1 | #ifndef SPHERICALTRANFORMSERVER_SEEN
|
---|
2 | #define SPHERICALTRANFORMSERVER_SEEN
|
---|
3 |
|
---|
4 | #include "sphericalmap.h"
|
---|
5 | #include "fftservintf.h"
|
---|
6 | #include "fftpserver.h"
|
---|
7 | #include "alm.h"
|
---|
8 | #include "lambdaBuilder.h"
|
---|
9 |
|
---|
10 |
|
---|
11 | namespace SOPHYA {
|
---|
12 |
|
---|
13 | //
|
---|
14 | /*! Class for performing analysis and synthesis of sky maps using spin-0 or spin-2 spherical harmonics.
|
---|
15 | */
|
---|
16 | template <class T>
|
---|
17 | class SphericalTransformServer
|
---|
18 | {
|
---|
19 |
|
---|
20 | public:
|
---|
21 |
|
---|
22 | SphericalTransformServer()
|
---|
23 | {
|
---|
24 | fftIntfPtr_=new FFTPackServer;
|
---|
25 | fftIntfPtr_->setNormalize(false);
|
---|
26 | };
|
---|
27 | ~SphericalTransformServer(){ if (fftIntfPtr_!=NULL) delete fftIntfPtr_;};
|
---|
28 | /*!
|
---|
29 | Set a fft server. The constructor sets a default fft server (fft-pack). So it is not necessary to call this method for a standard use.
|
---|
30 | */
|
---|
31 | void SetFFTServer(FFTServerInterface* srv=NULL)
|
---|
32 | {
|
---|
33 | if (fftIntfPtr_!=NULL) delete fftIntfPtr_;
|
---|
34 | fftIntfPtr_=srv;
|
---|
35 | fftIntfPtr_->setNormalize(false);
|
---|
36 | }
|
---|
37 | /*! synthesis of a temperature map from Alm coefficients */
|
---|
38 | void GenerateFromAlm( SphericalMap<T>& map, int_4 pixelSizeIndex, const Alm<T>& alm) const;
|
---|
39 | /*! synthesis of a polarization map from Alm coefficients. The spheres mapq and mapu contain respectively the Stokes parameters. */
|
---|
40 | void GenerateFromAlm(SphericalMap<T>& mapq, SphericalMap<T>& mapu, int_4 pixelSizeIndex, const Alm<T>& alme, const Alm<T>& almb) const;
|
---|
41 |
|
---|
42 | /*! synthesis of a temperature map from power spectrum Cl (Alm's are generated randomly, following a gaussian distribution). */
|
---|
43 | void GenerateFromCl(SphericalMap<T>& sph, int_4 pixelSizeIndex,
|
---|
44 | const TVector<T>& Cl, const r_8 fwhm) const;
|
---|
45 | /*! synthesis of a polarization map from power spectra electric-Cl and magnetic-Cl (Alm's are generated randomly, following a gaussian distribution).
|
---|
46 | \param fwhm FWHM in arcmin for random generation of Alm's (eg. 5)
|
---|
47 |
|
---|
48 | */
|
---|
49 | void GenerateFromCl(SphericalMap<T>& sphq, SphericalMap<T>& sphu,
|
---|
50 | int_4 pixelSizeIndex,
|
---|
51 | const TVector<T>& Cle, const TVector<T>& Clb,
|
---|
52 | const r_8 fwhm) const;
|
---|
53 | /*!return the Alm coefficients from analysis of a temperature map.
|
---|
54 |
|
---|
55 | nlmax : maximum value of the l index
|
---|
56 |
|
---|
57 | cos_theta_cut : cosinus of the symmetric cut EULER angle theta : cos_theta_cut=0 means no cut ; cos_theta_cut=1 all the sphere is cut.
|
---|
58 | */
|
---|
59 |
|
---|
60 |
|
---|
61 | Alm<T> DecomposeToAlm(const SphericalMap<T>& map, int_4 nlmax, r_8 cos_theta_cut) const;
|
---|
62 | /*analysis of a polarization map into Alm coefficients.
|
---|
63 |
|
---|
64 | The spheres mapq and mapu contain respectively the Stokes parameters.
|
---|
65 |
|
---|
66 | a2lme and a2lmb will receive respectively electric and magnetic Alm's
|
---|
67 | nlmax : maximum value of the l index
|
---|
68 |
|
---|
69 | cos_theta_cut : cosinus of the symmetric cut EULER angle theta : cos_theta_cut=0 means no cut ; cos_theta_cut=1 all the sphere is cut.
