[262] | 1 | #include <math.h>
|
---|
| 2 | #include "vector3d.h"
|
---|
| 3 | #include "utilgeom.h"
|
---|
| 4 |
|
---|
| 5 | Vector3d::Vector3d()
|
---|
| 6 | {
|
---|
| 7 | Setxyz(1.,0.,0.);
|
---|
| 8 | }
|
---|
| 9 |
|
---|
| 10 | Vector3d::Vector3d(double x, double y, double z)
|
---|
| 11 | {
|
---|
| 12 | _x=x;
|
---|
| 13 | _y=y;
|
---|
| 14 | _z=z;
|
---|
| 15 | xyz2ThetaPhi();
|
---|
| 16 | }
|
---|
| 17 |
|
---|
| 18 | Vector3d::Vector3d(double theta, double phi)
|
---|
| 19 | {
|
---|
| 20 | _theta=mod(theta,M_PI); // dans [0;pi]
|
---|
| 21 | _phi=mod(phi,pi2); // dans [0;2pi]
|
---|
| 22 | ThetaPhi2xyz();
|
---|
| 23 | }
|
---|
| 24 |
|
---|
| 25 | Vector3d::Vector3d(const LongLat& ll)
|
---|
| 26 | {
|
---|
| 27 | _theta=ll.Theta(); // dans [0;pi]
|
---|
| 28 | _phi=ll.Phi(); // dans [0;2pi]
|
---|
| 29 | ThetaPhi2xyz();
|
---|
| 30 | }
|
---|
| 31 |
|
---|
| 32 | Vector3d::Vector3d(const Vector3d& v)
|
---|
| 33 | {
|
---|
| 34 | _x=v._x;
|
---|
| 35 | _y=v._y;
|
---|
| 36 | _z=v._z;
|
---|
| 37 | _theta=v._theta;
|
---|
| 38 | _phi=v._phi;
|
---|
| 39 | }
|
---|
| 40 |
|
---|
| 41 | void Vector3d::SetThetaPhi(double theta, double phi)
|
---|
| 42 | {
|
---|
| 43 | _theta=mod(theta,M_PI);
|
---|
| 44 | _phi=mod(phi,pi2);
|
---|
| 45 | ThetaPhi2xyz();
|
---|
| 46 | }
|
---|
| 47 |
|
---|
| 48 | void Vector3d::Setxyz(double x, double y, double z)
|
---|
| 49 | {
|
---|
| 50 | _x=x;
|
---|
| 51 | _y=y;
|
---|
| 52 | _z=z;
|
---|
| 53 | xyz2ThetaPhi();
|
---|
| 54 | }
|
---|
| 55 |
|
---|
| 56 | void Vector3d::ThetaPhi2xyz()
|
---|
| 57 | {
|
---|
| 58 | _x=sin(_theta)*cos(_phi);
|
---|
| 59 | _y=sin(_theta)*sin(_phi);
|
---|
| 60 | _z=cos(_theta);
|
---|
| 61 | }
|
---|
| 62 |
|
---|
| 63 | void Vector3d::xyz2ThetaPhi()
|
---|
| 64 | {
|
---|
| 65 | double norm=this->Norm();
|
---|
| 66 | if( norm != 0. )
|
---|
| 67 | {
|
---|
| 68 | _theta=acos(_z/norm); // dans [0,Pi]
|
---|
| 69 | if( mod(_theta,M_PI) == 0. ) _phi=0.; // on est sur +-Oz, le vecteur z est en phi=0
|
---|
| 70 | // else _phi=acos(_x/sin(_theta)/norm)+M_PI*(_y<0);
|
---|
| 71 | else _phi=scangle(_y/sin(_theta)/norm,_x/sin(_theta)/norm);
|
---|
| 72 | }
|
---|
| 73 | else // vecteur nul
|
---|
| 74 | {
|
---|
| 75 | _theta=0.;
|
---|
| 76 | _phi=0.;
|
---|
| 77 | }
|
---|
| 78 | }
|
---|
| 79 |
|
---|
| 80 | Vector3d& Vector3d::Normalize()
|
---|
| 81 | {
|
---|
| 82 | double norm=this->Norm();
|
---|
| 83 | if( norm != 0. ) (*this)/=norm;
|
---|
