1 | #ifndef SPHERICALTRANFORMSERVER_SEEN
|
---|
2 | #define SPHERICALTRANFORMSERVER_SEEN
|
---|
3 |
|
---|
4 | #include "sphericalmap.h"
|
---|
5 | #include "spheregorski.h"
|
---|
6 | #include "fftservintf.h"
|
---|
7 | #include "fftpserver.h"
|
---|
8 | #include "alm.h"
|
---|
9 | #include "lambdaBuilder.h"
|
---|
10 |
|
---|
11 |
|
---|
12 | namespace SOPHYA {
|
---|
13 |
|
---|
14 | //
|
---|
15 | /*! Class for performing analysis and synthesis of sky maps using spin-0 or spin-2 spherical harmonics.
|
---|
16 | */
|
---|
17 | template <class T>
|
---|
18 | class SphericalTransformServer
|
---|
19 | {
|
---|
20 |
|
---|
21 | public:
|
---|
22 |
|
---|
23 | SphericalTransformServer()
|
---|
24 | {
|
---|
25 | fftIntfPtr_=new FFTPackServer;
|
---|
26 | fftIntfPtr_->setNormalize(false);
|
---|
27 | };
|
---|
28 | ~SphericalTransformServer(){ if (fftIntfPtr_!=NULL) delete fftIntfPtr_;};
|
---|
29 | /*!
|
---|
30 | Set a fft server. The constructor sets a default fft server (fft-pack). So it is not necessary to call this method for a standard use.
|
---|
31 | */
|
---|
32 | void SetFFTServer(FFTServerInterface* srv=NULL)
|
---|
33 | {
|
---|
34 | if (fftIntfPtr_!=NULL) delete fftIntfPtr_;
|
---|
35 | fftIntfPtr_=srv;
|
---|
36 | fftIntfPtr_->setNormalize(false);
|
---|
37 | }
|
---|
38 | /*! synthesis of a temperature map from Alm coefficients */
|
---|
39 | void GenerateFromAlm( SphericalMap<T>& map, int_4 pixelSizeIndex, const Alm<T>& alm) const;
|
---|
40 | /*! synthesis of a polarization map from Alm coefficients. The spheres mapq and mapu contain respectively the Stokes parameters. */
|
---|
41 | void GenerateFromAlm(SphericalMap<T>& mapq, SphericalMap<T>& mapu, int_4 pixelSizeIndex, const Alm<T>& alme, const Alm<T>& almb) const;
|
---|
42 |
|
---|
43 | /*! synthesis of a temperature map from power spectrum Cl (Alm's are generated randomly, following a gaussian distribution). */
|
---|
44 | void GenerateFromCl(SphericalMap<T>& sph, int_4 pixelSizeIndex,
|
---|
45 | const TVector<T>& Cl, const r_8 fwhm) const;
|
---|
46 | /*! synthesis of a polarization map from power spectra electric-Cl and magnetic-Cl (Alm's are generated randomly, following a gaussian distribution).
|
---|
47 | \param fwhm FWHM in arcmin for random generation of Alm's (eg. 5)
|
---|
48 |
|
---|
49 | */
|
---|
50 | void GenerateFromCl(SphericalMap<T>& sphq, SphericalMap<T>& sphu,
|
---|
51 | int_4 pixelSizeIndex,
|
---|
52 | const TVector<T>& Cle, const TVector<T>& Clb,
|
---|
53 | const r_8 fwhm) const;
|
---|
54 | /*!return the Alm coefficients from analysis of a temperature map.
|
---|
55 |
|
---|
56 | nlmax : maximum value of the l index
|
---|
57 |
|
---|
58 | cos_theta_cut : cosinus of the symmetric cut EULER angle theta : cos_theta_cut=0 means no cut ; cos_theta_cut=1 all the sphere is cut.
|
---|
59 | */
|
---|
60 |
|
---|
61 |
|
---|
62 | Alm<T> DecomposeToAlm(const SphericalMap<T>& map, int_4 nlmax, r_8 cos_theta_cut) const;
|
---|
63 | /*analysis of a polarization map into Alm coefficients.
|
---|
64 |
|
---|
65 | The spheres mapq and mapu contain respectively the Stokes parameters.
|
---|
66 |
|
---|
67 | a2lme and a2lmb will receive respectively electric and magnetic Alm's
|
---|
68 | nlmax : maximum value of the l index
|
---|
69 |
|
---|
70 | cos_theta_cut : cosinus of the symmetric cut EULER angle theta : cos_theta_cut=0 means no cut ; cos_theta_cut=1 all the sphere is cut.
