source: Sophya/trunk/SophyaLib/SkyMap/HEALPixUtils.cc@ 1364

Last change on this file since 1364 was 1196, checked in by ansari, 25 years ago

Introduction de la classe HEALPix pour accrocher les methodes de
converion angle<>index
rajout en methodes inline static de ces methodes de conversion pour
SphereHEALPix<T>
+ Autre modifs cosmetiques + MAJ Makefile , Reza 21/9/2000

File size: 20.0 KB
Line 
1// utilitaires de pixelisation HEALPix
2#include "HEALPixUtils.h"
3#include <iostream.h>
4#include <math.h>
5//#include <complex>
6#include "tvector.h"
7#include "smathconst.h"
8extern "C"
9{
10#include <stdio.h>
11#include <stdlib.h>
12#include <unistd.h>
13}
14
15using namespace SOPHYA;
16
17//////////////////////////////////////////////////////////////////////////
18//
19// ------------- Classe PIXELS_XY -----------------------
20//
21class PIXELS_XY
22{
23
24public :
25
26static PIXELS_XY& instance();
27
28NDataBlock<int_4> pix2x_;
29NDataBlock<int_4> pix2y_;
30NDataBlock<int_4> x2pix_;
31NDataBlock<int_4> y2pix_;
32
33private :
34
35PIXELS_XY();
36void mk_pix2xy();
37void mk_xy2pix();
38};
39
40
41
42//*******************************************************************
43// Class PIXELS_XY
44// Construction des tableaux necessaires a la traduction des indices RING en
45// indices NESTED (ou l'inverse)
46//*******************************************************************
47
48PIXELS_XY::PIXELS_XY()
49{
50 pix2x_.ReSize(1024);
51 pix2x_.Reset();
52 pix2y_.ReSize(1024);
53 pix2y_.Reset();
54 x2pix_.ReSize(128);
55 x2pix_.Reset();
56 y2pix_.ReSize(128);
57 y2pix_.Reset();
58 mk_pix2xy();
59 mk_xy2pix();
60}
61
62// Instance unique de la classe PIXELS_XY
63static PIXELS_XY * single = NULL;
64
65PIXELS_XY& PIXELS_XY::instance()
66{
67 if (single == NULL) single = new PIXELS_XY ;
68 return (*single);
69}
70
71void PIXELS_XY::mk_pix2xy()
72{
73 /*
74 ==================================================
75 subroutine mk_pix2xy
76 ==================================================
77 c constructs the array giving x and y in the face from pixel number
78 c for the nested (quad-cube like) ordering of pixels
79 c
80 c the bits corresponding to x and y are interleaved in the pixel number
81 c one breaks up the pixel number by even and odd bits
82 ==================================================
83 */
84 // tranlated from FORTRAN (Gorski) to C, by B. Revenu, revised Guy Le Meur
85 // (16/12/98)
86
87 int kpix, jpix, IX, IY, IP, ID;
88
89 for(kpix = 0; kpix < 1024; kpix++)
90 {
91 jpix = kpix;
92 IX = 0;
93 IY = 0;
94 IP = 1 ;// ! bit position (in x and y)
95 while( jpix!=0 )
96 { // ! go through all the bits
97 ID=jpix%2;// ! bit value (in kpix), goes in ix
98 jpix = jpix/2;
99 IX = ID*IP+IX;
100
101 ID=jpix%2;// ! bit value (in kpix), goes in iy
102 jpix = jpix/2;
103 IY = ID*IP+IY;
104
105 IP = 2*IP;// ! next bit (in x and y)
106 }
107 pix2x_(kpix) = IX;// ! in 0,31
108 pix2y_(kpix) = IY;// ! in 0,31
109 }
110}
111
112void PIXELS_XY::mk_xy2pix()
113{
114 /*