| 84 | else cerr << "Division par zero" << endl;
|
---|
| 85 | return *this;
|
---|
| 86 | }
|
---|
| 87 |
|
---|
| 88 | double Vector3d::Norm() const
|
---|
| 89 | {
|
---|
| 90 | return sqrt(_x*_x+_y*_y+_z*_z);
|
---|
| 91 | }
|
---|
| 92 |
|
---|
| 93 | double Vector3d::Psc(const Vector3d& v) const
|
---|
| 94 | {
|
---|
| 95 | return _x*v._x+_y*v._y+_z*v._z;
|
---|
| 96 | }
|
---|
| 97 |
|
---|
| 98 | double Vector3d::SepAngle(const Vector3d& v) const
|
---|
| 99 | {
|
---|
| 100 | double n1=this->Norm();
|
---|
| 101 | double n2=v.Norm();
|
---|
| 102 | double ret;
|
---|
| 103 | if( n1!=0. && n2!=0. ) ret=acos((this->Psc(v))/n1/n2);
|
---|
| 104 | else
|
---|
| 105 | {
|
---|
| 106 | cerr << "Division par zero" << endl;
|
---|
| 107 | ret=0.;
|
---|
| 108 | }
|
---|
| 109 | return ret;
|
---|
| 110 | }
|
---|
| 111 |
|
---|
| 112 | Vector3d Vector3d::Vect(const Vector3d& v) const
|
---|
| 113 | {
|
---|
| 114 | double xo=_y*v._z-_z*v._y;
|
---|
| 115 | double yo=_z*v._x-_x*v._z;
|
---|
| 116 | double zo=_x*v._y-_y*v._x;
|
---|
| 117 | return Vector3d(xo,yo,zo);
|
---|
| 118 | }
|
---|
| 119 |
|
---|
| 120 | Vector3d Vector3d::VperpPhi() const // vecteur perpendiculaire de meme phi
|
---|
| 121 | {
|
---|
| 122 | double theta;
|
---|
| 123 | if( _theta != pi_over_2 ) theta=_theta+(0.5-(_theta>pi_over_2))*M_PI; // on tourne theta de +-pi/2
|
---|
| 124 | else theta=0.;
|
---|
| 125 | return Vector3d(theta,_phi);
|
---|
| 126 | }
|
---|
| 127 |
|
---|
| 128 | Vector3d Vector3d::VperpTheta() const // vecteur perpendiculaire de meme theta
|
---|
| 129 | {
|
---|
| 130 | double phi=mod(_phi+pi_over_2,pi2); // on tourne phi de pi/2
|
---|
| 131 | return Vector3d(_theta,phi);
|
---|
| 132 | }
|
---|
| 133 |
|
---|
| 134 | Vector3d Vector3d::EPhi() const
|
---|
| 135 | {
|
---|
| 136 | Vector3d temp;
|
---|
[264] | 137 | if ( fabs(_z) == 1. ) // si on est en +- Oz
|
---|
[262] | 138 | {
|
---|
| 139 | temp=Vector3d(1.,0.,0.);
|
---|
| 140 | }
|
---|
| 141 | else
|
---|
| 142 | {
|
---|
| 143 | Vector3d k(0,0,-1);
|
---|
| 144 | temp=this->Vect(k);
|
---|
| 145 | temp.Normalize();
|
---|
| 146 | }
|
---|
| 147 | return temp;
|
---|
| 148 | }
|
---|
| 149 |
|
---|
| 150 | Vector3d Vector3d::ETheta() const
|
---|
| 151 | {
|
---|
| 152 | Vector3d temp=this->Vect(EPhi());
|
---|
| 153 | temp.Normalize();
|
---|
| 154 | return temp;
|
---|
| 155 | }
|
---|
| 156 |
|
---|
| 157 |
|
---|
| 158 | Vector3d Vector3d::Euler(double phi, double theta, double psi) const
