1 | #ifndef SPHERICALTRANFORMSERVER_SEEN
|
---|
2 | #define SPHERICALTRANFORMSERVER_SEEN
|
---|
3 |
|
---|
4 | #include "sphericalmap.h"
|
---|
5 | #include "fftservintf.h"
|
---|
6 | #include "fftpserver.h"
|
---|
7 | #include "alm.h"
|
---|
8 | #include "lambdaBuilder.h"
|
---|
9 |
|
---|
10 |
|
---|
11 | namespace SOPHYA {
|
---|
12 |
|
---|
13 | //
|
---|
14 | /*! Class for performing analysis and synthesis of sky maps using spin-0 or spin-2 spherical harmonics.
|
---|
15 |
|
---|
16 | Maps must be SOPHYA SphericalMaps (SphereGorski or SphereThetaPhi).
|
---|
17 |
|
---|
18 | Temperature and polarization (Stokes parameters) can be developped on spherical harmonics :
|
---|
19 | \f[
|
---|
20 | \frac{\Delta T}{T}(\hat{n})=\sum_{lm}a_{lm}^TY_l^m(\hat{n})
|
---|
21 | \f]
|
---|
22 | \f[
|
---|
23 | Q(\hat{n})=\frac{1}{\sqrt{2}}\sum_{lm}N_l\left(a_{lm}^EW_{lm}(\hat{n})+a_{lm}^BX_{lm}(\hat{n})\right)
|
---|
24 | \f]
|
---|
25 | \f[
|
---|
26 | U(\hat{n})=-\frac{1}{\sqrt{2}}\sum_{lm}N_l\left(a_{lm}^EX_{lm}(\hat{n})-a_{lm}^BW_{lm}(\hat{n})\right)
|
---|
27 | \f]
|
---|
28 | \f[
|
---|
29 | \left(Q \pm iU\right)(\hat{n})=\sum_{lm}a_{\pm 2lm}\, _{\pm 2}Y_l^m(\hat{n})
|
---|
30 | \f]
|
---|
31 |
|
---|
32 | \f[
|
---|
33 | Y_l^m(\hat{n})=\lambda_l^m(\theta)e^{im\phi}
|
---|
34 | \f]
|
---|
35 | \f[
|
---|
36 | _{\pm}Y_l^m(\hat{n})=_{\pm}\lambda_l^m(\theta)e^{im\phi}
|
---|
37 | \f]
|
---|
38 | \f[
|
---|
39 | W_{lm}(\hat{n})=\frac{1}{N_l}\,_{w}\lambda_l^m(\theta)e^{im\phi}
|
---|
40 | \f]
|
---|
41 | \f[
|
---|
42 | X_{lm}(\hat{n})=\frac{-i}{N_l}\,_{x}\lambda_l^m(\theta)e^{im\phi}
|
---|
43 | \f]
|
---|
44 |
|
---|
45 | (see LambdaLMBuilder, LambdaPMBuilder, LambdaWXBuilder classes)
|
---|
46 |
|
---|
47 | power spectra :
|
---|
48 |
|
---|
49 | \f[
|
---|
50 | C_l^T=\frac{1}{2l+1}\sum_{m=0}^{+ \infty }\left|a_{lm}^T\right|^2=\langle\left|a_{lm}^T\right|^2\rangle
|
---|
51 | \f]
|
---|
52 | \f[
|
---|
53 | C_l^E=\frac{1}{2l+1}\sum_{m=0}^{+\infty}\left|a_{lm}^E\right|^2=\langle\left|a_{lm}^E\right|^2\rangle
|
---|
54 | \f]
|
---|
55 | \f[
|
---|
56 | C_l^B=\frac{1}{2l+1}\sum_{m=0}^{+\infty}\left|a_{lm}^B\right|^2=\langle\left|a_{lm}^B\right|^2\rangle
|
---|
57 | \f]
|
---|
58 |
|
---|
59 | \arg
|
---|
60 | \b Synthesis : Get temperature and polarization maps from \f$a_{lm}\f$ coefficients or from power spectra, (methods GenerateFrom...).