115 =================================================
116 subroutine mk_xy2pix
117 =================================================
118 c sets the array giving the number of the pixel lying in (x,y)
119 c x and y are in {1,128}
120 c the pixel number is in {0,128**2-1}
121 c
122 c if i-1 = sum_p=0 b_p * 2^p
123 c then ix = sum_p=0 b_p * 4^p
124 c iy = 2*ix
125 c ix + iy in {0, 128**2 -1}
126 =================================================
127 */
128 // tranlated from FORTRAN (Gorski) to C, by B. Revenu, revised Guy Le Meur
129 // (16/12/98)
130
131 int K,IP,I,J,ID;
132 for(I = 1; I <= 128; I++)
133 {
134 J = I-1;// !pixel numbers
135 K = 0;//
136 IP = 1;//
137 truc : if( J==0 )
138 {
139 x2pix_(I-1) = K;
140 y2pix_(I-1) = 2*K;
141 }
142 else
143 {
144 ID = (int)fmod(J,2);
145 J = J/2;
146 K = IP*ID+K;
147 IP = IP*4;
148 goto truc;
149 }
150 }
151}
152
153
154
155int_4 HEALPix::nest2ring(int_4 nside, int_4 ipnest)
156{
157 /*
158 ====================================================
159 subroutine nest2ring(nside, ipnest, ipring)
160 ====================================================
161 c conversion from NESTED to RING pixel number
162 ====================================================
163 */
164 // tranlated from FORTRAN (Gorski) to C, by B. Revenu, revised Guy Le Meur
165 // (16/12/98)
166
167 const PIXELS_XY& PXY= PIXELS_XY::instance();
168
169 int npix, npface, face_num, ncap, n_before;
170 int ipf, ip_low, ip_trunc, ip_med, ip_hi;
171 int ix, iy, jrt, jr, nr, jpt, jp, kshift, nl4;
172 int ns_max=8192;
173 int jrll[12]={2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4};
174 int jpll[12]={1, 3, 5, 7, 0, 2, 4, 6, 1, 3, 5, 7};
175
176 if( nside<1 || nside>ns_max ) {
177 cout << "nside out of range" << endl;
178 exit(0);
179 }
180 npix = 12 * nside* nside;
181 if( ipnest<0 || ipnest>npix-1 ) {
182 cout << "ipnest out of range" << endl;
183 exit(0);
184 }
185
186 ncap = 2* nside*( nside-1);// ! number of points in the North Polar cap
187 nl4 = 4* nside;
188
189 //c finds the face, and the number in the face
190 npface = nside* nside;
191 //cccccc ip = ipnest - 1 ! in {0,npix-1}
192
193 face_num = ipnest/npface;// ! face number in {0,11}
194 ipf =ipnest%npface;// ! pixel number in the face {0,npface-1}
195 //c finds the x,y on the face (starting from the lowest corner)
196 //c from the pixel number
197 ip_low=ipf%1024; // ! content of the last 10 bits
198 ip_trunc = ipf/1024; // ! truncation of the last 10 bits
199 ip_med=ip_trunc%1024; // ! content of the next 10 bits
200 ip_hi = ip_trunc/1024;// ! content of the high weight 10 bits
201
202 ix = 1024*PXY.pix2x_(ip_hi)+32*PXY.pix2x_(ip_med)+PXY.pix2x_(ip_low);
203 iy = 1024*PXY.pix2y_(ip_hi)+32*PXY.pix2y_(ip_med)+PXY.pix2y_(ip_low);
204
205 //c transforms this in (horizontal, vertical) coordinates
206 jrt = ix + iy;// ! 'vertical' in {0,2*(nside-1)}
207 jpt = ix - iy;// ! 'horizontal' in {-nside+1,nside-1}
208
209 //c computes the z coordinate on the sphere
210 // jr = jrll[face_num+1]*nside - jrt - 1;// ! ring number in {1,4*nside-1}
