i*phi0)));
|
---|
531 | // }
|
---|
532 | for (int kk=nph; kk<dataout.NElts(); kk++) dataout(kk)=dataout(kk%nph);
|
---|
533 | for (i = 0;i <dataout.NElts();i++){
|
---|
534 | dataout(i)*= (complex<T>)(complex<double>(cos(-i*phi0),sin(-i*phi0)));
|
---|
535 | }
|
---|
536 | return dataout;
|
---|
537 | }
|
---|
538 |
|
---|
539 | //&&&&&&&&& nouvelle version
|
---|
540 | /* \fn TVector< complex<T> > SOPHYA::SphericalTransformServer::CFromFourierAnalysis(int_4 nmmax, const TVector<T> datain, r_8 phi0) const
|
---|
541 |
|
---|
542 | same as previous one, but with a "datain" which is real (not complex) */
|
---|
543 | template<class T>
|
---|
544 | TVector< complex<T> > SphericalTransformServer<T>::CFromFourierAnalysis(int_4 nmmax, const TVector<T> datain, r_8 phi0) const
|
---|
545 | {
|
---|
546 | //=======================================================================
|
---|
547 | // integrates (data * phi-dependence-of-Ylm) over phi
|
---|
548 | // --> function of m can be computed by FFT
|
---|
549 | // ! with 0<= m <= npoints/2 (: Nyquist)
|
---|
550 | // ! because the data is real the negative m are the conjugate of the
|
---|
551 | // ! positive ones
|
---|
552 |
|
---|
553 | // datain est modifie
|
---|
554 | //
|
---|
555 | // =======================================================================
|
---|
556 | int_4 nph=datain.NElts();
|
---|
557 | if (nph <= 0)
|
---|
558 | {
|
---|
559 | throw PException("bizarre : vecteur datain de longueur nulle (CFromFourierAnalysis)");
|
---|
560 | }
|
---|
561 | TVector<complex<T> > transformedData;
|
---|
562 | // a remodifier
|
---|
563 | //FFTPackServer ffts;
|
---|
564 | //ffts.setNormalize(false);
|
---|
565 | //ffts.FFTForward(datain, transformedData);
|
---|
566 |
|
---|
567 | fftIntfPtr_-> FFTForward(datain, transformedData);
|
---|
568 | //
|
---|
569 |
|
---|
570 | //dataout.ReSize(nmmax+1);
|
---|
571 | TVector< complex<T> > dataout(nmmax+1);
|
---|
572 |
|
---|
573 | // on transfere le resultat de la fft dans dataout.
|
---|
574 | // on s'assure que ca ne depasse pas la taille de dataout
|
---|
575 | int sizeOfTransformToGet = min(transformedData.NElts(),nmmax+1);
|
---|
576 | // int im_max=min(transformedData.NElts()-1,nmmax);
|
---|
577 | int i;
|
---|
578 | for (i=0;i<sizeOfTransformToGet;i++) dataout(i)=transformedData(i);
|
---|
579 |
|
---|
580 |
|
---|
581 | // si dataout n'est pas plein, on complete jusqu'a nph valeurs (a moins
|
---|
582 | // que dataout ne soit plein avant d'atteindre nph)
|
---|
583 | if (sizeOfTransformToGet == (transformedData.NElts()))
|
---|
584 | {
|
---|
585 | for (i=transformedData.NElts(); i<min(nph,dataout.NElts()); i++)
|
---|
586 | {
|
---|
587 |
|
---|
588 | // dataout(i) = conj(dataout(2*sizeOfTransformToGet-i-2) );
|
---|
589 | dataout(i) = conj(dataout(nph-i) );
|
---|
590 | }
|
---|
591 | // on conplete, si necessaire, par periodicite
|
---|
592 | for (int kk=nph; kk<dataout.NElts(); kk++)
|
---|
593 | {
|
---|
594 | dataout(kk)=dataout(kk%nph);
|
---|
595 | }
|
---|
596 | }
|
---|
597 | for (i = 0;i <dataout.NElts();i++){
|
---|
598 | dataout(i)*= (complex<T>)(complex<double>(cos(-i*phi0),sin(-i*phi0)));
|
---|
599 | }
|
---|
600 | return dataout;
|
---|
601 | }
|
---|
602 |
|
---|
603 | /*! \fn void SOPHYA::SphericalTransformServer::GenerateFromAlm(SphericalMap<T>& mapq,
|
---|
604 | SphericalMap<T>& mapu,
|
---|
605 | int_4 pixelSizeIndex,
|
---|
606 | const Alm<T>& alme,
|
---|
607 | const Alm<T>& almb) const
|
---|
608 |
|
---|
609 | synthesis of a polarization map from Alm coefficients. The spheres mapq and mapu contain respectively the Stokes parameters. */
|
---|
610 | template<class T>
|
---|
611 | void SphericalTransformServer<T>::GenerateFromAlm(SphericalMap<T>& mapq,
|
---|
612 | SphericalMap<T>& mapu,
