1 | // utilitaires de pixelisation HEALPix
|
---|
2 | #include "HEALPixUtils.h"
|
---|
3 | #include <iostream.h>
|
---|
4 | #include <math.h>
|
---|
5 | //#include <complex>
|
---|
6 | #include "tvector.h"
|
---|
7 | #include "smathconst.h"
|
---|
8 | extern "C"
|
---|
9 | {
|
---|
10 | #include <stdio.h>
|
---|
11 | #include <stdlib.h>
|
---|
12 | #include <unistd.h>
|
---|
13 | }
|
---|
14 |
|
---|
15 | using namespace SOPHYA;
|
---|
16 |
|
---|
17 | //////////////////////////////////////////////////////////////////////////
|
---|
18 | //
|
---|
19 | // ------------- Classe PIXELS_XY -----------------------
|
---|
20 | //
|
---|
21 | class PIXELS_XY
|
---|
22 | {
|
---|
23 |
|
---|
24 | public :
|
---|
25 |
|
---|
26 | static PIXELS_XY& instance();
|
---|
27 |
|
---|
28 | NDataBlock<int_4> pix2x_;
|
---|
29 | NDataBlock<int_4> pix2y_;
|
---|
30 | NDataBlock<int_4> x2pix_;
|
---|
31 | NDataBlock<int_4> y2pix_;
|
---|
32 |
|
---|
33 | private :
|
---|
34 |
|
---|
35 | PIXELS_XY();
|
---|
36 | void mk_pix2xy();
|
---|
37 | void mk_xy2pix();
|
---|
38 | };
|
---|
39 |
|
---|
40 |
|
---|
41 |
|
---|
42 | //*******************************************************************
|
---|
43 | // Class PIXELS_XY
|
---|
44 | // Construction des tableaux necessaires a la traduction des indices RING en
|
---|
45 | // indices NESTED (ou l'inverse)
|
---|
46 | //*******************************************************************
|
---|
47 |
|
---|
48 | PIXELS_XY::PIXELS_XY()
|
---|
49 | {
|
---|
50 | pix2x_.ReSize(1024);
|
---|
51 | pix2x_.Reset();
|
---|
52 | pix2y_.ReSize(1024);
|
---|
53 | pix2y_.Reset();
|
---|
54 | x2pix_.ReSize(128);
|
---|
55 | x2pix_.Reset();
|
---|
56 | y2pix_.ReSize(128);
|
---|
57 | y2pix_.Reset();
|
---|
58 | mk_pix2xy();
|
---|
59 | mk_xy2pix();
|
---|
60 | }
|
---|
61 |
|
---|
62 | // Instance unique de la classe PIXELS_XY
|
---|
63 | static PIXELS_XY * _singleton = NULL;
|
---|
64 |
|
---|
65 | PIXELS_XY& PIXELS_XY::instance()
|
---|
66 | {
|
---|
67 | if (_singleton == NULL) _singleton = new PIXELS_XY ;
|
---|
68 | return (*_singleton);
|
---|
69 | }
|
---|
70 |
|
---|
71 | void PIXELS_XY::mk_pix2xy()
|
---|
72 | {
|
---|
73 | /*
|
---|
74 | ==================================================
|
---|
75 | subroutine mk_pix2xy
|
---|
76 | ==================================================
|
---|
77 | c constructs the array giving x and y in the face from pixel number
|
---|
78 | c for the nested (quad-cube like) ordering of pixels
|
---|
79 | c
|
---|
80 | c the bits corresponding to x and y are interleaved in the pixel number
|
---|
81 | c one breaks up the pixel number by even and odd bits
|
---|
82 | ==================================================
|
---|
83 | */
|
---|
84 | // tranlated from FORTRAN (Gorski) to C, by B. Revenu, revised Guy Le Meur
|
---|
85 | // (16/12/98)
|
---|
86 |
|
---|
87 | int kpix, jpix, IX, IY, IP, ID;
|
---|
88 |
|
---|
89 | for(kpix = 0; kpix < 1024; kpix++)
|
---|
90 | {
|
---|
91 | jpix = kpix;
|
---|
92 | IX = 0;
|
---|
93 | IY = 0;
|
---|
94 | IP = 1 ;// ! bit position (in x and y)
|
---|
95 | while( jpix!=0 )
|
---|
96 | { // ! go through all the bits
|
---|
97 | ID=jpix%2;// ! bit value (in kpix), goes in ix
|
---|
98 | jpix = jpix/2;
|
---|
99 | IX = ID*IP+IX;
|
---|
100 |
|
---|
101 | ID=jpix%2;// ! bit value (in kpix), goes in iy
|