211 jr = jrll[face_num]*nside - jrt - 1;
212 nr = nside;// ! equatorial region (the most frequent)
213 n_before = ncap + nl4 * (jr - nside);
214 kshift=(jr - nside)%2;
215 if( jr<nside ) {//then ! north pole region
216 nr = jr;
217 n_before = 2 * nr * (nr - 1);
218 kshift = 0;
219 }
220 else if( jr>3*nside ) {//then ! south pole region
221 nr = nl4 - jr;
222 n_before = npix - 2 * (nr + 1) * nr;
223 kshift = 0;
224 }
225
226 //c computes the phi coordinate on the sphere, in [0,2Pi]
227 jp = (jpll[face_num]*nr + jpt + 1 + kshift)/2;// ! 'phi' number in the ring in {1,4*nr}
228
229 if( jp>nl4 ) jp = jp - nl4;
230 if( jp<1 ) jp = jp + nl4;
231
232 int aux=n_before + jp - 1;
233 return (n_before + jp - 1);// ! in {0, npix-1}
234}
235
236
237int_4 HEALPix::ring2nest(int_4 nside, int_4 ipring)
238{
239 /*
240 ==================================================
241 subroutine ring2nest(nside, ipring, ipnest)
242 ==================================================
243 c conversion from RING to NESTED pixel number
244 ==================================================
245 */
246 // tranlated from FORTRAN (Gorski) to C, by B. Revenu, revised Guy Le Meur
247 // (16/12/98)
248
249 const PIXELS_XY& PXY= PIXELS_XY::instance();
250
251 double fihip, hip;
252 int npix, nl2, nl4, ncap, ip, iphi, ipt, ipring1;
253 int kshift, face_num, nr;
254 int irn, ire, irm, irs, irt, ifm , ifp;
255 int ix, iy, ix_low, ix_hi, iy_low, iy_hi, ipf;
256 int ns_max(8192);
257
258 // coordinate of the lowest corner of each face
259 int jrll[12]={2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4};// ! in unit of nside
260 int jpll[12]={1, 3, 5, 7, 0, 2, 4, 6, 1, 3, 5, 7};//! in unit of nside/2
261
262 if( nside<1 || nside>ns_max ) {
263 cout << "nside out of range" << endl;
264 exit(0);
265 }
266 npix = 12 * nside*nside;
267 if( ipring<0 || ipring>npix-1 ) {
268 cout << "ipring out of range" << endl;
269 exit(0);
270 }
271
272 nl2 = 2*nside;
273 nl4 = 4*nside;
274 npix = 12*nside*nside;// ! total number of points
275 ncap = 2*nside*(nside-1);// ! points in each polar cap, =0 for nside =1
276 ipring1 = ipring + 1;
277
278 //c finds the ring number, the position of the ring and the face number
279 if( ipring1<=ncap ) {//then
280
281 hip = ipring1/2.;
282 fihip = floor ( hip );
283 irn = (int)floor( sqrt( hip - sqrt(fihip) ) ) + 1;// ! counted from North pole
284 iphi = ipring1 - 2*irn*(irn - 1);
285
286 kshift = 0;
287 nr = irn ;// ! 1/4 of the number of points on the current ring
288 face_num = (iphi-1) / irn;// ! in {0,3}
289 }
290 else if( ipring1<=nl2*(5*nside+1) ) {//then
291
292 ip = ipring1 - ncap - 1;
293 irn = (int)floor( ip / nl4 ) + nside;// ! counted from North pole
294 iphi = (int)fmod(ip,nl4) + 1;
295
296 kshift = (int)fmod(irn+nside,2);// ! 1 if irn+nside is odd, 0 otherwise
297 nr = nside;
298 ire = irn - nside + 1;// ! in {1, 2*nside +1}
299 irm = nl2 + 2 - ire;
300 ifm = (iphi - ire/2 + nside -1) / nside;// ! face boundary
301 ifp = (iphi - irm/2 + nside -1) / nside;