|
---|
613 | int_4 pixelSizeIndex,
|
---|
614 | const Alm<T>& alme,
|
---|
615 | const Alm<T>& almb) const
|
---|
616 | {
|
---|
617 | /*=======================================================================
|
---|
618 | computes a map form its alm for the HEALPIX pixelisation
|
---|
619 | map(theta,phi) = sum_l_m a_lm Y_lm(theta,phi)
|
---|
620 | = sum_m {e^(i*m*phi) sum_l a_lm*lambda_lm(theta)}
|
---|
621 |
|
---|
622 | where Y_lm(theta,phi) = lambda(theta) * e^(i*m*phi)
|
---|
623 |
|
---|
624 | * the recurrence of Ylm is the standard one (cf Num Rec)
|
---|
625 | * the sum over m is done by FFT
|
---|
626 |
|
---|
627 | =======================================================================*/
|
---|
628 | int_4 nlmax=alme.Lmax();
|
---|
629 | if (nlmax != almb.Lmax())
|
---|
630 | {
|
---|
631 | cout << " SphericalTransformServer: les deux tableaux alm n'ont pas la meme taille" << endl;
|
---|
632 | throw SzMismatchError("SphericalTransformServer: les deux tableaux alm n'ont pas la meme taille");
|
---|
633 | }
|
---|
634 | int_4 nmmax=nlmax;
|
---|
635 | int_4 nsmax=0;
|
---|
636 | mapq.Resize(pixelSizeIndex);
|
---|
637 | mapu.Resize(pixelSizeIndex);
|
---|
638 | char* sphere_type=mapq.TypeOfMap();
|
---|
639 | if (strncmp(sphere_type,mapu.TypeOfMap(),4) != 0)
|
---|
640 | {
|
---|
641 | cout << " SphericalTransformServer: les deux spheres ne sont pas de meme type" << endl;
|
---|
642 | cout << " type 1 " << sphere_type << endl;
|
---|
643 | cout << " type 2 " << mapu.TypeOfMap() << endl;
|
---|
644 | throw SzMismatchError("SphericalTransformServer: les deux spheres ne sont pas de meme type");
|
---|
645 |
|
---|
646 | }
|
---|
647 | if (strncmp(sphere_type,"RING",4) == 0)
|
---|
648 | {
|
---|
649 | nsmax=mapq.SizeIndex();
|
---|
650 | }
|
---|
651 | else
|
---|
652 | // pour une sphere Gorski le nombre de pixels est 12*nsmax**2
|
---|
653 | // on calcule une quantite equivalente a nsmax pour la sphere-theta-phi
|
---|
654 | // en vue de l'application du critere Healpix : nlmax<=3*nsmax-1
|
---|
655 | // c'est approximatif ; a raffiner.
|
---|
656 | if (strncmp(sphere_type,"TETAFI",6) == 0)
|
---|
657 | {
|
---|
658 | nsmax=(int_4)sqrt(mapq.NbPixels()/12.);
|
---|
659 | }
|
---|
660 | else
|
---|
661 | {
|
---|
662 | cout << " unknown type of sphere : " << sphere_type << endl;
|
---|
663 | throw IOExc(" unknown type of sphere ");
|
---|
664 | }
|
---|
665 | cout << "GenerateFromAlm: the spheres are of type : " << sphere_type << endl;
|
---|
666 | cout << "GenerateFromAlm: size indices (nside) of spheres= " << nsmax << endl;
|
---|
667 | cout << "GenerateFromAlm: nlmax (from Alm) = " << nlmax << endl;
|
---|
668 | if (nlmax>3*nsmax-1)
|
---|
669 | {
|
---|
670 | cout << "GenerateFromAlm: nlmax should be <= 3*nside-1" << endl;
|
---|
671 | if (strncmp(sphere_type,"TETAFI",6) == 0)
|
---|
672 | {
|
---|
673 | cout << " (for this criterium, nsmax is computed as sqrt(nbPixels/12))" << endl;
|
---|
674 | }
|
---|
675 | }
|
---|
676 | if (alme.Lmax()!=almb.Lmax())
|
---|
677 | {
|
---|
678 | cout << "GenerateFromAlm: arrays Alme and Almb have not the same size ? " << endl;
|
---|
679 | throw SzMismatchError("SphericalTransformServer: arrays Alme and Almb have not the same size ? ");
|
---|
680 | }
|
---|
681 | mapFromWX(nlmax, nmmax, mapq, mapu, alme, almb);
|
---|
682 | // mapFromPM(nlmax, nmmax, mapq, mapu, alme, almb);
|
---|
683 | }
|
---|
684 |
|
---|
685 |
|
---|
686 | /*! \fn void SOPHYA::SphericalTransformServer::DecomposeToAlm(const SphericalMap<T>& mapq,
|
---|
687 | const SphericalMap<T>& mapu,
|
---|
688 | Alm<T>& alme,
|
---|
689 | Alm<T>& almb,
|
---|
690 | int_4 nlmax,
|
---|
691 | r_8 cos_theta_cut) const
|
---|
692 |
|
---|
693 | analysis of a polarization map into Alm coefficients.