|
---|
61 |
|
---|
62 | \b Temperature:
|
---|
63 | \f[
|
---|
64 | \frac{\Delta T}{T}(\hat{n})=\sum_{lm}a_{lm}^TY_l^m(\hat{n}) = \sum_{-\infty}^{+\infty}b_m(\theta)e^{im\phi}
|
---|
65 | \f]
|
---|
66 |
|
---|
67 | with
|
---|
68 | \f[
|
---|
69 | b_m(\theta)=\sum_{l=\left|m\right|}^{+\infty}a_{lm}^T\lambda_l^m(\theta)
|
---|
70 | \f]
|
---|
71 |
|
---|
72 | \b Polarisation
|
---|
73 | \f[
|
---|
74 | Q \pm iU = \sum_{-\infty}^{+\infty}b_m^{\pm}(\theta)e^{im\phi}
|
---|
75 | \f]
|
---|
76 |
|
---|
77 | where :
|
---|
78 | \f[
|
---|
79 | b_m^{\pm}(\theta) = \sum_{l=\left|m\right|}^{+\infty}a_{\pm 2lm}\,_{\pm}\lambda_l^m(\theta)
|
---|
80 | \f]
|
---|
81 |
|
---|
82 | or :
|
---|
83 | \f[
|
---|
84 | Q = \sum_{-\infty}^{+\infty}b_m^{Q}(\theta)e^{im\phi}
|
---|
85 | \f]
|
---|
86 | \f[
|
---|
87 | U = \sum_{-\infty}^{+\infty}b_m^{U}(\theta)e^{im\phi}
|
---|
88 | \f]
|
---|
89 |
|
---|
90 | where:
|
---|
91 | \f[
|
---|
92 | b_m^{Q}(\theta) = \frac{1}{\sqrt{2}}\sum_{l=\left|m\right|}^{+\infty}\left(a_{lm}^E\,_{w}\lambda_l^m(\theta)-ia_{lm}^B\,_{x}\lambda_l^m(\theta)\right)
|
---|
93 | \f]
|
---|
94 | \f[
|
---|
95 | b_m^{U}(\theta) = \frac{1}{\sqrt{2}}\sum_{l=\left|m\right|}^{+\infty}\left(ia_{lm}^E\,_{x}\lambda_l^m(\theta)+a_{lm}^B\,_{w}\lambda_l^m(\theta)\right)
|
---|
96 | \f]
|
---|
97 |
|
---|
98 | Since the pixelization provides "slices" with constant \f$\theta\f$ and \f$\phi\f$ equally distributed on \f$2\pi\f$ \f$\frac{\Delta T}{T}\f$, \f$Q\f$,\f$U\f$ can be computed by FFT.
|
---|
99 |
|
---|
100 |
|
---|
101 | \arg
|
---|
102 | \b Analysis : Get \f$a_{lm}\f$ coefficients or power spectra from temperature and polarization maps (methods DecomposeTo...).
|
---|
103 |
|
---|
104 | \b Temperature:
|
---|
105 | \f[
|
---|
106 | a_{lm}^T=\int\frac{\Delta T}{T}(\hat{n})Y_l^{m*}(\hat{n})d\hat{n}
|
---|
107 | \f]
|
---|
108 |
|
---|
109 | approximated as :
|
---|
110 | \f[
|
---|
111 | a_{lm}^T=\sum_{\theta_k}\omega_kC_m(\theta_k)\lambda_l^m(\theta_k)
|
---|
112 | \f]
|
---|
113 | where :
|
---|
114 | \f[
|
---|
115 | C_m (\theta _k)=\sum_{\phi _{k\prime}}\frac{\Delta T}{T}(\theta _k,\phi_{k\prime})e^{-im\phi _{k\prime}}
|
---|
116 | \f]
|
---|
117 | Since the pixelization provides "slices" with constant \f$\theta\f$ and \f$\phi\f$ equally distributed on \f$2\pi\f$ (\f$\omega_k\f$ is the solid angle of each pixel of the slice \f$\theta_k\f$) \f$C_m\f$ can be computed by FFT.