302 if( ifp==ifm ) {//then ! faces 4 to 7
303 face_num = (int)fmod(ifp,4) + 4;
304 }
305 else if( ifp + 1==ifm ) {//then ! (half-)faces 0 to 3
306 face_num = ifp;
307 }
308 else if( ifp - 1==ifm ) {//then ! (half-)faces 8 to 11
309 face_num = ifp + 7;
310 }
311 }
312 else {
313
314 ip = npix - ipring1 + 1;
315 hip = ip/2.;
316 fihip = floor ( hip );
317 irs = (int)floor( sqrt( hip - sqrt(fihip) ) ) + 1;// ! counted from South pole
318 iphi = 4*irs + 1 - (ip - 2*irs*(irs-1));
319
320 kshift = 0;
321 nr = irs;
322 irn = nl4 - irs;
323 face_num = (iphi-1) / irs + 8;// ! in {8,11}
324 }
325
326 //c finds the (x,y) on the face
327 irt = irn - jrll[face_num]*nside + 1;// ! in {-nside+1,0}
328 ipt = 2*iphi - jpll[face_num]*nr - kshift - 1;// ! in {-nside+1,nside-1}
329
330
331 if( ipt>=nl2 ) ipt = ipt - 8*nside;// ! for the face #4
332
333 ix = (ipt - irt ) / 2;
334 iy = -(ipt + irt ) / 2;
335
336 ix_low = (int)fmod(ix,128);
337 ix_hi = ix/128;
338 iy_low = (int)fmod(iy,128);
339 iy_hi = iy/128;
340 ipf=(PXY.x2pix_(ix_hi)+PXY.y2pix_(iy_hi))*(128*128)+(PXY.x2pix_(ix_low)+PXY.y2pix_(iy_low));
341
342 return (ipf + face_num* nside *nside);// ! in {0, 12*nside**2 - 1}
343}
344
345int_4 HEALPix::ang2pix_ring(int_4 nside, double theta, double phi)
346{
347 /*
348 ==================================================
349 c gives the pixel number ipix (RING)
350 c corresponding to angles theta and phi
351 c==================================================
352 */
353 // tranlated from FORTRAN (Gorski) to C, by B. Revenu, revised Guy Le Meur
354 // (16/12/98)
355
356 int nl2, nl4, ncap, npix, jp, jm, ipix1;
357 double z, za, tt, tp, tmp;
358 int ir, ip, kshift;
359
360 double piover2(Pi/2.);
361 double twopi(2.*Pi);
362 double z0(2./3.);
363 int ns_max(8192);
364
365 if( nside<1 || nside>ns_max ) {
366 cout << "nside out of range" << endl;
367 exit(0);
368 }
369
370 if( theta<0. || theta>Pi) {
371 cout << "theta out of range" << endl;
372 exit(0);
373 }
374
375 z = cos(theta);
376 za = fabs(z);
377 if( phi >= twopi) phi = phi - twopi;
378 if (phi < 0.) phi = phi + twopi;
379 tt = phi / piover2;// ! in [0,4)
380
381 nl2 = 2*nside;
382 nl4 = 4*nside;
383 ncap = nl2*(nside-1);// ! number of pixels in the north polar cap
384 npix = 12*nside*nside;
385
386 if( za <= z0 ) {
387
388 jp = (int)floor(nside*(0.5 + tt - z*0.75));// ! index of ascending edge line
389 jm = (int)floor(nside*(0.5 + tt + z*0.75));// ! index of descending edge line
390
391 ir = nside + 1 + jp - jm;// ! in {1,2n+1} (ring number counted from z=2/3)
392 kshift = 0;
393 if (fmod(ir,2)==0.) kshift = 1;// ! kshift=1 if ir even, 0 otherwise
394
395 ip = (int)floor( ( jp+jm - nside + kshift + 1 ) / 2 ) + 1;// ! in {1,4n}
396 if( ip>nl4 ) ip = ip - nl4;
397
398 ipix1 = ncap + nl4*(ir-1) + ip ;
399 }
400 else {
401
402 tp = tt - floor(tt);// !MOD(tt,1.d0)
403 tmp = sqrt( 3.*(1. - za) );
404
405 jp = (int)floor( nside * tp * tmp );// ! increasing edge line index
406 jm = (int)floor( nside * (1. - tp) * tmp );// ! decreasing edge line index