|
---|
694 |
|
---|
695 | The spheres \c mapq and \c mapu contain respectively the Stokes parameters.
|
---|
696 |
|
---|
697 | \c a2lme and \c a2lmb will receive respectively electric and magnetic Alm's
|
---|
698 | nlmax : maximum value of the l index
|
---|
699 |
|
---|
700 | \c cos_theta_cut : cosinus of the symmetric cut EULER angle theta : cos_theta_cut=0 means no cut ; cos_theta_cut=1 all the sphere is cut.
|
---|
701 | */
|
---|
702 | template<class T>
|
---|
703 | void SphericalTransformServer<T>::DecomposeToAlm(const SphericalMap<T>& mapq,
|
---|
704 | const SphericalMap<T>& mapu,
|
---|
705 | Alm<T>& alme,
|
---|
706 | Alm<T>& almb,
|
---|
707 | int_4 nlmax,
|
---|
708 | r_8 cos_theta_cut) const
|
---|
709 | {
|
---|
710 | int_4 nmmax = nlmax;
|
---|
711 | // resize et remise a zero
|
---|
712 | alme.ReSizeToLmax(nlmax);
|
---|
713 | almb.ReSizeToLmax(nlmax);
|
---|
714 |
|
---|
715 |
|
---|
716 | TVector<T> dataq;
|
---|
717 | TVector<T> datau;
|
---|
718 | TVector<int_4> pixNumber;
|
---|
719 |
|
---|
720 | char* sphere_type=mapq.TypeOfMap();
|
---|
721 | if (strncmp(sphere_type,mapu.TypeOfMap(),4) != 0)
|
---|
722 | {
|
---|
723 | cout << " SphericalTransformServer: les deux spheres ne sont pas de meme type" << endl;
|
---|
724 | cout << " type 1 " << sphere_type << endl;
|
---|
725 | cout << " type 2 " << mapu.TypeOfMap() << endl;
|
---|
726 | throw SzMismatchError("SphericalTransformServer: les deux spheres ne sont pas de meme type");
|
---|
727 |
|
---|
728 | }
|
---|
729 | if (mapq.NbPixels()!=mapu.NbPixels())
|
---|
730 | {
|
---|
731 | cout << " DecomposeToAlm: map Q and map U have not same size ?" << endl;
|
---|
732 | throw SzMismatchError("SphericalTransformServer::DecomposeToAlm: map Q and map U have not same size ");
|
---|
733 | }
|
---|
734 | for (int_4 ith = 0; ith < mapq.NbThetaSlices(); ith++)
|
---|
735 | {
|
---|
736 | r_8 phi0;
|
---|
737 | r_8 theta;
|
---|
738 | mapq.GetThetaSlice(ith,theta,phi0, pixNumber,dataq);
|
---|
739 | mapu.GetThetaSlice(ith,theta,phi0, pixNumber,datau);
|
---|
740 | if (dataq.NElts() != datau.NElts() )
|
---|
741 | {
|
---|
742 | throw SzMismatchError("the spheres have not the same pixelization");
|
---|
743 | }
|
---|
744 | r_8 domega=mapq.PixSolAngle(mapq.PixIndexSph(theta,phi0));
|
---|
745 | double cth = cos(theta);
|
---|
746 | //part of the sky out of the symetric cut
|
---|
747 | bool keep_it = (fabs(cth) >= cos_theta_cut);
|
---|
748 | if (keep_it)
|
---|
749 | {
|
---|
750 | // almFromPM(pixNumber.NElts(), nlmax, nmmax, phi0, domega, theta, dataq, datau, alme, almb);
|
---|
751 | almFromWX(nlmax, nmmax, phi0, domega, theta, dataq, datau, alme, almb);
|
---|
752 | }
|
---|
753 | }
|
---|
754 | }
|
---|
755 |
|
---|
756 |
|
---|
757 | /*! \fn void SOPHYA::SphericalTransformServer::almFromWX(int_4 nlmax, int_4 nmmax,
|
---|
758 | r_8 phi0, r_8 domega,
|
---|
759 | r_8 theta,
|
---|
760 | const TVector<T>& dataq,
|
---|
761 | const TVector<T>& datau,
|
---|
762 | Alm<T>& alme,
|
---|
763 | Alm<T>& almb) const
|
---|
764 |
|
---|
765 | Compute polarized Alm's as :
|
---|
766 | \f[
|
---|
767 | a_{lm}^E=\frac{1}{\sqrt{2}}\sum_{slices}{\omega_{pix}\left(\,_{w}\lambda_l^m\tilde{Q}-i\,_{x}\lambda_l^m\tilde{U}\right)}
|
---|
768 | \f]
|
---|
769 | \f[
|
---|
770 | a_{lm}^B=\frac{1}{\sqrt{2}}\sum_{slices}{\omega_{pix}\left(i\,_{x}\lambda_l^m\tilde{Q}+\,_{w}\lambda_l^m\tilde{U}\right)}
|
---|
771 | \f]
|
---|
772 |
|
---|
773 | where \f$\tilde{Q}\f$ and \f$\tilde{U}\f$ are C-coefficients computed by FFT (method CFromFourierAnalysis, called by present method) from the Stokes parameters.