---|
102 | jpix = jpix/2;
|
---|
103 | IY = ID*IP+IY;
|
---|
104 |
|
---|
105 | IP = 2*IP;// ! next bit (in x and y)
|
---|
106 | }
|
---|
107 | pix2x_(kpix) = IX;// ! in 0,31
|
---|
108 | pix2y_(kpix) = IY;// ! in 0,31
|
---|
109 | }
|
---|
110 | }
|
---|
111 |
|
---|
112 | void PIXELS_XY::mk_xy2pix()
|
---|
113 | {
|
---|
114 | /*
|
---|
115 | =================================================
|
---|
116 | subroutine mk_xy2pix
|
---|
117 | =================================================
|
---|
118 | c sets the array giving the number of the pixel lying in (x,y)
|
---|
119 | c x and y are in {1,128}
|
---|
120 | c the pixel number is in {0,128**2-1}
|
---|
121 | c
|
---|
122 | c if i-1 = sum_p=0 b_p * 2^p
|
---|
123 | c then ix = sum_p=0 b_p * 4^p
|
---|
124 | c iy = 2*ix
|
---|
125 | c ix + iy in {0, 128**2 -1}
|
---|
126 | =================================================
|
---|
127 | */
|
---|
128 | // tranlated from FORTRAN (Gorski) to C, by B. Revenu, revised Guy Le Meur
|
---|
129 | // (16/12/98)
|
---|
130 |
|
---|
131 | int K,IP,I,J,ID;
|
---|
132 | for(I = 1; I <= 128; I++)
|
---|
133 | {
|
---|
134 | J = I-1;// !pixel numbers
|
---|
135 | K = 0;//
|
---|
136 | IP = 1;//
|
---|
137 | truc : if( J==0 )
|
---|
138 | {
|
---|
139 | x2pix_(I-1) = K;
|
---|
140 | y2pix_(I-1) = 2*K;
|
---|
141 | }
|
---|
142 | else
|
---|
143 | {
|
---|
144 | ID = (int)fmod(J,2);
|
---|
145 | J = J/2;
|
---|
146 | K = IP*ID+K;
|
---|
147 | IP = IP*4;
|
---|
148 | goto truc;
|
---|
149 | }
|
---|
150 | }
|
---|
151 | }
|
---|
152 |
|
---|
153 |
|
---|
154 |
|
---|
155 | int_4 HEALPix::nest2ring(int_4 nside, int_4 ipnest)
|
---|
156 | {
|
---|
157 | /*
|
---|
158 | ====================================================
|
---|
159 | subroutine nest2ring(nside, ipnest, ipring)
|
---|
160 | ====================================================
|
---|
161 | c conversion from NESTED to RING pixel number
|
---|
162 | ====================================================
|
---|
163 | */
|
---|
164 | // tranlated from FORTRAN (Gorski) to C, by B. Revenu, revised Guy Le Meur
|
---|
165 | // (16/12/98)
|
---|
166 |
|
---|
167 | const PIXELS_XY& PXY= PIXELS_XY::instance();
|
---|
168 |
|
---|
169 | int npix, npface, face_num, ncap, n_before;
|
---|
170 | int ipf, ip_low, ip_trunc, ip_med, ip_hi;
|
---|
171 | int ix, iy, jrt, jr, nr, jpt, jp, kshift, nl4;
|
---|
172 | int ns_max=8192;
|
---|
173 | int jrll[12]={2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4};
|
---|
174 | int jpll[12]={1, 3, 5, 7, 0, 2, 4, 6, 1, 3, 5, 7};
|
---|
175 |
|
---|
176 | if( nside<1 || nside>ns_max ) {
|
---|
177 | cout << "nside out of range" << endl;
|
---|
178 | exit(0);
|
---|
179 | }
|
---|
180 | npix = 12 * nside* nside;
|
---|
181 | if( ipnest<0 || ipnest>npix-1 ) {
|
---|
182 | cout << "ipnest out of range" << endl;
|
---|
183 | exit(0);
|
---|
184 | }
|
---|
185 |
|
---|
186 | ncap = 2* nside*( nside-1);// ! number of points in the North Polar cap
|
---|
187 | nl4 = 4* nside;
|
---|
188 |
|
---|
189 | //c finds the face, and the number in the face
|
---|
190 | npface = nside* nside;
|
---|
191 | //cccccc ip = ipnest - 1 ! in {0,npix-1}
|
---|
192 |
|
---|
193 | face_num = ipnest/npface;// ! face number in {0,11}
|
---|
194 | ipf =ipnest%npface;// ! pixel number in the face {0,npface-1}
|
---|