407
408 ir = jp + jm + 1;// ! ring number counted from the closest pole
409 ip = (int)floor( tt * ir ) + 1;// ! in {1,4*ir}
410 if( ip>4*ir ) ip = ip - 4*ir;
411
412 ipix1 = 2*ir*(ir-1) + ip;
413 if( z<=0. ) {
414 ipix1 = npix - 2*ir*(ir+1) + ip;
415 }
416 }
417 return (ipix1 - 1);// ! in {0, npix-1}
418}
419
420int_4 HEALPix::ang2pix_nest(int_4 nside, double theta, double phi)
421{
422 /*
423 ==================================================
424 subroutine ang2pix_nest(nside, theta, phi, ipix)
425 ==================================================
426 c gives the pixel number ipix (NESTED)
427 c corresponding to angles theta and phi
428 c
429 c the computation is made to the highest resolution available (nside=8192)
430 c and then degraded to that required (by integer division)
431 c this doesn't cost more, and it makes sure
432 c that the treatement of round-off will be consistent
433 c for every resolution
434 ==================================================
435 */
436 // tranlated from FORTRAN (Gorski) to C, by B. Revenu, revised Guy Le Meur
437 // (16/12/98)
438
439 const PIXELS_XY& PXY= PIXELS_XY::instance();
440
441 double z, za, z0, tt, tp, tmp;
442 int face_num,jp,jm;
443 int ifp, ifm;
444 int ix, iy, ix_low, ix_hi, iy_low, iy_hi, ipf, ntt;
445 double piover2(Pi/2.), twopi(2.*Pi);
446 int ns_max(8192);
447
448 if( nside<1 || nside>ns_max ) {
449 cout << "nside out of range" << endl;
450 exit(0);
451 }
452 if( theta<0 || theta>Pi ) {
453 cout << "theta out of range" << endl;
454 exit(0);
455 }
456 z = cos(theta);
457 za = fabs(z);
458 z0 = 2./3.;
459 if( phi>=twopi ) phi = phi - twopi;
460 if( phi<0. ) phi = phi + twopi;
461 tt = phi / piover2;// ! in [0,4[
462 if( za<=z0 ) { // then ! equatorial region
463
464 //(the index of edge lines increase when the longitude=phi goes up)
465 jp = (int)floor(ns_max*(0.5 + tt - z*0.75));// ! ascending edge line index
466 jm = (int)floor(ns_max*(0.5 + tt + z*0.75));// ! descending edge line index
467
468 //c finds the face
469 ifp = jp / ns_max;// ! in {0,4}
470 ifm = jm / ns_max;
471 if( ifp==ifm ) face_num = (int)fmod(ifp,4) + 4; //then ! faces 4 to 7
472 else if( ifp<ifm ) face_num = (int)fmod(ifp,4); // (half-)faces 0 to 3
473 else face_num = (int)fmod(ifm,4) + 8;//! (half-)faces 8 to 11
474
475 ix = (int)fmod(jm, ns_max);
476 iy = ns_max - (int)fmod(jp, ns_max) - 1;
477 }
478 else { //! polar region, za > 2/3
479
480 ntt = (int)floor(tt);
481 if( ntt>=4 ) ntt = 3;
482 tp = tt - ntt;
483 tmp = sqrt( 3.*(1. - za) );// ! in ]0,1]
484
485 //(the index of edge lines increase when distance from the closest pole goes up)
486 jp = (int)floor(ns_max*tp*tmp); // ! line going toward the pole as phi increases
487 jm = (int)floor(ns_max*(1.-tp)*tmp); // ! that one goes away of the closest pole
488 jp = (int)min(ns_max-1, jp);// ! for points too close to the boundary
489 jm = (int)min(ns_max-1, jm);
490
491 // finds the face and pixel's (x,y)
492 if( z>=0 ) {
493 face_num = ntt;// ! in {0,3}