|
---|
| 159 | {
|
---|
| 160 | double cpsi=cos(psi);
|
---|
| 161 | double ctheta=cos(theta);
|
---|
| 162 | double cphi=cos(phi);
|
---|
| 163 | double spsi=sin(psi);
|
---|
| 164 | double stheta=sin(theta);
|
---|
| 165 | double sphi=sin(phi);
|
---|
| 166 | double xnew=(cpsi*cphi-ctheta*sphi*spsi)*_x
|
---|
| 167 | +(cpsi*sphi+ctheta*cphi*spsi)*_y
|
---|
| 168 | +spsi*stheta*_z;
|
---|
| 169 | double ynew=(-spsi*cphi-ctheta*sphi*cpsi)*_x
|
---|
| 170 | +(-spsi*sphi+ctheta*cphi*cpsi)*_y
|
---|
| 171 | +cpsi*stheta*_z;
|
---|
| 172 | double znew=stheta*sphi*_x-stheta*cphi*_y+ctheta*_z;
|
---|
| 173 | return Vector3d(xnew,ynew,znew);
|
---|
| 174 | }
|
---|
| 175 |
|
---|
| 176 | Vector3d Vector3d::InvEuler(double phi, double theta, double psi) const
|
---|
| 177 | {
|
---|
| 178 | double cpsi=cos(psi);
|
---|
| 179 | double ctheta=cos(theta);
|
---|
| 180 | double cphi=cos(phi);
|
---|
| 181 | double spsi=sin(psi);
|
---|
| 182 | double stheta=sin(theta);
|
---|
| 183 | double sphi=sin(phi);
|
---|
| 184 | double xnew=(cpsi*cphi-ctheta*sphi*spsi)*_x
|
---|
| 185 | -(spsi*cphi+ctheta*sphi*cpsi)*_y
|
---|
| 186 | +sphi*stheta*_z;
|
---|
| 187 | double ynew=(cpsi*sphi+ctheta*cphi*spsi)*_x
|
---|
| 188 | +(-spsi*sphi+ctheta*cphi*cpsi)*_y
|
---|
| 189 | -cphi*stheta*_z;
|
---|
| 190 | double znew=stheta*spsi*_x+stheta*cpsi*_y+ctheta*_z;
|
---|
| 191 | return Vector3d(xnew,ynew,znew);
|
---|
| 192 | }
|
---|
| 193 |
|
---|
| 194 | Vector3d Vector3d::Rotate(const Vector3d& omega, double phi)
|
---|
| 195 | {
|
---|
| 196 | Vector3d rotationaxis=omega;
|
---|
| 197 | rotationaxis.Normalize();
|
---|
| 198 | double n=this->Psc(rotationaxis);
|
---|
| 199 | Vector3d myself=*this;
|
---|
| 200 | Vector3d rotate=n*rotationaxis+(myself-n*rotationaxis)*cos(phi)-(myself^rotationaxis)*sin(phi);
|
---|
| 201 | return rotate;
|
---|
| 202 | }
|
---|
| 203 |
|
---|
| 204 | Vector3d& Vector3d::operator+=(const Vector3d& v)
|
---|
| 205 | {
|
---|
| 206 | *this=*this+v;
|
---|
| 207 | return *this;
|
---|
| 208 | }
|
---|
| 209 |
|
---|
| 210 | Vector3d& Vector3d::operator-=(const Vector3d& v)
|
---|
| 211 | {
|
---|
| 212 | *this=*this-v;
|
---|
| 213 | return *this;
|
---|
| 214 | }
|
---|
| 215 |
|
---|
| 216 | Vector3d& Vector3d::operator+=(double d)
|
---|
| 217 | {
|
---|
| 218 | Setxyz(_x+d,_y+d,_z+d);
|
---|
| 219 | return *this;
|
---|
| 220 | }
|
---|
| 221 |
|
---|
| 222 | Vector3d& Vector3d::operator/=(double d)
|
---|
| 223 | {
|
---|