|
---|
118 |
|
---|
119 | \b polarisation:
|
---|
120 |
|
---|
121 | \f[
|
---|
122 | a_{\pm 2lm}=\sum_{\theta_k}\omega_kC_m^{\pm}(\theta_k)\,_{\pm}\lambda_l^m(\theta_k)
|
---|
123 | \f]
|
---|
124 | where :
|
---|
125 | \f[
|
---|
126 | C_m^{\pm} (\theta _k)=\sum_{\phi _{k\prime}}\left(Q \pm iU\right)(\theta _k,\phi_{k\prime})e^{-im\phi _{k\prime}}
|
---|
127 | \f]
|
---|
128 | or :
|
---|
129 |
|
---|
130 | \f[
|
---|
131 | a_{lm}^E=\frac{1}{\sqrt{2}}\sum_{\theta_k}\omega_k\left(C_m^{Q}(\theta_k)\,_{w}\lambda_l^m(\theta_k)-iC_m^{U}(\theta_k)\,_{x}\lambda_l^m(\theta_k)\right)
|
---|
132 | \f]
|
---|
133 | \f[
|
---|
134 | a_{lm}^B=\frac{1}{\sqrt{2}}\sum_{\theta_k}\omega_k\left(iC_m^{Q}(\theta_k)\,_{x}\lambda_l^m(\theta_k)+C_m^{U}(\theta_k)\,_{w}\lambda_l^m(\theta_k)\right)
|
---|
135 | \f]
|
---|
136 |
|
---|
137 | where :
|
---|
138 | \f[
|
---|
139 | C_m^{Q} (\theta _k)=\sum_{\phi _{k\prime}}Q(\theta _k,\phi_{k\prime})e^{-im\phi _{k\prime}}
|
---|
140 | \f]
|
---|
141 | \f[
|
---|
142 | C_m^{U} (\theta _k)=\sum_{\phi _{k\prime}}U(\theta _k,\phi_{k\prime})e^{-im\phi _{k\prime}}
|
---|
143 | \f]
|
---|
144 |
|
---|
145 | */
|
---|
146 | template <class T>
|
---|
147 | class SphericalTransformServer
|
---|
148 | {
|
---|
149 |
|
---|
150 | public:
|
---|
151 |
|
---|
152 | SphericalTransformServer()
|
---|
153 | {
|
---|
154 | fftIntfPtr_=new FFTPackServer;
|
---|
155 | fftIntfPtr_->setNormalize(false);
|
---|
156 | };
|
---|
157 | ~SphericalTransformServer(){ if (fftIntfPtr_!=NULL) delete fftIntfPtr_;};
|
---|
158 | /*!
|
---|
159 | Set a fft server. The constructor sets a default fft server (fft-pack). So it is not necessary to call this method for a standard use.