195 | //c finds the x,y on the face (starting from the lowest corner)
|
---|
196 | //c from the pixel number
|
---|
197 | ip_low=ipf%1024; // ! content of the last 10 bits
|
---|
198 | ip_trunc = ipf/1024; // ! truncation of the last 10 bits
|
---|
199 | ip_med=ip_trunc%1024; // ! content of the next 10 bits
|
---|
200 | ip_hi = ip_trunc/1024;// ! content of the high weight 10 bits
|
---|
201 |
|
---|
202 | ix = 1024*PXY.pix2x_(ip_hi)+32*PXY.pix2x_(ip_med)+PXY.pix2x_(ip_low);
|
---|
203 | iy = 1024*PXY.pix2y_(ip_hi)+32*PXY.pix2y_(ip_med)+PXY.pix2y_(ip_low);
|
---|
204 |
|
---|
205 | //c transforms this in (horizontal, vertical) coordinates
|
---|
206 | jrt = ix + iy;// ! 'vertical' in {0,2*(nside-1)}
|
---|
207 | jpt = ix - iy;// ! 'horizontal' in {-nside+1,nside-1}
|
---|
208 |
|
---|
209 | //c computes the z coordinate on the sphere
|
---|
210 | // jr = jrll[face_num+1]*nside - jrt - 1;// ! ring number in {1,4*nside-1}
|
---|
211 | jr = jrll[face_num]*nside - jrt - 1;
|
---|
212 | nr = nside;// ! equatorial region (the most frequent)
|
---|
213 | n_before = ncap + nl4 * (jr - nside);
|
---|
214 | kshift=(jr - nside)%2;
|
---|
215 | if( jr<nside ) {//then ! north pole region
|
---|
216 | nr = jr;
|
---|
217 | n_before = 2 * nr * (nr - 1);
|
---|
218 | kshift = 0;
|
---|
219 | }
|
---|
220 | else if( jr>3*nside ) {//then ! south pole region
|
---|
221 | nr = nl4 - jr;
|
---|
222 | n_before = npix - 2 * (nr + 1) * nr;
|
---|
223 | kshift = 0;
|
---|
224 | }
|
---|
225 |
|
---|
226 | //c computes the phi coordinate on the sphere, in [0,2Pi]
|
---|
227 | jp = (jpll[face_num]*nr + jpt + 1 + kshift)/2;// ! 'phi' number in the ring in {1,4*nr}
|
---|
228 |
|
---|
229 | if( jp>nl4 ) jp = jp - nl4;
|
---|
230 | if( jp<1 ) jp = jp + nl4;
|
---|
231 |
|
---|
232 | int aux=n_before + jp - 1;
|
---|
233 | return (n_before + jp - 1);// ! in {0, npix-1}
|
---|
234 | }
|
---|
235 |
|
---|
236 |
|
---|
237 | int_4 HEALPix::ring2nest(int_4 nside, int_4 ipring)
|
---|
238 | {
|
---|
239 | /*
|
---|
240 | ==================================================
|
---|
241 | subroutine ring2nest(nside, ipring, ipnest)
|
---|
242 | ==================================================
|
---|
243 | c conversion from RING to NESTED pixel number
|
---|
244 | ==================================================
|
---|
245 | */
|
---|
246 | // tranlated from FORTRAN (Gorski) to C, by B. Revenu, revised Guy Le Meur
|
---|
247 | // (16/12/98)
|
---|
248 |
|
---|
249 | const PIXELS_XY& PXY= PIXELS_XY::instance();
|
---|
250 |
|
---|
251 | double fihip, hip;
|
---|
252 | int npix, nl2, nl4, ncap, ip, iphi, ipt, ipring1;
|
---|
253 | int kshift, face_num, nr;
|
---|
254 | int irn, ire, irm, irs, irt, ifm , ifp;
|
---|
255 | int ix, iy, ix_low, ix_hi, iy_low, iy_hi, ipf;
|
---|
256 | int ns_max(8192);
|
---|
257 |
|
---|
258 | // coordinate of the lowest corner of each face
|
---|
259 | int jrll[12]={2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4};// ! in unit of nside
|
---|
260 | int jpll[12]={1, 3, 5, 7, 0, 2, 4, 6, 1, 3, 5, 7};//! in unit of nside/2
|
---|
261 |
|
---|
262 | if( nside<1 || nside>ns_max ) {
|
---|
263 | cout << "nside out of range" << endl;
|
---|
264 | exit(0);
|
---|
265 | }
|
---|
266 | npix = 12 * nside*nside;
|
---|
267 | if( ipring<0 || ipring>npix-1 ) {
|
---|
268 | cout << "ipring out of range" << endl;
|
---|
269 | exit(0);