|
---|
71 | */
|
---|
72 |
|
---|
73 | void DecomposeToAlm(const SphericalMap<T>& mapq, const SphericalMap<T>& mapu,
|
---|
74 | Alm<T>& a2lme, Alm<T>& a2lmb,
|
---|
75 | int_4 nlmax, r_8 cos_theta_cut) const;
|
---|
76 |
|
---|
77 | // /*return power spectrum from analysis of a temperature map.
|
---|
78 |
|
---|
79 | // nlmax : maximum value of the l index
|
---|
80 |
|
---|
81 | // cos_theta_cut : cosinus of the symmetric cut EULER angle theta : cos_theta_cut=0 means no cut ; cos_theta_cut=1 all the sphere is cut.
|
---|
82 | // */
|
---|
83 | TVector<T> DecomposeToCl(const SphericalMap<T>& sph,
|
---|
84 | int_4 nlmax, r_8 cos_theta_cut) const;
|
---|
85 |
|
---|
86 |
|
---|
87 | private:
|
---|
88 | /*! return a vector with nph elements which are sums :\f$\sum_{m=-mmax}^{mmax}b_m(\theta)e^{im\varphi}\f$ for nph values of \f$\varphi\f$ regularly distributed in \f$[0,\pi]\f$ ( calculated by FFT)
|
---|
89 |
|
---|
90 | The object b_m (\f$b_m\f$) of the class Bm is a special vector which index goes from -mmax to mmax.
|
---|
91 | */
|
---|
92 | TVector< complex<T> > fourierSynthesisFromB(const Bm<complex<T> >& b_m,
|
---|
93 | int_4 nph, r_8 phi0) const;
|
---|
94 | /*! same as fourierSynthesisFromB, but return a real vector, taking into account the fact that b(-m) is conjugate of b(m) */
|
---|
95 | TVector<T> RfourierSynthesisFromB(const Bm<complex<T> >& b_m,
|
---|
96 | int_4 nph, r_8 phi0) const;
|
---|
97 |
|
---|
98 | /*! return a vector with mmax elements which are sums :
|
---|
99 | \f$\sum_{k=0}^{nphi}datain(\theta,\varphi_k)e^{im\varphi_k}\f$ for (mmax+1) values of \f$m\f$ from 0 to mmax.
|
---|
100 | */
|
---|
101 | TVector< complex<T> > CFromFourierAnalysis(int_4 mmax,
|
---|
102 | const TVector<complex<T> > datain,
|
---|
103 | r_8 phi0) const;
|
---|
104 | /* same as previous one, but with a "datain" which is real (not complex) */
|
---|
105 | TVector< complex<T> > CFromFourierAnalysis(int_4 mmax,
|
---|
106 | const TVector<T> datain,
|
---|
107 | r_8 phi0) const;
|
---|
108 |
|
---|
109 | /*!
|
---|
110 | Compute polarized Alm's as :
|
---|
111 | \f[
|
---|
112 | a_{lm}^E=\frac{1}{\sqrt{2}}\sum_{slices}{\omega_{pix}\left(_{w}\lambda_l^m\tilde{Q}-i_{x}\lambda_l^m\tilde{U}\right)}
|
---|
113 | \f]
|
---|
114 | \f[
|
---|
115 | a_{lm}^B=\frac{1}{\sqrt{2}}\sum_{slices}{\omega_{pix}\left(i_{x}\lambda_l^m\tilde{Q}+_{w}\lambda_l^m\tilde{U}\right)}
|
---|
116 | \f]
|
---|
117 |
|
---|
118 | where \f$\tilde{Q}\f$ and \f$\tilde{U}\f$ are C-coefficients computed by FFT (method CFromFourierAnalysis, called by present method) from the Stokes parameters.
|
---|
119 |
|
---|
120 | \f$\omega_{pix}\f$ are solid angle of each pixel.
|
---|
121 |
|
---|
122 | dataq, datau : Stokes parameters.
|
---|
123 |
|
---|
124 | */
|
---|
125 | void almFromWX(int_4 nlmax, int_4 nmmax, r_8 phi0,
|
---|
126 | r_8 domega, r_8 theta,
|
---|
127 | const TVector<T>& dataq, const TVector<T>& datau,
|
---|
128 | Alm<T>& alme, Alm<T>& almb) const;
|
---|
129 | /*!