494 ix = ns_max - jm - 1;
495 iy = ns_max - jp - 1;
496 }
497 else {
498 face_num = ntt + 8;// ! in {8,11}
499 ix = jp;
500 iy = jm;
501 }
502 }
503
504 ix_low = (int)fmod(ix,128);
505 ix_hi = ix/128;
506 iy_low = (int)fmod(iy,128);
507 iy_hi = iy/128;
508 ipf= (PXY.x2pix_(ix_hi)+PXY.y2pix_(iy_hi))*(128*128)+(PXY.x2pix_(ix_low)+PXY.y2pix_(iy_low));
509 // ipf = ipf / pow(ns_max/nside,2.);// ! in {0, nside**2 - 1}
510 // return ( ipf + face_num*pow(nside,2));// ! in {0, 12*nside**2 - 1}
511 // $CHECK$ Reza 25/10/99 , pow remplace par *
512 ipf = ipf / ((ns_max/nside)*(ns_max/nside));
513 return (ipf + face_num*nside*nside);
514}
515
516void HEALPix::pix2ang_ring(int_4 nside,int_4 ipix,double& theta,double& phi)
517{
518 /*
519 ===================================================
520 c gives theta and phi corresponding to pixel ipix (RING)
521 c for a parameter nside
522 ===================================================
523 */
524 // tranlated from FORTRAN (Gorski) to C, by B. Revenu, revised Guy Le Meur
525 // (16/12/98)
526
527 int nl2, nl4, npix, ncap, iring, iphi, ip, ipix1;
528 double fact1, fact2, fodd, hip, fihip;
529
530 int ns_max(8192);
531
532 if( nside<1 || nside>ns_max ) {
533 cout << "nside out of range" << endl;
534 exit(0);
535 }
536 npix = 12*nside*nside; // ! total number of points
537 if( ipix<0 || ipix>npix-1 ) {
538 cout << "ipix out of range" << endl;
539 exit(0);
540 }
541
542 ipix1 = ipix + 1; // in {1, npix}
543 nl2 = 2*nside;
544 nl4 = 4*nside;
545 ncap = 2*nside*(nside-1);// ! points in each polar cap, =0 for nside =1
546 fact1 = 1.5*nside;
547 fact2 = 3.0*nside*nside;
548
549 if( ipix1 <= ncap ) { //! North Polar cap -------------
550
551 hip = ipix1/2.;
552 fihip = floor(hip);
553 iring = (int)floor( sqrt( hip - sqrt(fihip) ) ) + 1;// ! counted from North pole
554 iphi = ipix1 - 2*iring*(iring - 1);
555
556 theta = acos( 1. - iring*iring / fact2 );
557 phi = ((double)iphi - 0.5) * Pi/(2.*iring);
558 // cout << theta << " " << phi << endl;
559 }
560 else if( ipix1 <= nl2*(5*nside+1) ) {//then ! Equatorial region ------
561
562 ip = ipix1 - ncap - 1;
563 iring = (int)floor( ip / nl4 ) + nside;// ! counted from North pole
564 iphi = ip%nl4 + 1;
565
566 fodd = 0.5 * (1 + (iring+nside)%2 );// ! 1 if iring+nside is odd, 1/2 otherwise
567 theta = acos( (nl2 - iring) / fact1 );
568 phi = ((double)iphi - fodd) * Pi /(2.*nside);
569 }
570 else {//! South Polar cap -----------------------------------
571
572 ip = npix - ipix1 + 1;
573 hip = ip/2.;
574 fihip = floor(hip);
575 iring = (int)floor( sqrt( hip - sqrt(fihip) ) ) + 1;// ! counted from South pole
576 iphi = (int)(4.*iring + 1 - (ip - 2.*iring*(iring-1)));
577
578 theta = acos( -1. + iring*iring / fact2 );
579 phi = ((double)iphi - 0.5) * Pi/(2.*iring);
580 // cout << theta << " " << phi << endl;
581 }
582}
583
584void HEALPix::pix2ang_nest(int_4 nside,int_4 ipix,double& theta,double& phi)
585{
586 /*
587 ==================================================
588 subroutine pix2ang_nest(nside, ipix, theta, phi)