|
---|
270 | }
|
---|
271 |
|
---|
272 | nl2 = 2*nside;
|
---|
273 | nl4 = 4*nside;
|
---|
274 | npix = 12*nside*nside;// ! total number of points
|
---|
275 | ncap = 2*nside*(nside-1);// ! points in each polar cap, =0 for nside =1
|
---|
276 | ipring1 = ipring + 1;
|
---|
277 |
|
---|
278 | //c finds the ring number, the position of the ring and the face number
|
---|
279 | if( ipring1<=ncap ) {//then
|
---|
280 |
|
---|
281 | hip = ipring1/2.;
|
---|
282 | fihip = floor ( hip );
|
---|
283 | irn = (int)floor( sqrt( hip - sqrt(fihip) ) ) + 1;// ! counted from North pole
|
---|
284 | iphi = ipring1 - 2*irn*(irn - 1);
|
---|
285 |
|
---|
286 | kshift = 0;
|
---|
287 | nr = irn ;// ! 1/4 of the number of points on the current ring
|
---|
288 | face_num = (iphi-1) / irn;// ! in {0,3}
|
---|
289 | }
|
---|
290 | else if( ipring1<=nl2*(5*nside+1) ) {//then
|
---|
291 |
|
---|
292 | ip = ipring1 - ncap - 1;
|
---|
293 | irn = (int)floor( ip / nl4 ) + nside;// ! counted from North pole
|
---|
294 | iphi = (int)fmod(ip,nl4) + 1;
|
---|
295 |
|
---|
296 | kshift = (int)fmod(irn+nside,2);// ! 1 if irn+nside is odd, 0 otherwise
|
---|
297 | nr = nside;
|
---|
298 | ire = irn - nside + 1;// ! in {1, 2*nside +1}
|
---|
299 | irm = nl2 + 2 - ire;
|
---|
300 | ifm = (iphi - ire/2 + nside -1) / nside;// ! face boundary
|
---|
301 | ifp = (iphi - irm/2 + nside -1) / nside;
|
---|
302 | if( ifp==ifm ) {//then ! faces 4 to 7
|
---|
303 | face_num = (int)fmod(ifp,4) + 4;
|
---|
304 | }
|
---|
305 | else if( ifp + 1==ifm ) {//then ! (half-)faces 0 to 3
|
---|
306 | face_num = ifp;
|
---|
307 | }
|
---|
308 | else if( ifp - 1==ifm ) {//then ! (half-)faces 8 to 11
|
---|
309 | face_num = ifp + 7;
|
---|
310 | }
|
---|
311 | }
|
---|
312 | else {
|
---|
313 |
|
---|
314 | ip = npix - ipring1 + 1;
|
---|
315 | hip = ip/2.;
|
---|
316 | fihip = floor ( hip );
|
---|
317 | irs = (int)floor( sqrt( hip - sqrt(fihip) ) ) + 1;// ! counted from South pole
|
---|
318 | iphi = 4*irs + 1 - (ip - 2*irs*(irs-1));
|
---|
319 |
|
---|
320 | kshift = 0;
|
---|
321 | nr = irs;
|
---|
322 | irn = nl4 - irs;
|
---|
323 | face_num = (iphi-1) / irs + 8;// ! in {8,11}
|
---|
324 | }
|
---|
325 |
|
---|
326 | //c finds the (x,y) on the face
|
---|
327 | irt = irn - jrll[face_num]*nside + 1;// ! in {-nside+1,0}
|
---|
328 | ipt = 2*iphi - jpll[face_num]*nr - kshift - 1;// ! in {-nside+1,nside-1}
|
---|
329 |
|
---|
330 |
|
---|
331 | if( ipt>=nl2 ) ipt = ipt - 8*nside;// ! for the face #4
|
---|
332 |
|
---|
333 | ix = (ipt - irt ) / 2;
|
---|
334 | iy = -(ipt + irt ) / 2;
|
---|
335 |
|
---|
336 | ix_low = (int)fmod(ix,128);
|
---|
337 | ix_hi = ix/128;
|
---|
338 | iy_low = (int)fmod(iy,128);
|
---|
339 | iy_hi = iy/128;
|
---|
340 | ipf=(PXY.x2pix_(ix_hi)+PXY.y2pix_(iy_hi))*(128*128)+(PXY.x2pix_(ix_low)+PXY.y2pix_(iy_low));
|
---|
341 |
|
---|
342 | return (ipf + face_num* nside *nside);// ! in {0, 12*nside**2 - 1}
|
---|
343 | }
|
---|
344 |
|
---|
345 | int_4 HEALPix::ang2pix_ring(int_4 nside, double theta, double phi)
|
---|
346 | {
|
---|
347 | /*
|
---|
348 | ==================================================
|
---|
349 | c gives the pixel number ipix (RING)
|
---|
350 | c corresponding to angles theta and phi
|
---|
351 | c==================================================
|
---|
352 | */
|
---|