|
---|
130 | Compute polarized Alm's as :
|
---|
131 | \f[
|
---|
132 | a_{lm}^E=-\frac{1}{2}\sum_{slices}{\omega_{pix}\left(_{+}\lambda_l^m\tilde{P^+}+_{-}\lambda_l^m\tilde{P^-}\right)}
|
---|
133 | \f]
|
---|
134 | \f[
|
---|
135 | a_{lm}^B=\frac{i}{2}\sum_{slices}{\omega_{pix}\left(_{+}\lambda_l^m\tilde{P^+}-_{-}\lambda_l^m\tilde{P^-}\right)}
|
---|
136 | \f]
|
---|
137 |
|
---|
138 | where \f$\tilde{P^{\pm}}=\tilde{Q}\pm\tilde{U}\f$ computed by FFT (method CFromFourierAnalysis, called by present method) from the Stokes parameters,\f$Q\f$ and \f$U\f$ .
|
---|
139 |
|
---|
140 | \f$\omega_{pix}\f$ are solid angle of each pixel.
|
---|
141 |
|
---|
142 | dataq, datau : Stokes parameters.
|
---|
143 |
|
---|
144 | */
|
---|
145 | void almFromPM(int_4 nph, int_4 nlmax, int_4 nmmax,
|
---|
146 | r_8 phi0, r_8 domega, r_8 theta,
|
---|
147 | const TVector<T>& dataq, const TVector<T>& datau,
|
---|
148 | Alm<T>& alme, Alm<T>& almb) const;
|
---|
149 |
|
---|
150 | /*! synthesis of Stokes parameters following formulae :
|
---|
151 |
|
---|
152 | \f[
|
---|
153 | Q=\sum_{m=-mmax}^{mmax}b_m^qe^{im\varphi}
|
---|
154 | \f]
|
---|
155 | \f[
|
---|
156 | U=\sum_{m=-mmax}^{mmax}b_m^ue^{im\varphi}
|
---|
157 | \f]
|
---|
158 |
|
---|
159 | computed by FFT (method fourierSynthesisFromB called by the present one)
|
---|
160 |
|
---|
161 | with :
|
---|
162 |
|
---|
163 | \f[
|
---|
164 | b_m^q=-\frac{1}{\sqrt{2}}\sum_{l=|m|}^{lmax}{\left(_{w}\lambda_l^ma_{lm}^E-i_{x}\lambda_l^ma_{lm}^B\right) }
|
---|
165 | \f]
|
---|
166 | \f[
|
---|
167 | b_m^u=\frac{1}{\sqrt{2}}\sum_{l=|m|}^{lmax}{\left(i_{x}\lambda_l^ma_{lm}^E+_{w}\lambda_l^ma_{lm}^B\right) }
|
---|
168 | \f]
|
---|
169 | */
|
---|
170 | void mapFromWX(int_4 nlmax, int_4 nmmax,
|
---|
171 | SphericalMap<T>& mapq, SphericalMap<T>& mapu,
|
---|
172 | const Alm<T>& alme, const Alm<T>& almb) const;
|
---|
173 |
|
---|
174 | /*! synthesis of polarizations following formulae :
|
---|
175 |
|
---|
176 | \f[
|
---|
177 | P^+ = \sum_{m=-mmax}^{mmax} {b_m^+e^{im\varphi} }
|
---|
178 | \f]
|
---|
179 | \f[
|
---|
180 | P^- = \sum_{m=-mmax}^{mmax} {b_m^-e^{im\varphi} }
|
---|
181 | \f]
|
---|
182 |
|
---|
183 | computed by FFT (method fourierSynthesisFromB called by the present one)
|
---|
184 |
|
---|
185 | with :
|
---|
186 |
|
---|
187 | \f[
|
---|
188 | b_m^+=-\sum_{l=|m|}^{lmax}{_{+}\lambda_l^m \left( a_{lm}^E+ia_{lm}^B \right) }
|
---|
189 | \f]
|
---|
190 | \f[
|
---|
191 | b_m^-=-\sum_{l=|m|}^{lmax}{_{+}\lambda_l^m \left( a_{lm}^E-ia_{lm}^B \right) }
|
---|
192 | \f]
|
---|
193 | */
|
---|
194 |
|
---|
195 | void mapFromPM(int_4 nlmax, int_4 nmmax,
|
---|
196 | SphericalMap<T>& mapq, SphericalMap<T>& mapu,
|
---|
197 | const Alm<T>& alme, const Alm<T>& almb) const;
|
---|
198 |
|
---|
199 |
|
---|
200 |
|
---|
201 | FFTServerInterface* fftIntfPtr_;
|
---|
202 | };
|
---|
203 | } // Fin du namespace
|
---|
204 |
|
---|
205 |
|
---|
206 | #endif
|
---|