[729] | 1 | #ifndef SPHERICALTRANFORMSERVER_SEEN
|
---|
| 2 | #define SPHERICALTRANFORMSERVER_SEEN
|
---|
| 3 |
|
---|
| 4 | #include "sphericalmap.h"
|
---|
| 5 | #include "spheregorski.h"
|
---|
| 6 | #include "fftservintf.h"
|
---|
| 7 | #include "fftpserver.h"
|
---|
| 8 | #include "alm.h"
|
---|
| 9 | #include "lambdaBuilder.h"
|
---|
| 10 |
|
---|
| 11 |
|
---|
[746] | 12 | namespace SOPHYA {
|
---|
[729] | 13 |
|
---|
| 14 | //
|
---|
| 15 | /*! Class for performing analysis and synthesis of sky maps using spin-0 or spin-2 spherical harmonics.
|
---|
| 16 | */
|
---|
| 17 | template <class T>
|
---|
| 18 | class SphericalTransformServer
|
---|
| 19 | {
|
---|
| 20 |
|
---|
| 21 | public:
|
---|
| 22 |
|
---|
| 23 | SphericalTransformServer()
|
---|
| 24 | {
|
---|
| 25 | fftIntfPtr_=new FFTPackServer;
|
---|
| 26 | fftIntfPtr_->setNormalize(false);
|
---|
| 27 | };
|
---|
| 28 | ~SphericalTransformServer(){ if (fftIntfPtr_!=NULL) delete fftIntfPtr_;};
|
---|
| 29 | /*!
|
---|
| 30 | Set a fft server. The constructor sets a default fft server (fft-pack). So it is not necessary to call this method for a standard use.
|
---|
| 31 | */
|
---|
| 32 | void SetFFTServer(FFTServerInterface* srv=NULL)
|
---|
| 33 | {
|
---|
| 34 | if (fftIntfPtr_!=NULL) delete fftIntfPtr_;
|
---|
| 35 | fftIntfPtr_=srv;
|
---|
| 36 | fftIntfPtr_->setNormalize(false);
|
---|
| 37 | }
|
---|
| 38 | /*! synthesis of a temperature map from Alm coefficients */
|
---|
| 39 | void GenerateFromAlm( SphericalMap<T>& map, int_4 pixelSizeIndex, const Alm<T>& alm) const;
|
---|
| 40 | /*! synthesis of a polarization map from Alm coefficients. The spheres mapq and mapu contain respectively the Stokes parameters. */
|
---|
| 41 | void GenerateFromAlm(SphericalMap<T>& mapq, SphericalMap<T>& mapu, int_4 pixelSizeIndex, const Alm<T>& alme, const Alm<T>& almb) const;
|
---|
| 42 |
|
---|
| 43 | /*! synthesis of a temperature map from power spectrum Cl (Alm's are generated randomly, following a gaussian distribution). */
|
---|
| 44 | void GenerateFromCl(SphericalMap<T>& sph, int_4 pixelSizeIndex,
|
---|
| 45 | const TVector<T>& Cl, const r_8 fwhm) const;
|
---|
| 46 | /*! synthesis of a polarization map from power spectra electric-Cl and magnetic-Cl (Alm's are generated randomly, following a gaussian distribution).
|
---|
| 47 | \param fwhm FWHM in arcmin for random generation of Alm's (eg. 5)
|
---|
| 48 |
|
---|
| 49 | */
|
---|
| 50 | void GenerateFromCl(SphericalMap<T>& sphq, SphericalMap<T>& sphu,
|
---|
| 51 | int_4 pixelSizeIndex,
|
---|
| 52 | const TVector<T>& Cle, const TVector<T>& Clb,
|
---|
| 53 | const r_8 fwhm) const;
|
---|
| 54 | /*!return the Alm coefficients from analysis of a temperature map.
|
---|
| 55 |
|
---|
| 56 | nlmax : maximum value of the l index
|
---|
| 57 |
|
---|
| 58 | cos_theta_cut : cosinus of the symmetric cut EULER angle theta : cos_theta_cut=0 means no cut ; cos_theta_cut=1 all the sphere is cut.
|
---|
| 59 | */
|
---|
| 60 |
|
---|
| 61 |
|
---|
| 62 | Alm<T> DecomposeToAlm(const SphericalMap<T>& map, int_4 nlmax, r_8 cos_theta_cut) const;
|
---|
| 63 | /*analysis of a polarization map into Alm coefficients.
|
---|
| 64 |
|
---|
| 65 | The spheres mapq and mapu contain respectively the Stokes parameters.
|
---|
| 66 |
|
---|
| 67 | a2lme and a2lmb will receive respectively electric and magnetic Alm's
|
---|
| 68 | nlmax : maximum value of the l index
|
---|
| 69 |
|
---|
| 70 | cos_theta_cut : cosinus of the symmetric cut EULER angle theta : cos_theta_cut=0 means no cut ; cos_theta_cut=1 all the sphere is cut.
