#include "machdefs.h" #include #include #include "pexceptions.h" #include "fiondblock.h" #include "spherehealpix.h" #include "strutil.h" extern "C" { #include #include #include } //******************************************************************* // Class PIXELS_XY // Construction des tableaux necessaires a la traduction des indices RING en // indices NESTED (ou l'inverse) //******************************************************************* PIXELS_XY::PIXELS_XY() { pix2x_.ReSize(1024); pix2x_.Reset(); pix2y_.ReSize(1024); pix2y_.Reset(); x2pix_.ReSize(128); x2pix_.Reset(); y2pix_.ReSize(128); y2pix_.Reset(); mk_pix2xy(); mk_xy2pix(); } PIXELS_XY& PIXELS_XY::instance() { static PIXELS_XY single; return (single); } void PIXELS_XY::mk_pix2xy() { /* ================================================== subroutine mk_pix2xy ================================================== c constructs the array giving x and y in the face from pixel number c for the nested (quad-cube like) ordering of pixels c c the bits corresponding to x and y are interleaved in the pixel number c one breaks up the pixel number by even and odd bits ================================================== */ // tranlated from FORTRAN (Gorski) to C, by B. Revenu, revised Guy Le Meur // (16/12/98) int kpix, jpix, IX, IY, IP, ID; for(kpix = 0; kpix < 1024; kpix++) { jpix = kpix; IX = 0; IY = 0; IP = 1 ;// ! bit position (in x and y) while( jpix!=0 ) { // ! go through all the bits ID=jpix%2;// ! bit value (in kpix), goes in ix jpix = jpix/2; IX = ID*IP+IX; ID=jpix%2;// ! bit value (in kpix), goes in iy jpix = jpix/2; IY = ID*IP+IY; IP = 2*IP;// ! next bit (in x and y) } pix2x_(kpix) = IX;// ! in 0,31 pix2y_(kpix) = IY;// ! in 0,31 } } void PIXELS_XY::mk_xy2pix() { /* ================================================= subroutine mk_xy2pix ================================================= c sets the array giving the number of the pixel lying in (x,y) c x and y are in {1,128} c the pixel number is in {0,128**2-1} c c if i-1 = sum_p=0 b_p * 2^p c then ix = sum_p=0 b_p * 4^p c iy = 2*ix c ix + iy in {0, 128**2 -1} ================================================= */ // tranlated from FORTRAN (Gorski) to C, by B. Revenu, revised Guy Le Meur // (16/12/98) int K,IP,I,J,ID; for(I = 1; I <= 128; I++) { J = I-1;// !pixel numbers K = 0;// IP = 1;// truc : if( J==0 ) { x2pix_(I-1) = K; y2pix_(I-1) = 2*K; } else { ID = (int)fmod(J,2); J = J/2; K = IP*ID+K; IP = IP*4; goto truc; } } } //******************************************************************* //++ // Class SphereHEALPix // // include SphereHealpix.h strutil.h // // Pixelisation Gorski // // //| ----------------------------------------------------------------------- //| version 0.8.2 Aug97 TAC Eric Hivon, Kris Gorski //| ----------------------------------------------------------------------- // // the sphere is split in 12 diamond-faces containing nside**2 pixels each // // the numbering of the pixels (in the nested scheme) is similar to // quad-cube // In each face the first pixel is in the lowest corner of the diamond // // the faces are (x,y) coordinate on each face //| . . . . <--- North Pole //| / \ / \ / \ / \ ^ ^ //| . 0 . 1 . 2 . 3 . <--- z = 2/3 \ / //| \ / \ / \ / \ / y \ / x //| 4 . 5 . 6 . 7 . 4 <--- equator \ / //| / \ / \ / \ / \ \/ //| . 8 . 