|
---|
70 | */
|
---|
71 |
|
---|
72 | void DecomposeToAlm(const SphericalMap<T>& mapq, const SphericalMap<T>& mapu,
|
---|
73 | Alm<T>& a2lme, Alm<T>& a2lmb,
|
---|
74 | int_4 nlmax, r_8 cos_theta_cut) const;
|
---|
75 |
|
---|
76 | // /*return power spectrum from analysis of a temperature map.
|
---|
77 |
|
---|
78 | // nlmax : maximum value of the l index
|
---|
79 |
|
---|
80 | // cos_theta_cut : cosinus of the symmetric cut EULER angle theta : cos_theta_cut=0 means no cut ; cos_theta_cut=1 all the sphere is cut.
|
---|
81 | // */
|
---|
82 | TVector<T> DecomposeToCl(const SphericalMap<T>& sph,
|
---|
83 | int_4 nlmax, r_8 cos_theta_cut) const;
|
---|
84 |
|
---|
85 |
|
---|
86 | private:
|
---|
87 | /*! return a vector with nph elements which are sums :\f$\sum_{m=-mmax}^{mmax}b_m(\theta)e^{im\varphi}\f$ for nph values of \f$\varphi\f$ regularly distributed in \f$[0,\pi]\f$ ( calculated by FFT)
|
---|
88 |
|
---|
89 | The object b_m (\f$b_m\f$) of the class Bm is a special vector which index goes from -mmax to mmax.
|
---|
90 | */
|
---|
91 | TVector< complex<T> > fourierSynthesisFromB(const Bm<complex<T> >& b_m,
|
---|
92 | int_4 nph, r_8 phi0) const;
|
---|
93 | /*! same as fourierSynthesisFromB, but return a real vector, taking into account the fact that b(-m) is conjugate of b(m) */
|
---|
94 | TVector<T> RfourierSynthesisFromB(const Bm<complex<T> >& b_m,
|
---|
95 | int_4 nph, r_8 phi0) const;
|
---|
96 |
|
---|
97 | /*! return a vector with mmax elements which are sums :
|
---|
98 | \f$\sum_{k=0}^{nphi}datain(\theta,\varphi_k)e^{im\varphi_k}\f$ for (mmax+1) values of \f$m\f$ from 0 to mmax.
|
---|
99 | */
|
---|
100 | TVector< complex<T> > CFromFourierAnalysis(int_4 mmax,
|
---|
101 | const TVector<complex<T> > datain,
|
---|
102 | r_8 phi0) const;
|
---|
103 | /* same as previous one, but with a "datain" which is real (not complex) */
|
---|
104 | TVector< complex<T> > CFromFourierAnalysis(int_4 mmax,
|
---|
105 | const TVector<T> datain,
|
---|
106 | r_8 phi0) const;
|
---|
107 |
|
---|
108 | /*!
|
---|
109 | Compute polarized Alm's as :
|
---|
110 | \f[
|
---|
111 | a_{lm}^E=\frac{1}{\sqrt{2}}\sum_{slices}{\omega_{pix}\left(_{w}\lambda_l^m\tilde{Q}-i_{x}\lambda_l^m\tilde{U}\right)}
|
---|
112 | \f]
|
---|
113 | \f[
|
---|
114 | a_{lm}^B=\frac{1}{\sqrt{2}}\sum_{slices}{\omega_{pix}\left(i_{x}\lambda_l^m\tilde{Q}+_{w}\lambda_l^m\tilde{U}\right)}
|
---|
115 | \f]
|
---|
116 |
|
---|
117 | where \f$\tilde{Q}\f$ and \f$\tilde{U}\f$ are C-coefficients computed by FFT (method CFromFourierAnalysis, called by present method) from the Stokes parameters.
|
---|
118 |
|
---|
119 | \f$\omega_{pix}\f$ are solid angle of each pixel.
|
---|
120 |
|
---|
121 | dataq, datau : Stokes parameters.
|
---|
122 |
|
---|
123 | */
|
---|
124 | void almFromWX(int_4 nlmax, int_4 nmmax, r_8 phi0,
|
---|
125 | r_8 domega, r_8 theta,
|
---|
126 | const TVector<T>& dataq, const TVector<T>& datau,
|
---|
127 | Alm<T>& alme, Alm<T>& almb) const;
|
---|
128 | /*!