|
---|
| 71 | */
|
---|
| 72 |
|
---|
| 73 | void DecomposeToAlm(const SphericalMap<T>& mapq, const SphericalMap<T>& mapu,
|
---|
| 74 | Alm<T>& a2lme, Alm<T>& a2lmb,
|
---|
| 75 | int_4 nlmax, r_8 cos_theta_cut) const;
|
---|
| 76 |
|
---|
| 77 | // /*return power spectrum from analysis of a temperature map.
|
---|
| 78 |
|
---|
| 79 | // nlmax : maximum value of the l index
|
---|
| 80 |
|
---|
| 81 | // cos_theta_cut : cosinus of the symmetric cut EULER angle theta : cos_theta_cut=0 means no cut ; cos_theta_cut=1 all the sphere is cut.
|
---|
| 82 | // */
|
---|
| 83 | TVector<T> DecomposeToCl(const SphericalMap<T>& sph,
|
---|
| 84 | int_4 nlmax, r_8 cos_theta_cut) const;
|
---|
| 85 |
|
---|
| 86 |
|
---|
| 87 | private:
|
---|
| 88 | /*! return a vector with nph elements which are sums :\f$\sum_{m=-mmax}^{mmax}b_m(\theta)e^{im\varphi}\f$ for nph values of \f$\varphi\f$ regularly distributed in \f$[0,\pi]\f$ ( calculated by FFT)
|
---|
| 89 |
|
---|
| 90 | The object b_m (\f$b_m\f$) of the class Bm is a special vector which index goes from -mmax to mmax.
|
---|
| 91 | */
|
---|
| 92 | TVector< complex<T> > fourierSynthesisFromB(const Bm<complex<T> >& b_m,
|
---|
| 93 | int_4 nph, r_8 phi0) const;
|
---|
| 94 | /*! same as fourierSynthesisFromB, but return a real vector, taking into account the fact that b(-m) is conjugate of b(m) */
|
---|
| 95 | TVector<T> RfourierSynthesisFromB(const Bm<complex<T> >& b_m,
|
---|
| 96 | int_4 nph, r_8 phi0) const;
|
---|
| 97 |
|
---|
| 98 | /*! return a vector with mmax elements which are sums :
|
---|
| 99 | \f$\sum_{k=0}^{nphi}datain(\theta,\varphi_k)e^{im\varphi_k}\f$ for (mmax+1) values of \f$m\f$ from 0 to mmax.
|
---|
| 100 | */
|
---|
[746] | 101 | TVector< complex<T> > CFromFourierAnalysis(int_4 mmax,
|
---|
[729] | 102 | const TVector<complex<T> > datain,
|
---|
| 103 | r_8 phi0) const;
|
---|
| 104 | /* same as previous one, but with a "datain" which is real (not complex) */
|
---|
[746] | 105 | TVector< complex<T> > CFromFourierAnalysis(int_4 mmax,
|
---|
[729] | 106 | const TVector<T> datain,
|
---|
| 107 | r_8 phi0) const;
|
---|
| 108 |
|
---|
| 109 | /*!
|
---|
| 110 | Compute polarized Alm's as :
|
---|
| 111 | \f[
|
---|
| 112 | a_{lm}^E=\frac{1}{\sqrt{2}}\sum_{slices}{\omega_{pix}\left(_{w}\lambda_l^m\tilde{Q}-i_{x}\lambda_l^m\tilde{U}\right)}
|
---|
| 113 | \f]
|
---|
| 114 | \f[
|
---|
| 115 | a_{lm}^B=\frac{1}{\sqrt{2}}\sum_{slices}{\omega_{pix}\left(i_{x}\lambda_l^m\tilde{Q}+_{w}\lambda_l^m\tilde{U}\right)}
|
---|
| 116 | \f]
|
---|
| 117 |
|
---|
| 118 | where \f$\tilde{Q}\f$ and \f$\tilde{U}\f$ are C-coefficients computed by FFT (method CFromFourierAnalysis, called by present method) from the Stokes parameters.
|
---|
| 119 |
|
---|
| 120 | \f$\omega_{pix}\f$ are solid angle of each pixel.
|
---|
| 121 |
|
---|
| 122 | dataq, datau : Stokes parameters.
|
---|
| 123 |
|
---|
| 124 | */
|
---|
[746] | 125 | void almFromWX(int_4 nlmax, int_4 nmmax, r_8 phi0,
|
---|
[729] | 126 | r_8 domega, r_8 theta,
|
---|
| 127 | const TVector<T>& dataq, const TVector<T>& datau,
|
---|
| 128 | Alm<T>& alme, Alm<T>& almb) const;
|
---|
| 129 | /*!