|
---|
160 | */
|
---|
161 | void SetFFTServer(FFTServerInterface* srv=NULL)
|
---|
162 | {
|
---|
163 | if (fftIntfPtr_!=NULL) delete fftIntfPtr_;
|
---|
164 | fftIntfPtr_=srv;
|
---|
165 | fftIntfPtr_->setNormalize(false);
|
---|
166 | }
|
---|
167 | /*! synthesis of a temperature map from Alm coefficients */
|
---|
168 | void GenerateFromAlm( SphericalMap<T>& map, int_4 pixelSizeIndex, const Alm<T>& alm) const;
|
---|
169 | /*! synthesis of a polarization map from Alm coefficients. The spheres mapq and mapu contain respectively the Stokes parameters. */
|
---|
170 | void GenerateFromAlm(SphericalMap<T>& mapq, SphericalMap<T>& mapu, int_4 pixelSizeIndex, const Alm<T>& alme, const Alm<T>& almb) const;
|
---|
171 |
|
---|
172 | /*! synthesis of a temperature map from power spectrum Cl (Alm's are generated randomly, following a gaussian distribution). */
|
---|
173 | void GenerateFromCl(SphericalMap<T>& sph, int_4 pixelSizeIndex,
|
---|
174 | const TVector<T>& Cl, const r_8 fwhm) const;
|
---|
175 | /*! synthesis of a polarization map from power spectra electric-Cl and magnetic-Cl (Alm's are generated randomly, following a gaussian distribution).
|
---|
176 | \param fwhm FWHM in arcmin for random generation of Alm's (eg. 5)
|
---|
177 |
|
---|
178 | */
|
---|
179 | void GenerateFromCl(SphericalMap<T>& sphq, SphericalMap<T>& sphu,
|
---|
180 | int_4 pixelSizeIndex,
|
---|
181 | const TVector<T>& Cle, const TVector<T>& Clb,
|
---|
182 | const r_8 fwhm) const;
|
---|
183 | /*!return the Alm coefficients from analysis of a temperature map.
|
---|
184 |
|
---|
185 | \param<nlmax> : maximum value of the l index
|
---|
186 |
|
---|
187 | \param<cos_theta_cut> : cosinus of the symmetric cut EULER angle theta : cos_theta_cut=0 means no cut ; cos_theta_cut=1 all the sphere is cut.
|
---|
188 | */
|
---|
189 |
|
---|
190 |
|
---|
191 | Alm<T> DecomposeToAlm(const SphericalMap<T>& map, int_4 nlmax, r_8 cos_theta_cut) const;
|
---|
192 | /*!analysis of a polarization map into Alm coefficients.
|
---|
193 |
|
---|
194 | The spheres \c mapq and \c mapu contain respectively the Stokes parameters.
|
---|
195 |
|
---|
196 | \c a2lme and \c a2lmb will receive respectively electric and magnetic Alm's
|
---|
197 | nlmax : maximum value of the l index
|
---|
198 |
|
---|
199 | \c cos_theta_cut : cosinus of the symmetric cut EULER angle theta : cos_theta_cut=0 means no cut ; cos_theta_cut=1 all the sphere is cut.
|
---|
200 | */
|
---|
201 |
|
---|
202 | void DecomposeToAlm(const SphericalMap<T>& mapq, const SphericalMap<T>& mapu,
|
---|
203 | Alm<T>& a2lme, Alm<T>& a2lmb,
|
---|
204 | int_4 nlmax, r_8 cos_theta_cut) const;
|
---|
205 |
|
---|
206 | /*!return power spectrum from analysis of a temperature map.
|
---|
207 |
|
---|
208 | \param<nlmax> : maximum value of the l index
|
---|
209 |
|
---|
210 | \param<cos_theta_cut> : cosinus of the symmetric cut EULER angle theta : cos_theta_cut=0 means no cut ; cos_theta_cut=1 all the sphere is cut.
|
---|
211 | */
|
---|
212 | TVector<T> DecomposeToCl(const SphericalMap<T>& sph,
|
---|
213 | int_4 nlmax, r_8 cos_theta_cut) const;
|
---|
214 |
|
---|
215 |
|
---|
216 | private:
|
---|
217 | /*! return a vector with nph elements which are sums :\f$\sum_{m=-mmax}^{mmax}b_m(\theta)e^{im\varphi}\f$ for nph values of \f$\varphi\f$ regularly distributed in \f$[0,\pi]\f$ ( calculated by FFT)
|
---|
218 |
|
---|
219 | The object b_m (\f$b_m\f$) of the class Bm is a special vector which index goes from -mmax to mmax.