|
---|
774 |
|
---|
775 | \f$\omega_{pix}\f$ are solid angle of each pixel.
|
---|
776 |
|
---|
777 | dataq, datau : Stokes parameters.
|
---|
778 |
|
---|
779 | */
|
---|
780 | template<class T>
|
---|
781 | void SphericalTransformServer<T>::almFromWX(int_4 nlmax, int_4 nmmax,
|
---|
782 | r_8 phi0, r_8 domega,
|
---|
783 | r_8 theta,
|
---|
784 | const TVector<T>& dataq,
|
---|
785 | const TVector<T>& datau,
|
---|
786 | Alm<T>& alme,
|
---|
787 | Alm<T>& almb) const
|
---|
788 | {
|
---|
789 | TVector< complex<T> > phaseq(nmmax+1);
|
---|
790 | TVector< complex<T> > phaseu(nmmax+1);
|
---|
791 | // TVector<complex<T> > datain(nph);
|
---|
792 | for (int i=0;i< nmmax+1;i++)
|
---|
793 | {
|
---|
794 | phaseq(i)=0;
|
---|
795 | phaseu(i)=0;
|
---|
796 | }
|
---|
797 | // for(int kk=0; kk<nph; kk++) datain(kk)=complex<T>(dataq(kk),0.);
|
---|
798 |
|
---|
799 | // phaseq = CFromFourierAnalysis(nmmax,datain,phi0);
|
---|
800 | phaseq = CFromFourierAnalysis(nmmax,dataq,phi0);
|
---|
801 |
|
---|
802 | // for(int kk=0; kk<nph; kk++) datain(kk)=complex<T>(datau(kk),0.);
|
---|
803 |
|
---|
804 | // phaseu= CFromFourierAnalysis(nlmax,nmmax,datain,phi0);
|
---|
805 | phaseu= CFromFourierAnalysis(nmmax,datau,phi0);
|
---|
806 |
|
---|
807 | LambdaWXBuilder lwxb(theta,nlmax,nmmax);
|
---|
808 |
|
---|
809 | r_8 sqr2inv=1/Rac2;
|
---|
810 | for (int m = 0; m <= nmmax; m++)
|
---|
811 | {
|
---|
812 | r_8 lambda_w=0.;
|
---|
813 | r_8 lambda_x=0.;
|
---|
814 | lwxb.lam_wx(m, m, lambda_w, lambda_x);
|
---|
815 | complex<T> zi_lam_x((T)0., (T)lambda_x);
|
---|
816 | alme(m,m) += ( (T)(lambda_w)*phaseq(m)-zi_lam_x*phaseu(m) )*(T)(domega*sqr2inv);
|
---|
817 | almb(m,m) += ( (T)(lambda_w)*phaseu(m)+zi_lam_x*phaseq(m) )*(T)(domega*sqr2inv);
|
---|
818 |
|
---|
819 | for (int l = m+1; l<= nlmax; l++)
|
---|
820 | {
|
---|
821 | lwxb.lam_wx(l, m, lambda_w, lambda_x);
|
---|
822 | zi_lam_x = complex<T>((T)0., (T)lambda_x);
|
---|
823 | alme(l,m) += ( (T)(lambda_w)*phaseq(m)-zi_lam_x*phaseu(m) )*(T)(domega*sqr2inv);
|
---|
824 | almb(l,m) += ( (T)(lambda_w)*phaseu(m)+zi_lam_x*phaseq(m) )*(T)(domega*sqr2inv);
|
---|
825 | }
|
---|
826 | }
|
---|
827 | }
|
---|
828 |
|
---|
829 |
|
---|
830 | /*! \fn void SOPHYA::SphericalTransformServer::almFromPM(int_4 nph, int_4 nlmax,
|
---|
831 | int_4 nmmax,
|
---|
832 | r_8 phi0, r_8 domega,
|
---|
833 | r_8 theta,
|
---|
834 | const TVector<T>& dataq,
|
---|
835 | const TVector<T>& datau,
|
---|
836 | Alm<T>& alme,
|
---|
837 | Alm<T>& almb) const
|
---|
838 |
|
---|
839 | Compute polarized Alm's as :
|
---|
840 | \f[
|
---|
841 | a_{lm}^E=-\frac{1}{2}\sum_{slices}{\omega_{pix}\left(\,_{+}\lambda_l^m\tilde{P^+}+\,_{-}\lambda_l^m\tilde{P^-}\right)}
|
---|
842 | \f]
|
---|
843 | \f[
|
---|
844 | a_{lm}^B=\frac{i}{2}\sum_{slices}{\omega_{pix}\left(\,_{+}\lambda_l^m\tilde{P^+}-\,_{-}\lambda_l^m\tilde{P^-}\right)}
|
---|
845 | \f]
|
---|
846 |
|
---|
847 | where \f$\tilde{P^{\pm}}=\tilde{Q}\pm\tilde{U}\f$ computed by FFT (method CFromFourierAnalysis, called by present method) from the Stokes parameters,\f$Q\f$ and \f$U\f$ .