589 ==================================================
590 c gives theta and phi corresponding to pixel ipix (NESTED)
591 c for a parameter nside
592 ==================================================
593 */
594 // tranlated from FORTRAN (Gorski) to C, by B. Revenu, revised Guy Le Meur
595 // (16/12/98)
596
597 const PIXELS_XY& PXY= PIXELS_XY::instance();
598
599 int npix, npface, face_num;
600 int ipf, ip_low, ip_trunc, ip_med, ip_hi;
601 int ix, iy, jrt, jr, nr, jpt, jp, kshift, nl4;
602 double z, fn, fact1, fact2;
603 double piover2(Pi/2.);
604 int ns_max(8192);
605
606 // ! coordinate of the lowest corner of each face
607 int jrll[12]={2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4};//! in unit of nside
608 int jpll[12]={1, 3, 5, 7, 0, 2, 4, 6, 1, 3, 5, 7};// ! in unit of nside/2
609
610 if( nside<1 || nside>ns_max ) {
611 cout << "nside out of range" << endl;
612 exit(0);
613 }
614 npix = 12 * nside*nside;
615 if( ipix<0 || ipix>npix-1 ) {
616 cout << "ipix out of range" << endl;
617 exit(0);
618 }
619
620 fn = 1.*nside;
621 fact1 = 1./(3.*fn*fn);
622 fact2 = 2./(3.*fn);
623 nl4 = 4*nside;
624
625 //c finds the face, and the number in the face
626 npface = nside*nside;
627
628 face_num = ipix/npface;// ! face number in {0,11}
629 ipf = (int)fmod(ipix,npface);// ! pixel number in the face {0,npface-1}
630
631 //c finds the x,y on the face (starting from the lowest corner)
632 //c from the pixel number
633 ip_low = (int)fmod(ipf,1024);// ! content of the last 10 bits
634 ip_trunc = ipf/1024 ;// ! truncation of the last 10 bits
635 ip_med = (int)fmod(ip_trunc,1024);// ! content of the next 10 bits
636 ip_hi = ip_trunc/1024 ;//! content of the high weight 10 bits
637
638 ix = 1024*PXY.pix2x_(ip_hi)+32*PXY.pix2x_(ip_med)+PXY.pix2x_(ip_low);
639 iy = 1024*PXY.pix2y_(ip_hi)+32*PXY.pix2y_(ip_med)+PXY.pix2y_(ip_low);
640
641 //c transforms this in (horizontal, vertical) coordinates
642 jrt = ix + iy;// ! 'vertical' in {0,2*(nside-1)}
643 jpt = ix - iy;// ! 'horizontal' in {-nside+1,nside-1}
644
645 //c computes the z coordinate on the sphere
646 // jr = jrll[face_num+1]*nside - jrt - 1;// ! ring number in {1,4*nside-1}
647 jr = jrll[face_num]*nside - jrt - 1;
648 nr = nside;// ! equatorial region (the most frequent)
649 z = (2*nside-jr)*fact2;
650 kshift = (int)fmod(jr - nside, 2);
651 if( jr<nside ) { //then ! north pole region
652 nr = jr;
653 z = 1. - nr*nr*fact1;
654 kshift = 0;
655 }
656 else {
657 if( jr>3*nside ) {// then ! south pole region
658 nr = nl4 - jr;
659 z = - 1. + nr*nr*fact1;
660 kshift = 0;
661 }
662 }
663 theta = acos(z);
664
665 //c computes the phi coordinate on the sphere, in [0,2Pi]
666 // jp = (jpll[face_num+1]*nr + jpt + 1 + kshift)/2;// ! 'phi' number in the ring in {1,4*nr}
667 jp = (jpll[face_num]*nr + jpt + 1 + kshift)/2;
668 if( jp>nl4 ) jp = jp - nl4;
669 if( jp<1 ) jp = jp + nl4;
670 phi = (jp - (kshift+1)*0.5) * (piover2 / nr);
671}
672
673
Note: See TracBrowser for help on using the repository browser.