|
---|
220 | */
|
---|
221 | TVector< complex<T> > fourierSynthesisFromB(const Bm<complex<T> >& b_m,
|
---|
222 | int_4 nph, r_8 phi0) const;
|
---|
223 | /*! same as fourierSynthesisFromB, but return a real vector, taking into account the fact that b(-m) is conjugate of b(m) */
|
---|
224 | TVector<T> RfourierSynthesisFromB(const Bm<complex<T> >& b_m,
|
---|
225 | int_4 nph, r_8 phi0) const;
|
---|
226 |
|
---|
227 | /*! return a vector with mmax elements which are sums :
|
---|
228 | \f$\sum_{k=0}^{nphi}datain(\theta,\varphi_k)e^{im\varphi_k}\f$ for (mmax+1) values of \f$m\f$ from 0 to mmax.
|
---|
229 | */
|
---|
230 | TVector< complex<T> > CFromFourierAnalysis(int_4 mmax,
|
---|
231 | const TVector<complex<T> > datain,
|
---|
232 | r_8 phi0) const;
|
---|
233 | /* same as previous one, but with a "datain" which is real (not complex) */
|
---|
234 | TVector< complex<T> > CFromFourierAnalysis(int_4 mmax,
|
---|
235 | const TVector<T> datain,
|
---|
236 | r_8 phi0) const;
|
---|
237 |
|
---|
238 | /*!
|
---|
239 | Compute polarized Alm's as :
|
---|
240 | \f[
|
---|
241 | a_{lm}^E=\frac{1}{\sqrt{2}}\sum_{slices}{\omega_{pix}\left(\,_{w}\lambda_l^m\tilde{Q}-i\,_{x}\lambda_l^m\tilde{U}\right)}
|
---|
242 | \f]
|
---|
243 | \f[
|
---|
244 | a_{lm}^B=\frac{1}{\sqrt{2}}\sum_{slices}{\omega_{pix}\left(i\,_{x}\lambda_l^m\tilde{Q}+\,_{w}\lambda_l^m\tilde{U}\right)}
|
---|
245 | \f]
|
---|
246 |
|
---|
247 | where \f$\tilde{Q}\f$ and \f$\tilde{U}\f$ are C-coefficients computed by FFT (method CFromFourierAnalysis, called by present method) from the Stokes parameters.
|
---|
248 |
|
---|
249 | \f$\omega_{pix}\f$ are solid angle of each pixel.
|
---|
250 |
|
---|
251 | dataq, datau : Stokes parameters.
|
---|
252 |
|
---|
253 | */
|
---|
254 | void almFromWX(int_4 nlmax, int_4 nmmax, r_8 phi0,
|
---|
255 | r_8 domega, r_8 theta,
|
---|
256 | const TVector<T>& dataq, const TVector<T>& datau,
|
---|
257 | Alm<T>& alme, Alm<T>& almb) const;
|
---|
258 | /*!
|
---|
259 | Compute polarized Alm's as :
|
---|
260 | \f[
|
---|
261 | a_{lm}^E=-\frac{1}{2}\sum_{slices}{\omega_{pix}\left(\,_{+}\lambda_l^m\tilde{P^+}+\,_{-}\lambda_l^m\tilde{P^-}\right)}
|
---|
262 | \f]
|
---|
263 | \f[
|
---|
264 | a_{lm}^B=\frac{i}{2}\sum_{slices}{\omega_{pix}\left(\,_{+}\lambda_l^m\tilde{P^+}-\,_{-}\lambda_l^m\tilde{P^-}\right)}
|
---|
265 | \f]
|
---|
266 |
|
---|
267 | where \f$\tilde{P^{\pm}}=\tilde{Q}\pm\tilde{U}\f$ computed by FFT (method CFromFourierAnalysis, called by present method) from the Stokes parameters,\f$Q\f$ and \f$U\f$ .