|
---|
848 |
|
---|
849 | \f$\omega_{pix}\f$ are solid angle of each pixel.
|
---|
850 |
|
---|
851 | dataq, datau : Stokes parameters.
|
---|
852 |
|
---|
853 | */
|
---|
854 | template<class T>
|
---|
855 | void SphericalTransformServer<T>::almFromPM(int_4 nph, int_4 nlmax,
|
---|
856 | int_4 nmmax,
|
---|
857 | r_8 phi0, r_8 domega,
|
---|
858 | r_8 theta,
|
---|
859 | const TVector<T>& dataq,
|
---|
860 | const TVector<T>& datau,
|
---|
861 | Alm<T>& alme,
|
---|
862 | Alm<T>& almb) const
|
---|
863 | {
|
---|
864 | TVector< complex<T> > phasep(nmmax+1);
|
---|
865 | TVector< complex<T> > phasem(nmmax+1);
|
---|
866 | TVector<complex<T> > datain(nph);
|
---|
867 | for (int i=0;i< nmmax+1;i++)
|
---|
868 | {
|
---|
869 | phasep(i)=0;
|
---|
870 | phasem(i)=0;
|
---|
871 | }
|
---|
872 | int kk;
|
---|
873 | for(kk=0; kk<nph; kk++) datain(kk)=complex<T>(dataq(kk),datau(kk));
|
---|
874 |
|
---|
875 | phasep = CFromFourierAnalysis(nmmax,datain,phi0);
|
---|
876 |
|
---|
877 | for(kk=0; kk<nph; kk++) datain(kk)=complex<T>(dataq(kk),-datau(kk));
|
---|
878 | phasem = CFromFourierAnalysis(nmmax,datain,phi0);
|
---|
879 | LambdaPMBuilder lpmb(theta,nlmax,nmmax);
|
---|
880 |
|
---|
881 | for (int m = 0; m <= nmmax; m++)
|
---|
882 | {
|
---|
883 | r_8 lambda_p=0.;
|
---|
884 | r_8 lambda_m=0.;
|
---|
885 | complex<T> im((T)0.,(T)1.);
|
---|
886 | lpmb.lam_pm(m, m, lambda_p, lambda_m);
|
---|
887 |
|
---|
888 | alme(m,m) += -( (T)(lambda_p)*phasep(m) + (T)(lambda_m)*phasem(m) )*(T)(domega*0.5);
|
---|
889 | almb(m,m) += im*( (T)(lambda_p)*phasep(m) - (T)(lambda_m)*phasem(m) )*(T)(domega*0.5);
|
---|
890 | for (int l = m+1; l<= nlmax; l++)
|
---|
891 | {
|
---|
892 | lpmb.lam_pm(l, m, lambda_p, lambda_m);
|
---|
893 | alme(l,m) += -( (T)(lambda_p)*phasep(m) + (T)(lambda_m)*phasem(m) )*(T)(domega*0.5);
|
---|
894 | almb(l,m) += im* ( (T)(lambda_p)*phasep(m) - (T)(lambda_m)*phasem(m) )*(T)(domega*0.5);
|
---|
895 | }
|
---|
896 | }
|
---|
897 | }
|
---|
898 |
|
---|
899 |
|
---|
900 | /*! \fn void SOPHYA::SphericalTransformServer::mapFromWX(int_4 nlmax, int_4 nmmax,
|
---|
901 | SphericalMap<T>& mapq,
|
---|
902 | SphericalMap<T>& mapu,
|
---|
903 | const Alm<T>& alme,
|
---|
904 | const Alm<T>& almb) const
|
---|
905 |
|
---|
906 | synthesis of Stokes parameters following formulae :
|
---|
907 |
|
---|
908 | \f[
|
---|
909 | Q=\sum_{m=-mmax}^{mmax}b_m^qe^{im\varphi}
|
---|
910 | \f]
|
---|
911 | \f[
|
---|
912 | U=\sum_{m=-mmax}^{mmax}b_m^ue^{im\varphi}
|
---|
913 | \f]
|
---|
914 |
|
---|
915 | computed by FFT (method fourierSynthesisFromB called by the present one)
|
---|
916 |
|
---|
917 | with :
|
---|
918 |
|
---|
919 | \f[
|
---|
920 | b_m^q=-\frac{1}{\sqrt{2}}\sum_{l=|m|}^{lmax}{\left(\,_{w}\lambda_l^ma_{lm}^E-i\,_{x}\lambda_l^ma_{lm}^B\right) }
|
---|
921 | \f]
|
---|
922 | \f[
|
---|
923 | b_m^u=\frac{1}{\sqrt{2}}\sum_{l=|m|}^{lmax}{\left(i\,_{x}\lambda_l^ma_{lm}^E+\,_{w}\lambda_l^ma_{lm}^B\right) }
|
---|
924 | \f]
|
---|
925 | */
|
---|
926 | template<class T>
|
---|
927 | void SphericalTransformServer<T>::mapFromWX(int_4 nlmax, int_4 nmmax,
|
---|
928 | SphericalMap<T>& mapq,
|
---|
929 | SphericalMap<T>& mapu,
|
---|
930 | const Alm<T>& alme,
|
---|
931 | const Alm<T>& almb) const
|
---|
932 | {
|
---|