353 | // tranlated from FORTRAN (Gorski) to C, by B. Revenu, revised Guy Le Meur
|
---|
354 | // (16/12/98)
|
---|
355 |
|
---|
356 | int nl2, nl4, ncap, npix, jp, jm, ipix1;
|
---|
357 | double z, za, tt, tp, tmp;
|
---|
358 | int ir, ip, kshift;
|
---|
359 |
|
---|
360 | double piover2(Pi/2.);
|
---|
361 | double twopi(2.*Pi);
|
---|
362 | double z0(2./3.);
|
---|
363 | int ns_max(8192);
|
---|
364 |
|
---|
365 | if( nside<1 || nside>ns_max ) {
|
---|
366 | cout << "nside out of range" << endl;
|
---|
367 | exit(0);
|
---|
368 | }
|
---|
369 |
|
---|
370 | if( theta<0. || theta>Pi) {
|
---|
371 | cout << "theta out of range" << endl;
|
---|
372 | exit(0);
|
---|
373 | }
|
---|
374 |
|
---|
375 | z = cos(theta);
|
---|
376 | za = fabs(z);
|
---|
377 | if( phi >= twopi) phi = phi - twopi;
|
---|
378 | if (phi < 0.) phi = phi + twopi;
|
---|
379 | tt = phi / piover2;// ! in [0,4)
|
---|
380 |
|
---|
381 | nl2 = 2*nside;
|
---|
382 | nl4 = 4*nside;
|
---|
383 | ncap = nl2*(nside-1);// ! number of pixels in the north polar cap
|
---|
384 | npix = 12*nside*nside;
|
---|
385 |
|
---|
386 | if( za <= z0 ) {
|
---|
387 |
|
---|
388 | jp = (int)floor(nside*(0.5 + tt - z*0.75));// ! index of ascending edge line
|
---|
389 | jm = (int)floor(nside*(0.5 + tt + z*0.75));// ! index of descending edge line
|
---|
390 |
|
---|
391 | ir = nside + 1 + jp - jm;// ! in {1,2n+1} (ring number counted from z=2/3)
|
---|
392 | kshift = 0;
|
---|
393 | if (fmod(ir,2)==0.) kshift = 1;// ! kshift=1 if ir even, 0 otherwise
|
---|
394 |
|
---|
395 | ip = (int)floor( ( jp+jm - nside + kshift + 1 ) / 2 ) + 1;// ! in {1,4n}
|
---|
396 | if( ip>nl4 ) ip = ip - nl4;
|
---|
397 |
|
---|
398 | ipix1 = ncap + nl4*(ir-1) + ip ;
|
---|
399 | }
|
---|
400 | else {
|
---|
401 |
|
---|
402 | tp = tt - floor(tt);// !MOD(tt,1.d0)
|
---|
403 | tmp = sqrt( 3.*(1. - za) );
|
---|
404 |
|
---|
405 | jp = (int)floor( nside * tp * tmp );// ! increasing edge line index
|
---|
406 | jm = (int)floor( nside * (1. - tp) * tmp );// ! decreasing edge line index
|
---|
407 |
|
---|
408 | ir = jp + jm + 1;// ! ring number counted from the closest pole
|
---|
409 | ip = (int)floor( tt * ir ) + 1;// ! in {1,4*ir}
|
---|
410 | if( ip>4*ir ) ip = ip - 4*ir;
|
---|
411 |
|
---|
412 | ipix1 = 2*ir*(ir-1) + ip;
|
---|
413 | if( z<=0. ) {
|
---|
414 | ipix1 = npix - 2*ir*(ir+1) + ip;
|
---|
415 | }
|
---|
416 | }
|
---|
417 | return (ipix1 - 1);// ! in {0, npix-1}
|
---|
418 | }
|
---|
419 |
|
---|
420 | int_4 HEALPix::ang2pix_nest(int_4 nside, double theta, double phi)
|
---|
421 | {
|
---|
422 | /*
|
---|
423 | ==================================================
|
---|
424 | subroutine ang2pix_nest(nside, theta, phi, ipix)
|
---|
425 | ==================================================
|
---|
426 | c gives the pixel number ipix (NESTED)
|
---|
427 | c corresponding to angles theta and phi
|
---|
428 | c
|
---|
429 | c the computation is made to the highest resolution available (nside=8192)
|
---|
430 | c and then degraded to that required (by integer division)
|
---|
431 | c this doesn't cost more, and it makes sure
|
---|
432 | c that the treatement of round-off will be consistent
|
---|
433 | c for every resolution
|
---|
434 | ==================================================
|
---|
435 | */
|
---|
436 | // tranlated from FORTRAN (Gorski) to C, by B. Revenu, revised Guy Le Meur