|
---|
| 130 | Compute polarized Alm's as :
|
---|
| 131 | \f[
|
---|
| 132 | a_{lm}^E=-\frac{1}{2}\sum_{slices}{\omega_{pix}\left(_{+}\lambda_l^m\tilde{P^+}+_{-}\lambda_l^m\tilde{P^-}\right)}
|
---|
| 133 | \f]
|
---|
| 134 | \f[
|
---|
| 135 | a_{lm}^B=\frac{i}{2}\sum_{slices}{\omega_{pix}\left(_{+}\lambda_l^m\tilde{P^+}-_{-}\lambda_l^m\tilde{P^-}\right)}
|
---|
| 136 | \f]
|
---|
| 137 |
|
---|
| 138 | where \f$\tilde{P^{\pm}}=\tilde{Q}\pm\tilde{U}\f$ computed by FFT (method CFromFourierAnalysis, called by present method) from the Stokes parameters,\f$Q\f$ and \f$U\f$ .
|
---|
| 139 |
|
---|
| 140 | \f$\omega_{pix}\f$ are solid angle of each pixel.
|
---|
| 141 |
|
---|
| 142 | dataq, datau : Stokes parameters.
|
---|
| 143 |
|
---|
| 144 | */
|
---|
| 145 | void almFromPM(int_4 nph, int_4 nlmax, int_4 nmmax,
|
---|
| 146 | r_8 phi0, r_8 domega, r_8 theta,
|
---|
| 147 | const TVector<T>& dataq, const TVector<T>& datau,
|
---|
| 148 | Alm<T>& alme, Alm<T>& almb) const;
|
---|
| 149 |
|
---|
| 150 | /*! synthesis of Stokes parameters following formulae :
|
---|
| 151 |
|
---|
| 152 | \f[
|
---|
| 153 | Q=\sum_{m=-mmax}^{mmax}b_m^qe^{im\varphi}
|
---|
| 154 | \f]
|
---|
| 155 | \f[
|
---|
| 156 | U=\sum_{m=-mmax}^{mmax}b_m^ue^{im\varphi}
|
---|
| 157 | \f]
|
---|
| 158 |
|
---|
| 159 | computed by FFT (method fourierSynthesisFromB called by the present one)
|
---|
| 160 |
|
---|
| 161 | with :
|
---|
| 162 |
|
---|
| 163 | \f[
|
---|
| 164 | b_m^q=-\frac{1}{\sqrt{2}}\sum_{l=|m|}^{lmax}{\left(_{w}\lambda_l^ma_{lm}^E-i_{x}\lambda_l^ma_{lm}^B\right) }
|
---|
| 165 | \f]
|
---|
| 166 | \f[
|
---|
| 167 | b_m^u=\frac{1}{\sqrt{2}}\sum_{l=|m|}^{lmax}{\left(i_{x}\lambda_l^ma_{lm}^E+_{w}\lambda_l^ma_{lm}^B\right) }
|
---|
| 168 | \f]
|
---|
| 169 | */
|
---|
| 170 | void mapFromWX(int_4 nlmax, int_4 nmmax,
|
---|
| 171 | SphericalMap<T>& mapq, SphericalMap<T>& mapu,
|
---|
| 172 | const Alm<T>& alme, const Alm<T>& almb) const;
|
---|
| 173 |
|
---|
| 174 | /*! synthesis of polarizations following formulae :
|
---|
| 175 |
|
---|
| 176 | \f[
|
---|
| 177 | P^+ = \sum_{m=-mmax}^{mmax} {b_m^+e^{im\varphi} }
|
---|
| 178 | \f]
|
---|
| 179 | \f[
|
---|
| 180 | P^- = \sum_{m=-mmax}^{mmax} {b_m^-e^{im\varphi} }
|
---|
| 181 | \f]
|
---|
| 182 |
|
---|
| 183 | computed by FFT (method fourierSynthesisFromB called by the present one)
|
---|
| 184 |
|
---|
| 185 | with :
|
---|
| 186 |
|
---|
| 187 | \f[
|
---|
| 188 | b_m^+=-\sum_{l=|m|}^{lmax}{_{+}\lambda_l^m \left( a_{lm}^E+ia_{lm}^B \right) }
|
---|
| 189 | \f]
|
---|
| 190 | \f[
|
---|
| 191 | b_m^-=-\sum_{l=|m|}^{lmax}{_{+}\lambda_l^m \left( a_{lm}^E-ia_{lm}^B \right) }
|
---|
| 192 | \f]
|
---|
| 193 | */
|
---|
| 194 |
|
---|
| 195 | void mapFromPM(int_4 nlmax, int_4 nmmax,
|
---|
| 196 | SphericalMap<T>& mapq, SphericalMap<T>& mapu,
|
---|
| 197 | const Alm<T>& alme, const Alm<T>& almb) const;
|
---|
| 198 |
|
---|
| 199 |
|
---|
| 200 |
|
---|
| 201 | FFTServerInterface* fftIntfPtr_;
|
---|
| 202 | };
|
---|
[746] | 203 | } // Fin du namespace
|
---|
[729] | 204 |
|
---|
| 205 |
|
---|
| 206 | #endif
|
---|