933 | Bm<complex<T> > b_m_theta_q(nmmax);
|
---|
934 | Bm<complex<T> > b_m_theta_u(nmmax);
|
---|
935 |
|
---|
936 | for (int_4 ith = 0; ith < mapq.NbThetaSlices();ith++)
|
---|
937 | {
|
---|
938 | int_4 nph;
|
---|
939 | r_8 phi0;
|
---|
940 | r_8 theta;
|
---|
941 | TVector<int_4> pixNumber;
|
---|
942 | TVector<T> datan;
|
---|
943 |
|
---|
944 | mapq.GetThetaSlice(ith,theta,phi0, pixNumber,datan);
|
---|
945 | nph = pixNumber.NElts();
|
---|
946 | // -----------------------------------------------------
|
---|
947 | // for each theta, and each m, computes
|
---|
948 | // b(m,theta) = sum_over_l>m (lambda_l_m(theta) * a_l_m)
|
---|
949 | // ------------------------------------------------------
|
---|
950 | LambdaWXBuilder lwxb(theta,nlmax,nmmax);
|
---|
951 | // LambdaPMBuilder lpmb(theta,nlmax,nmmax);
|
---|
952 | r_8 sqr2inv=1/Rac2;
|
---|
953 | int m;
|
---|
954 | for (m = 0; m <= nmmax; m++)
|
---|
955 | {
|
---|
956 | r_8 lambda_w=0.;
|
---|
957 | r_8 lambda_x=0.;
|
---|
958 | lwxb.lam_wx(m, m, lambda_w, lambda_x);
|
---|
959 | complex<T> zi_lam_x((T)0., (T)lambda_x);
|
---|
960 |
|
---|
961 | b_m_theta_q(m) = ( (T)(lambda_w) * alme(m,m) - zi_lam_x * almb(m,m))*(T)sqr2inv ;
|
---|
962 | b_m_theta_u(m) = ( (T)(lambda_w) * almb(m,m) + zi_lam_x * alme(m,m))*(T)sqr2inv;
|
---|
963 |
|
---|
964 |
|
---|
965 | for (int l = m+1; l<= nlmax; l++)
|
---|
966 | {
|
---|
967 |
|
---|
968 | lwxb.lam_wx(l, m, lambda_w, lambda_x);
|
---|
969 | zi_lam_x= complex<T>((T)0., (T)lambda_x);
|
---|
970 |
|
---|
971 | b_m_theta_q(m) += ((T)(lambda_w)*alme(l,m)-zi_lam_x *almb(l,m))*(T)sqr2inv;
|
---|
972 | b_m_theta_u(m) += ((T)(lambda_w)*almb(l,m)+zi_lam_x *alme(l,m))*(T)sqr2inv;
|
---|
973 |
|
---|
974 | }
|
---|
975 | }
|
---|
976 | // obtains the negative m of b(m,theta) (= complex conjugate)
|
---|
977 | for (m=1;m<=nmmax;m++)
|
---|
978 | {
|
---|
979 | b_m_theta_q(-m) = conj(b_m_theta_q(m));
|
---|
980 | b_m_theta_u(-m) = conj(b_m_theta_u(m));
|
---|
981 | }
|
---|
982 |
|
---|
983 | // TVector<complex<T> > Tempq = fourierSynthesisFromB(b_m_theta_q,nph,phi0);
|
---|
984 | // TVector<complex<T> > Tempu = fourierSynthesisFromB(b_m_theta_u,nph,phi0);
|
---|
985 | TVector<T> Tempq = RfourierSynthesisFromB(b_m_theta_q,nph,phi0);
|
---|
986 | TVector<T> Tempu = RfourierSynthesisFromB(b_m_theta_u,nph,phi0);
|
---|
987 | for (int i=0;i< nph;i++)
|
---|
988 | {
|
---|
989 | // mapq(pixNumber(i))=Tempq(i).real();
|
---|
990 | // mapu(pixNumber(i))=Tempu(i).real();
|
---|
991 | mapq(pixNumber(i))=Tempq(i);
|
---|
992 | mapu(pixNumber(i))=Tempu(i);
|
---|
993 |
|
---|
994 | }
|
---|
995 | }
|
---|
996 | }
|
---|
997 | /*! \fn void SOPHYA::SphericalTransformServer::mapFromPM(int_4 nlmax, int_4 nmmax,
|
---|
998 | SphericalMap<T>& mapq,
|
---|
999 | SphericalMap<T>& mapu,
|
---|
1000 | const Alm<T>& alme,
|
---|
1001 | const Alm<T>& almb) const
|
---|
1002 |
|
---|
1003 | synthesis of polarizations following formulae :
|
---|
1004 |
|
---|
1005 | \f[
|
---|
1006 | P^+ = \sum_{m=-mmax}^{mmax} {b_m^+e^{im\varphi} }
|
---|
1007 | \f]
|
---|
1008 | \f[
|
---|
1009 | P^- = \sum_{m=-mmax}^{mmax} {b_m^-e^{im\varphi} }
|
---|
1010 | \f]
|
---|
1011 |
|
---|
1012 | computed by FFT (method fourierSynthesisFromB called by the present one)
|
---|
1013 |
|
---|
1014 | with :
|
---|