| 224 | if( d != 0. ) Setxyz(_x/d,_y/d,_z/d);
|
---|
| 225 | else cerr << "Division par zero." << endl;
|
---|
| 226 | return *this;
|
---|
| 227 | }
|
---|
| 228 |
|
---|
| 229 | Vector3d& Vector3d::operator*=(double d)
|
---|
| 230 | {
|
---|
| 231 | Setxyz(_x*d,_y*d,_z*d);
|
---|
| 232 | return *this;
|
---|
| 233 | }
|
---|
| 234 |
|
---|
| 235 | Vector3d Vector3d::operator^(const Vector3d& v) const
|
---|
| 236 | {
|
---|
| 237 | return this->Vect(v);
|
---|
| 238 | }
|
---|
| 239 |
|
---|
| 240 | Vector3d Vector3d::operator+(double d) const
|
---|
| 241 | {
|
---|
| 242 | return Vector3d(_x+d,_y+d,_z+d);
|
---|
| 243 | }
|
---|
| 244 |
|
---|
| 245 | Vector3d Vector3d::operator+(const Vector3d& v) const
|
---|
| 246 | {
|
---|
| 247 | return Vector3d(_x+v._x,_y+v._y,_z+v._z);
|
---|
| 248 | }
|
---|
| 249 |
|
---|
| 250 | Vector3d Vector3d::operator-(double d) const
|
---|
| 251 | {
|
---|
| 252 | return *this+(-d);
|
---|
| 253 | }
|
---|
| 254 |
|
---|
| 255 | Vector3d Vector3d::operator-(const Vector3d& v) const
|
---|
| 256 | {
|
---|
| 257 | return *this+(v*(-1.));
|
---|
| 258 | }
|
---|
| 259 |
|
---|
| 260 | Vector3d Vector3d::operator*(double d) const
|
---|
| 261 | {
|
---|
| 262 | return Vector3d(d*_x,d*_y,d*_z);
|
---|
| 263 | }
|
---|
| 264 |
|
---|
| 265 | double Vector3d::operator*(const Vector3d& v) const
|
---|
| 266 | {
|
---|
| 267 | return this->Psc(v);
|
---|
| 268 | }
|
---|
| 269 |
|
---|
| 270 | Vector3d Vector3d::operator/(double d) const
|
---|
| 271 | {
|
---|
| 272 | Vector3d ret=*this;
|
---|
| 273 | if( d != 0. ) ret/=d;
|
---|
| 274 | else cerr << "Division par zero." << endl;
|
---|
| 275 | return ret;
|
---|
| 276 | }
|
---|
| 277 |
|
---|
| 278 | Vector3d& Vector3d::operator=(const Vector3d& v)
|
---|
| 279 | {
|
---|
| 280 | if( this != &v )
|
---|
| 281 | {
|
---|
| 282 | _x=v._x;
|
---|
| 283 | _y=v._y;
|
---|
| 284 | _z=v._z;
|
---|
| 285 | _theta=v._theta;
|
---|
| 286 | _phi=v._phi;
|
---|
| 287 | }
|
---|
| 288 | return *this;
|
---|
| 289 | }
|
---|
| 290 |
|
---|
| 291 | bool Vector3d::operator==(const Vector3d& v)
|
---|
| 292 | {
|
---|
| 293 | return (this==&v);
|
---|
| 294 | }
|
---|
| 295 |
|
---|
| 296 | void Vector3d::Print(ostream& os) const
|
---|
| 297 | {
|
---|
| 298 | os << "Vector3: (X,Y,Z)= (" << _x << ", " << _y << ", " << _z
|
---|
| 299 | << ") --- Theta,Phi= " << _theta << ", " << _phi << "\n"
|
---|
| 300 | << "Norme = " << this->Norm() << endl;
|
---|
| 301 | }
|
---|