|
---|
437 | // (16/12/98)
|
---|
438 |
|
---|
439 | const PIXELS_XY& PXY= PIXELS_XY::instance();
|
---|
440 |
|
---|
441 | double z, za, z0, tt, tp, tmp;
|
---|
442 | int face_num,jp,jm;
|
---|
443 | int ifp, ifm;
|
---|
444 | int ix, iy, ix_low, ix_hi, iy_low, iy_hi, ipf, ntt;
|
---|
445 | double piover2(Pi/2.), twopi(2.*Pi);
|
---|
446 | int ns_max(8192);
|
---|
447 |
|
---|
448 | if( nside<1 || nside>ns_max ) {
|
---|
449 | cout << "nside out of range" << endl;
|
---|
450 | exit(0);
|
---|
451 | }
|
---|
452 | if( theta<0 || theta>Pi ) {
|
---|
453 | cout << "theta out of range" << endl;
|
---|
454 | exit(0);
|
---|
455 | }
|
---|
456 | z = cos(theta);
|
---|
457 | za = fabs(z);
|
---|
458 | z0 = 2./3.;
|
---|
459 | if( phi>=twopi ) phi = phi - twopi;
|
---|
460 | if( phi<0. ) phi = phi + twopi;
|
---|
461 | tt = phi / piover2;// ! in [0,4[
|
---|
462 | if( za<=z0 ) { // then ! equatorial region
|
---|
463 |
|
---|
464 | //(the index of edge lines increase when the longitude=phi goes up)
|
---|
465 | jp = (int)floor(ns_max*(0.5 + tt - z*0.75));// ! ascending edge line index
|
---|
466 | jm = (int)floor(ns_max*(0.5 + tt + z*0.75));// ! descending edge line index
|
---|
467 |
|
---|
468 | //c finds the face
|
---|
469 | ifp = jp / ns_max;// ! in {0,4}
|
---|
470 | ifm = jm / ns_max;
|
---|
471 | if( ifp==ifm ) face_num = (int)fmod(ifp,4) + 4; //then ! faces 4 to 7
|
---|
472 | else if( ifp<ifm ) face_num = (int)fmod(ifp,4); // (half-)faces 0 to 3
|
---|
473 | else face_num = (int)fmod(ifm,4) + 8;//! (half-)faces 8 to 11
|
---|
474 |
|
---|
475 | ix = (int)fmod(jm, ns_max);
|
---|
476 | iy = ns_max - (int)fmod(jp, ns_max) - 1;
|
---|
477 | }
|
---|
478 | else { //! polar region, za > 2/3
|
---|
479 |
|
---|
480 | ntt = (int)floor(tt);
|
---|
481 | if( ntt>=4 ) ntt = 3;
|
---|
482 | tp = tt - ntt;
|
---|
483 | tmp = sqrt( 3.*(1. - za) );// ! in ]0,1]
|
---|
484 |
|
---|
485 | //(the index of edge lines increase when distance from the closest pole goes up)
|
---|
486 | jp = (int)floor(ns_max*tp*tmp); // ! line going toward the pole as phi increases
|
---|
487 | jm = (int)floor(ns_max*(1.-tp)*tmp); // ! that one goes away of the closest pole
|
---|
488 | jp = (int)min(ns_max-1, jp);// ! for points too close to the boundary
|
---|
489 | jm = (int)min(ns_max-1, jm);
|
---|
490 |
|
---|
491 | // finds the face and pixel's (x,y)
|
---|
492 | if( z>=0 ) {
|
---|
493 | face_num = ntt;// ! in {0,3}
|
---|
494 | ix = ns_max - jm - 1;
|
---|
495 | iy = ns_max - jp - 1;
|
---|
496 | }
|
---|
497 | else {
|
---|
498 | face_num = ntt + 8;// ! in {8,11}
|
---|
499 | ix = jp;
|
---|
500 | iy = jm;
|
---|
501 | }
|
---|
502 | }
|
---|
503 |
|
---|
504 | ix_low = (int)fmod(ix,128);
|
---|
505 | ix_hi = ix/128;
|
---|
506 | iy_low = (int)fmod(iy,128);
|
---|
507 | iy_hi = iy/128;
|
---|
508 | ipf= (PXY.x2pix_(ix_hi)+PXY.y2pix_(iy_hi))*(128*128)+(PXY.x2pix_(ix_low)+PXY.y2pix_(iy_low));
|
---|
509 | // ipf = ipf / pow(ns_max/nside,2.);// ! in {0, nside**2 - 1}
|
---|
510 | // return ( ipf + face_num*pow(nside,2));// ! in {0, 12*nside**2 - 1}
|
---|
511 | // $CHECK$ Reza 25/10/99 , pow remplace par *
|
---|
512 | ipf = ipf / ((ns_max/nside)*(ns_max/nside));
|
---|
513 | return (ipf + face_num*nside*nside);
|
---|
514 | }
|
---|
515 |
|
---|
516 | void HEALPix::pix2ang_ring(int_4 nside,int_4 ipix,double& theta,double& phi)