1015 |
|
---|
1016 | \f[
|
---|
1017 | b_m^+=-\sum_{l=|m|}^{lmax}{\,_{+}\lambda_l^m \left( a_{lm}^E+ia_{lm}^B \right) }
|
---|
1018 | \f]
|
---|
1019 | \f[
|
---|
1020 | b_m^-=-\sum_{l=|m|}^{lmax}{\,_{+}\lambda_l^m \left( a_{lm}^E-ia_{lm}^B \right) }
|
---|
1021 | \f]
|
---|
1022 | */
|
---|
1023 | template<class T>
|
---|
1024 | void SphericalTransformServer<T>::mapFromPM(int_4 nlmax, int_4 nmmax,
|
---|
1025 | SphericalMap<T>& mapq,
|
---|
1026 | SphericalMap<T>& mapu,
|
---|
1027 | const Alm<T>& alme,
|
---|
1028 | const Alm<T>& almb) const
|
---|
1029 | {
|
---|
1030 | Bm<complex<T> > b_m_theta_p(nmmax);
|
---|
1031 | Bm<complex<T> > b_m_theta_m(nmmax);
|
---|
1032 | for (int_4 ith = 0; ith < mapq.NbThetaSlices();ith++)
|
---|
1033 | {
|
---|
1034 | int_4 nph;
|
---|
1035 | r_8 phi0;
|
---|
1036 | r_8 theta;
|
---|
1037 | TVector<int_4> pixNumber;
|
---|
1038 | TVector<T> datan;
|
---|
1039 |
|
---|
1040 | mapq.GetThetaSlice(ith,theta,phi0, pixNumber,datan);
|
---|
1041 | nph = pixNumber.NElts();
|
---|
1042 |
|
---|
1043 | // -----------------------------------------------------
|
---|
1044 | // for each theta, and each m, computes
|
---|
1045 | // b(m,theta) = sum_over_l>m (lambda_l_m(theta) * a_l_m)
|
---|
1046 | //------------------------------------------------------
|
---|
1047 |
|
---|
1048 | LambdaPMBuilder lpmb(theta,nlmax,nmmax);
|
---|
1049 | int m;
|
---|
1050 | for (m = 0; m <= nmmax; m++)
|
---|
1051 | {
|
---|
1052 | r_8 lambda_p=0.;
|
---|
1053 | r_8 lambda_m=0.;
|
---|
1054 | lpmb.lam_pm(m, m, lambda_p, lambda_m);
|
---|
1055 | complex<T> im((T)0.,(T)1.);
|
---|
1056 |
|
---|
1057 | b_m_theta_p(m) = (T)(lambda_p )* (-alme(m,m) - im * almb(m,m));
|
---|
1058 | b_m_theta_m(m) = (T)(lambda_m) * (-alme(m,m) + im * almb(m,m));
|
---|
1059 |
|
---|
1060 |
|
---|
1061 | for (int l = m+1; l<= nlmax; l++)
|
---|
1062 | {
|
---|
1063 | lpmb.lam_pm(l, m, lambda_p, lambda_m);
|
---|
1064 | b_m_theta_p(m) += (T)(lambda_p)*(-alme(l,m)-im *almb(l,m));
|
---|
1065 | b_m_theta_m(m) += (T)(lambda_m)*(-alme(l,m)+im *almb(l,m));
|
---|
1066 | }
|
---|
1067 | }
|
---|
1068 |
|
---|
1069 | // obtains the negative m of b(m,theta) (= complex conjugate)
|
---|
1070 | for (m=1;m<=nmmax;m++)
|
---|
1071 | {
|
---|
1072 | b_m_theta_p(-m) = conj(b_m_theta_m(m));
|
---|
1073 | b_m_theta_m(-m) = conj(b_m_theta_p(m));
|
---|
1074 | }
|
---|
1075 |
|
---|
1076 | TVector<complex<T> > Tempp = fourierSynthesisFromB(b_m_theta_p,nph,phi0);
|
---|
1077 | TVector<complex<T> > Tempm = fourierSynthesisFromB(b_m_theta_m,nph,phi0);
|
---|
1078 |
|
---|
1079 | for (int i=0;i< nph;i++)
|
---|
1080 | {
|
---|
1081 | mapq(pixNumber(i))=0.5*(Tempp(i)+Tempm(i)).real();
|
---|
1082 | mapu(pixNumber(i))=0.5*(Tempp(i)-Tempm(i)).imag();
|
---|
1083 | }
|
---|
1084 | }
|
---|
1085 | }
|
---|
1086 |
|
---|
1087 |
|
---|
1088 | /*! \fn void SOPHYA::SphericalTransformServer::GenerateFromCl(SphericalMap<T>& sphq,
|
---|
1089 | SphericalMap<T>& sphu,
|
---|
1090 | int_4 pixelSizeIndex,
|
---|
1091 | const TVector<T>& Cle,
|
---|
1092 | const TVector<T>& Clb,
|
---|
1093 | const r_8 fwhm) const
|
---|
1094 |
|
---|
1095 | synthesis of a polarization map from power spectra electric-Cl and magnetic-Cl (Alm's are generated randomly, following a gaussian distribution).