|
---|
129 | Compute polarized Alm's as :
|
---|
130 | \f[
|
---|
131 | a_{lm}^E=-\frac{1}{2}\sum_{slices}{\omega_{pix}\left(_{+}\lambda_l^m\tilde{P^+}+_{-}\lambda_l^m\tilde{P^-}\right)}
|
---|
132 | \f]
|
---|
133 | \f[
|
---|
134 | a_{lm}^B=\frac{i}{2}\sum_{slices}{\omega_{pix}\left(_{+}\lambda_l^m\tilde{P^+}-_{-}\lambda_l^m\tilde{P^-}\right)}
|
---|
135 | \f]
|
---|
136 |
|
---|
137 | where \f$\tilde{P^{\pm}}=\tilde{Q}\pm\tilde{U}\f$ computed by FFT (method CFromFourierAnalysis, called by present method) from the Stokes parameters,\f$Q\f$ and \f$U\f$ .
|
---|
138 |
|
---|
139 | \f$\omega_{pix}\f$ are solid angle of each pixel.
|
---|
140 |
|
---|
141 | dataq, datau : Stokes parameters.
|
---|
142 |
|
---|
143 | */
|
---|
144 | void almFromPM(int_4 nph, int_4 nlmax, int_4 nmmax,
|
---|
145 | r_8 phi0, r_8 domega, r_8 theta,
|
---|
146 | const TVector<T>& dataq, const TVector<T>& datau,
|
---|
147 | Alm<T>& alme, Alm<T>& almb) const;
|
---|
148 |
|
---|
149 | /*! synthesis of Stokes parameters following formulae :
|
---|
150 |
|
---|
151 | \f[
|
---|
152 | Q=\sum_{m=-mmax}^{mmax}b_m^qe^{im\varphi}
|
---|
153 | \f]
|
---|
154 | \f[
|
---|
155 | U=\sum_{m=-mmax}^{mmax}b_m^ue^{im\varphi}
|
---|
156 | \f]
|
---|
157 |
|
---|
158 | computed by FFT (method fourierSynthesisFromB called by the present one)
|
---|
159 |
|
---|
160 | with :
|
---|
161 |
|
---|
162 | \f[
|
---|
163 | b_m^q=-\frac{1}{\sqrt{2}}\sum_{l=|m|}^{lmax}{\left(_{w}\lambda_l^ma_{lm}^E-i_{x}\lambda_l^ma_{lm}^B\right) }
|
---|
164 | \f]
|
---|
165 | \f[
|
---|
166 | b_m^u=\frac{1}{\sqrt{2}}\sum_{l=|m|}^{lmax}{\left(i_{x}\lambda_l^ma_{lm}^E+_{w}\lambda_l^ma_{lm}^B\right) }
|
---|
167 | \f]
|
---|
168 | */
|
---|
169 | void mapFromWX(int_4 nlmax, int_4 nmmax,
|
---|
170 | SphericalMap<T>& mapq, SphericalMap<T>& mapu,
|
---|
171 | const Alm<T>& alme, const Alm<T>& almb) const;
|
---|
172 |
|
---|
173 | /*! synthesis of polarizations following formulae :
|
---|
174 |
|
---|
175 | \f[
|
---|
176 | P^+ = \sum_{m=-mmax}^{mmax} {b_m^+e^{im\varphi} }
|
---|
177 | \f]
|
---|
178 | \f[
|
---|
179 | P^- = \sum_{m=-mmax}^{mmax} {b_m^-e^{im\varphi} }
|
---|
180 | \f]
|
---|
181 |
|
---|
182 | computed by FFT (method fourierSynthesisFromB called by the present one)
|
---|
183 |
|
---|
184 | with :
|
---|
185 |
|
---|
186 | \f[
|
---|
187 | b_m^+=-\sum_{l=|m|}^{lmax}{_{+}\lambda_l^m \left( a_{lm}^E+ia_{lm}^B \right) }
|
---|
188 | \f]
|
---|
189 | \f[
|
---|
190 | b_m^-=-\sum_{l=|m|}^{lmax}{_{+}\lambda_l^m \left( a_{lm}^E-ia_{lm}^B \right) }
|
---|
191 | \f]
|
---|
192 | */
|
---|
193 |
|
---|
194 | void mapFromPM(int_4 nlmax, int_4 nmmax,
|
---|
195 | SphericalMap<T>& mapq, SphericalMap<T>& mapu,
|
---|
196 | const Alm<T>& alme, const Alm<T>& almb) const;
|
---|
197 |
|
---|
198 |
|
---|
199 |
|
---|
200 | FFTServerInterface* fftIntfPtr_;
|
---|
201 | };
|
---|
202 | } // Fin du namespace
|
---|
203 |
|
---|
204 |
|
---|
205 | #endif
|
---|