|
---|
268 |
|
---|
269 | \f$\omega_{pix}\f$ are solid angle of each pixel.
|
---|
270 |
|
---|
271 | dataq, datau : Stokes parameters.
|
---|
272 |
|
---|
273 | */
|
---|
274 | void almFromPM(int_4 nph, int_4 nlmax, int_4 nmmax,
|
---|
275 | r_8 phi0, r_8 domega, r_8 theta,
|
---|
276 | const TVector<T>& dataq, const TVector<T>& datau,
|
---|
277 | Alm<T>& alme, Alm<T>& almb) const;
|
---|
278 |
|
---|
279 | /*! synthesis of Stokes parameters following formulae :
|
---|
280 |
|
---|
281 | \f[
|
---|
282 | Q=\sum_{m=-mmax}^{mmax}b_m^qe^{im\varphi}
|
---|
283 | \f]
|
---|
284 | \f[
|
---|
285 | U=\sum_{m=-mmax}^{mmax}b_m^ue^{im\varphi}
|
---|
286 | \f]
|
---|
287 |
|
---|
288 | computed by FFT (method fourierSynthesisFromB called by the present one)
|
---|
289 |
|
---|
290 | with :
|
---|
291 |
|
---|
292 | \f[
|
---|
293 | b_m^q=-\frac{1}{\sqrt{2}}\sum_{l=|m|}^{lmax}{\left(\,_{w}\lambda_l^ma_{lm}^E-i\,_{x}\lambda_l^ma_{lm}^B\right) }
|
---|
294 | \f]
|
---|
295 | \f[
|
---|
296 | b_m^u=\frac{1}{\sqrt{2}}\sum_{l=|m|}^{lmax}{\left(i\,_{x}\lambda_l^ma_{lm}^E+\,_{w}\lambda_l^ma_{lm}^B\right) }
|
---|
297 | \f]
|
---|
298 | */
|
---|
299 | void mapFromWX(int_4 nlmax, int_4 nmmax,
|
---|
300 | SphericalMap<T>& mapq, SphericalMap<T>& mapu,
|
---|
301 | const Alm<T>& alme, const Alm<T>& almb) const;
|
---|
302 |
|
---|
303 | /*! synthesis of polarizations following formulae :
|
---|
304 |
|
---|
305 | \f[
|
---|
306 | P^+ = \sum_{m=-mmax}^{mmax} {b_m^+e^{im\varphi} }
|
---|
307 | \f]
|
---|
308 | \f[
|
---|
309 | P^- = \sum_{m=-mmax}^{mmax} {b_m^-e^{im\varphi} }
|
---|
310 | \f]
|
---|
311 |
|
---|
312 | computed by FFT (method fourierSynthesisFromB called by the present one)
|
---|
313 |
|
---|
314 | with :
|
---|
315 |
|
---|
316 | \f[
|
---|
317 | b_m^+=-\sum_{l=|m|}^{lmax}{\,_{+}\lambda_l^m \left( a_{lm}^E+ia_{lm}^B \right) }
|
---|
318 | \f]
|
---|
319 | \f[
|
---|
320 | b_m^-=-\sum_{l=|m|}^{lmax}{\,_{+}\lambda_l^m \left( a_{lm}^E-ia_{lm}^B \right) }
|
---|
321 | \f]
|
---|
322 | */
|
---|
323 |
|
---|
324 | void mapFromPM(int_4 nlmax, int_4 nmmax,
|
---|
325 | SphericalMap<T>& mapq, SphericalMap<T>& mapu,
|
---|
326 | const Alm<T>& alme, const Alm<T>& almb) const;
|
---|
327 |
|
---|
328 |
|
---|
329 |
|
---|
330 | FFTServerInterface* fftIntfPtr_;
|
---|
331 | };
|
---|
332 | } // Fin du namespace
|
---|
333 |
|
---|
334 |
|
---|
335 | #endif
|
---|