|
---|
1096 | \param fwhm FWHM in arcmin for random generation of Alm's (eg. 5)
|
---|
1097 | */
|
---|
1098 | template<class T>
|
---|
1099 | void SphericalTransformServer<T>::GenerateFromCl(SphericalMap<T>& sphq,
|
---|
1100 | SphericalMap<T>& sphu,
|
---|
1101 | int_4 pixelSizeIndex,
|
---|
1102 | const TVector<T>& Cle,
|
---|
1103 | const TVector<T>& Clb,
|
---|
1104 | const r_8 fwhm) const
|
---|
1105 | {
|
---|
1106 | if (Cle.NElts() != Clb.NElts())
|
---|
1107 | {
|
---|
1108 | cout << " SphericalTransformServer: les deux tableaux Cl n'ont pas la meme taille" << endl;
|
---|
1109 | throw SzMismatchError("SphericalTransformServer::GenerateFromCl : two Cl arrays have not same size");
|
---|
1110 | }
|
---|
1111 |
|
---|
1112 | // Alm<T> a2lme,a2lmb;
|
---|
1113 | // almFromCl(a2lme, Cle, fwhm);
|
---|
1114 | // almFromCl(a2lmb, Clb, fwhm);
|
---|
1115 | // Alm<T> a2lme = almFromCl(Cle, fwhm);
|
---|
1116 | // Alm<T> a2lmb = almFromCl(Clb, fwhm);
|
---|
1117 | Alm<T> a2lme(Cle, fwhm);
|
---|
1118 | Alm<T> a2lmb(Clb, fwhm);
|
---|
1119 |
|
---|
1120 | GenerateFromAlm(sphq,sphu,pixelSizeIndex,a2lme,a2lmb);
|
---|
1121 | }
|
---|
1122 | /*! \fn void SOPHYA::SphericalTransformServer::GenerateFromCl(SphericalMap<T>& sph,
|
---|
1123 | int_4 pixelSizeIndex,
|
---|
1124 | const TVector<T>& Cl,
|
---|
1125 | const r_8 fwhm) const
|
---|
1126 |
|
---|
1127 | synthesis of a temperature map from power spectrum Cl (Alm's are generated randomly, following a gaussian distribution). */
|
---|
1128 | template<class T>
|
---|
1129 | void SphericalTransformServer<T>::GenerateFromCl(SphericalMap<T>& sph,
|
---|
1130 | int_4 pixelSizeIndex,
|
---|
1131 | const TVector<T>& Cl,
|
---|
1132 | const r_8 fwhm) const
|
---|
1133 | {
|
---|
1134 |
|
---|
1135 | Alm<T> alm(Cl, fwhm);
|
---|
1136 | GenerateFromAlm(sph,pixelSizeIndex, alm );
|
---|
1137 | }
|
---|
1138 |
|
---|
1139 |
|
---|
1140 |
|
---|
1141 | /*! \fn TVector<T> SOPHYA::SphericalTransformServer::DecomposeToCl(const SphericalMap<T>& sph, int_4 nlmax, r_8 cos_theta_cut) const
|
---|
1142 |
|
---|
1143 | \return power spectrum from analysis of a temperature map.
|
---|
1144 |
|
---|
1145 | \param<nlmax> : maximum value of the l index
|
---|
1146 |
|
---|
1147 | \param<cos_theta_cut> : cosinus of the symmetric cut EULER angle theta : cos_theta_cut=0 means no cut ; cos_theta_cut=1 all the sphere is cut.
|
---|
1148 | */
|
---|
1149 | template <class T>
|
---|
1150 | TVector<T> SphericalTransformServer<T>::DecomposeToCl(const SphericalMap<T>& sph, int_4 nlmax, r_8 cos_theta_cut) const
|
---|
1151 | {
|
---|
1152 | Alm<T> alm=DecomposeToAlm( sph, nlmax, cos_theta_cut);
|
---|
1153 | // power spectrum
|
---|
1154 | return alm.powerSpectrum();
|
---|
1155 | }
|
---|
1156 |
|
---|
1157 | #ifdef __CXX_PRAGMA_TEMPLATES__
|
---|
1158 | #pragma define_template SphericalTransformServer<r_8>
|
---|
1159 | #pragma define_template SphericalTransformServer<r_4>
|
---|
1160 | #endif
|
---|
1161 | #if defined(ANSI_TEMPLATES) || defined(GNU_TEMPLATES)
|
---|
1162 | template class SphericalTransformServer<r_8>;
|
---|
1163 | template class SphericalTransformServer<r_4>;
|
---|
1164 | #endif
|
---|