|
---|
517 | {
|
---|
518 | /*
|
---|
519 | ===================================================
|
---|
520 | c gives theta and phi corresponding to pixel ipix (RING)
|
---|
521 | c for a parameter nside
|
---|
522 | ===================================================
|
---|
523 | */
|
---|
524 | // tranlated from FORTRAN (Gorski) to C, by B. Revenu, revised Guy Le Meur
|
---|
525 | // (16/12/98)
|
---|
526 |
|
---|
527 | int nl2, nl4, npix, ncap, iring, iphi, ip, ipix1;
|
---|
528 | double fact1, fact2, fodd, hip, fihip;
|
---|
529 |
|
---|
530 | int ns_max(8192);
|
---|
531 |
|
---|
532 | if( nside<1 || nside>ns_max ) {
|
---|
533 | cout << "nside out of range" << endl;
|
---|
534 | exit(0);
|
---|
535 | }
|
---|
536 | npix = 12*nside*nside; // ! total number of points
|
---|
537 | if( ipix<0 || ipix>npix-1 ) {
|
---|
538 | cout << "ipix out of range" << endl;
|
---|
539 | exit(0);
|
---|
540 | }
|
---|
541 |
|
---|
542 | ipix1 = ipix + 1; // in {1, npix}
|
---|
543 | nl2 = 2*nside;
|
---|
544 | nl4 = 4*nside;
|
---|
545 | ncap = 2*nside*(nside-1);// ! points in each polar cap, =0 for nside =1
|
---|
546 | fact1 = 1.5*nside;
|
---|
547 | fact2 = 3.0*nside*nside;
|
---|
548 |
|
---|
549 | if( ipix1 <= ncap ) { //! North Polar cap -------------
|
---|
550 |
|
---|
551 | hip = ipix1/2.;
|
---|
552 | fihip = floor(hip);
|
---|
553 | iring = (int)floor( sqrt( hip - sqrt(fihip) ) ) + 1;// ! counted from North pole
|
---|
554 | iphi = ipix1 - 2*iring*(iring - 1);
|
---|
555 |
|
---|
556 | theta = acos( 1. - iring*iring / fact2 );
|
---|
557 | phi = ((double)iphi - 0.5) * Pi/(2.*iring);
|
---|
558 | // cout << theta << " " << phi << endl;
|
---|
559 | }
|
---|
560 | else if( ipix1 <= nl2*(5*nside+1) ) {//then ! Equatorial region ------
|
---|
561 |
|
---|
562 | ip = ipix1 - ncap - 1;
|
---|
563 | iring = (int)floor( ip / nl4 ) + nside;// ! counted from North pole
|
---|
564 | iphi = ip%nl4 + 1;
|
---|
565 |
|
---|
566 | fodd = 0.5 * (1 + (iring+nside)%2 );// ! 1 if iring+nside is odd, 1/2 otherwise
|
---|
567 | theta = acos( (nl2 - iring) / fact1 );
|
---|
568 | phi = ((double)iphi - fodd) * Pi /(2.*nside);
|
---|
569 | }
|
---|
570 | else {//! South Polar cap -----------------------------------
|
---|
571 |
|
---|
572 | ip = npix - ipix1 + 1;
|
---|
573 | hip = ip/2.;
|
---|
574 | fihip = floor(hip);
|
---|
575 | iring = (int)floor( sqrt( hip - sqrt(fihip) ) ) + 1;// ! counted from South pole
|
---|
576 | iphi = (int)(4.*iring + 1 - (ip - 2.*iring*(iring-1)));
|
---|
577 |
|
---|
578 | theta = acos( -1. + iring*iring / fact2 );
|
---|
579 | phi = ((double)iphi - 0.5) * Pi/(2.*iring);
|
---|
580 | // cout << theta << " " << phi << endl;
|
---|
581 | }
|
---|
582 | }
|
---|
583 |
|
---|
584 | void HEALPix::pix2ang_nest(int_4 nside,int_4 ipix,double& theta,double& phi)
|
---|
585 | {
|
---|
586 | /*
|
---|
587 | ==================================================
|
---|
588 | subroutine pix2ang_nest(nside, ipix, theta, phi)
|
---|
589 | ==================================================
|
---|
590 | c gives theta and phi corresponding to pixel ipix (NESTED)
|
---|
591 | c for a parameter nside
|
---|
592 | ==================================================
|
---|
593 | */
|
---|
594 | // tranlated from FORTRAN (Gorski) to C, by B. Revenu, revised Guy Le Meur
|
---|
595 | // (16/12/98)
|
---|
596 |
|
---|
597 | const PIXELS_XY& PXY= PIXELS_XY::instance();
|
---|
598 |
|
---|
599 | int npix, npface, face_num;
|
---|
600 | int ipf, ip_low, ip_trunc, ip_med, ip_hi;
|
---|
601 | int ix, iy, jrt, jr, nr, jpt, jp, kshift, nl4;
|
---|
602 | double z, fn, fact1, fact2;
|
---|
603 | double piover2(Pi/2.);
|
---|
604 | int ns_max(8192);
|
---|
605 |
|
---|
606 | // ! coordinate of the lowest corner of each face
|
---|
607 | int jrll[12]={2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4};//! in unit of nside
|
---|
608 | int jpll[12]={1, 3, 5, 7, 0, 2, 4, 6, 1, 3, 5, 7};// ! in unit of nside/2
|
---|
609 |
|
---|
610 | if( nside<1 || nside>ns_max ) {
|
---|
611 | cout << "nside out of range" << endl;
|
---|
612 | exit(0);
|
---|
613 | }
|
---|
614 | npix = 12 * nside*nside;
|
---|
615 | if( ipix<0 || ipix>npix-1 ) {
|
---|
616 | cout << "ipix out of range" << endl;
|
---|
617 | exit(0);
|
---|
618 | }
|
---|
619 |
|
---|
620 | fn = 1.*nside;
|
---|
621 | fact1 = 1./(3.*fn*fn);
|
---|
622 | fact2 = 2./(3.*fn);
|
---|
623 | nl4 = 4*nside;
|
---|
624 |
|
---|
625 | //c finds the face, and the number in the face
|
---|
626 | npface = nside*nside;
|
---|
627 |
|
---|
628 | face_num = ipix/npface;// ! face number in {0,11}
|
---|
629 | ipf = (int)fmod(ipix,npface);// ! pixel number in the face {0,npface-1}
|
---|
630 |
|
---|
631 | //c finds the x,y on the face (starting from the lowest corner)
|
---|
632 | //c from the pixel number
|
---|
633 | ip_low = (int)fmod(ipf,1024);// ! content of the last 10 bits
|
---|
634 | ip_trunc = ipf/1024 ;// ! truncation of the last 10 bits
|
---|
635 | ip_med = (int)fmod(ip_trunc,1024);// ! content of the next 10 bits
|
---|
636 | ip_hi = ip_trunc/1024 ;//! content of the high weight 10 bits
|
---|
637 |
|
---|
638 | ix = 1024*PXY.pix2x_(ip_hi)+32*PXY.pix2x_(ip_med)+PXY.pix2x_(ip_low);
|
---|
639 | iy = 1024*PXY.pix2y_(ip_hi)+32*PXY.pix2y_(ip_med)+PXY.pix2y_(ip_low);
|
---|
640 |
|
---|
641 | //c transforms this in (horizontal, vertical) coordinates
|
---|
642 | jrt = ix + iy;// ! 'vertical' in {0,2*(nside-1)}
|
---|
643 | jpt = ix - iy;// ! 'horizontal' in {-nside+1,nside-1}
|
---|
644 |
|
---|
645 | //c computes the z coordinate on the sphere
|
---|
646 | // jr = jrll[face_num+1]*nside - jrt - 1;// ! ring number in {1,4*nside-1}
|
---|
647 | jr = jrll[face_num]*nside - jrt - 1;
|
---|
648 | nr = nside;// ! equatorial region (the most frequent)
|
---|
649 | z = (2*nside-jr)*fact2;
|
---|
650 | kshift = (int)fmod(jr - nside, 2);
|
---|
651 | if( jr<nside ) { //then ! north pole region
|
---|
652 | nr = jr;
|
---|
653 | z = 1. - nr*nr*fact1;
|
---|
654 | kshift = 0;
|
---|
655 | }
|
---|
656 | else {
|
---|
657 | if( jr>3*nside ) {// then ! south pole region
|
---|
658 | nr = nl4 - jr;
|
---|
659 | z = - 1. + nr*nr*fact1;
|
---|
660 | kshift = 0;
|
---|
661 | }
|
---|
662 | }
|
---|
663 | theta = acos(z);
|
---|
664 |
|
---|
665 | //c computes the phi coordinate on the sphere, in [0,2Pi]
|
---|
666 | // jp = (jpll[face_num+1]*nr + jpt + 1 + kshift)/2;// ! 'phi' number in the ring in {1,4*nr}
|
---|
667 | jp = (jpll[face_num]*nr + jpt + 1 + kshift)/2;
|
---|
668 | if( jp>nl4 ) jp = jp - nl4;
|
---|
669 | if( jp<1 ) jp = jp + nl4;
|
---|
670 | phi = (jp - (kshift+1)*0.5) * (piover2 / nr);
|
---|
671 | }
|
---|
672 |
|
---|
673 |
|
---|