9 .10 .11 . <--- z = -2/3 (0,0) : lowest corner //| \ / \ / \ / \ / //| . . . . <--- South Pole //| // phi:0 2Pi // // in the ring scheme pixels are numbered along the parallels // the first parallel is the one closest to the north pole and so on // on each parallel, pixels are numbered starting from the one closest // to phi = 0 // // nside MUST be a power of 2 (<= 8192) //-- //++ // // Links Parents // // SphericalMap //-- /* --Methode-- */ //++ // Titre Constructors //-- //++ template SphereHEALPix::SphereHEALPix() //-- { InitNul(); pixels_.Reset(); } //++ template SphereHEALPix::SphereHEALPix(int_4 m) // m is the "nside" of the Gorski algorithm // // The total number of pixels will be Npix = 12*nside**2 // // nside MUST be a power of 2 (<= 8192) //-- { if(m <= 0 || m > 8192) { cout << "SphereHEALPix : m hors bornes [0,8192], m= " << m << endl; throw RangeCheckError("SphereHEALPix::SphereHEALPix() - Out of bound nside (< 8192)!"); } // verifier que m est une puissance de deux int x= m; while(x%2 == 0) x/=2; if(x != 1) { cout<<"SphereHEALPix: m doit etre une puissance de deux, m= "<::SphereHEALPix() - nside != 2^n !"); } InitNul(); Pixelize(m); SetThetaSlices(); } //++ template SphereHEALPix::SphereHEALPix(const SphereHEALPix& s, bool share) : pixels_(s.pixels_, share), sliceBeginIndex_(s.sliceBeginIndex_, share), sliceLenght_(s.sliceLenght_, share) // copy constructor //-- { if(s.mInfo_) mInfo_= new DVList(*s.mInfo_); nSide_= s.nSide_; nPix_ = s.nPix_; omeg_ = s.omeg_; } //++ template SphereHEALPix::SphereHEALPix(const SphereHEALPix& s) : pixels_(s.pixels_), sliceBeginIndex_(s.sliceBeginIndex_), sliceLenght_(s.sliceLenght_) // copy constructor //-- { if(s.mInfo_) mInfo_= new DVList(*s.mInfo_); nSide_= s.nSide_; nPix_ = s.nPix_; omeg_ = s.omeg_; } template void SphereHEALPix::CloneOrShare(const SphereHEALPix& a) { pixels_.CloneOrShare(a.pixels_); sliceBeginIndex_.CloneOrShare(a.sliceBeginIndex_); sliceLenght_.CloneOrShare(a.sliceLenght_); } template SphereHEALPix& SphereHEALPix::Set(const SphereHEALPix& a) { if (this != &a) { nSide_= a.nSide_; nPix_ = a.nPix_; omeg_ = a.omeg_; CloneOrShare(a); if (mInfo_) delete mInfo_; mInfo_ = NULL; if (a.mInfo_) mInfo_ = new DVList(*(a.mInfo_)); } return(*this); } //++ // Titre Destructor //-- //++ template SphereHEALPix::~SphereHEALPix() //-- { } //++ // Titre Public Methods //-- //++ template void SphereHEALPix::Resize(int_4 m) // m is the "nside" of the Gorski algorithm // // The total number of pixels will be Npix = 12*nside**2 // // nside MUST be a power of 2 (<= 8192) //-- { if (m<=0 || m> 8192) { cout << "SphereHEALPix : m hors bornes [0,8192], m= " << m << endl; exit(1); } // verifier que m est une puissance de deux int x= m; while (x%2==0) x/=2; if(x != 1) { cout<<"SphereHEALPix: m doit etre une puissance de deux, m= "< void SphereHEALPix::Pixelize( int_4 m) // prépare la pixelisation Gorski (m a la même signification // que pour le constructeur) // // { // On memorise les arguments d'appel nSide_= m; // Nombre total de pixels sur la sphere entiere nPix_= 12*nSide_*nSide_; // pour le moment les tableaux qui suivent seront ranges dans l'ordre // de l'indexation GORSKY "RING" // on pourra ulterieurement changer de strategie et tirer profit // de la dualite d'indexation GORSKY (RING et NEST) : tout dependra // de pourquoi c'est faire // Creation et initialisation du vecteur des contenus des pixels pixels_.ReSize(nPix_); pixels_.Reset(); // solid angle per pixel omeg_= 4.0*Pi/nPix_; } template void SphereHEALPix::InitNul() // // initialise à zéro les variables de classe { nSide_= 0; nPix_ = 0; omeg_ = 0.; // pixels_.Reset(); - Il ne faut pas mettre les pixels a zero si share ! } /* --Methode-- */ //++ template int_4 SphereHEALPix::NbPixels() const // Retourne le nombre de pixels du découpage //-- { return(nPix_); } //++ template uint_4 SphereHEALPix::NbThetaSlices() const // Return number of slices in theta direction on the sphere //-- { uint_4 nbslices = uint_4(4*nSide_-1); if (nSide_<=0) { nbslices = 0; throw PException(" sphere not pixelized, NbSlice=0 "); } return nbslices; } //++ template void SphereHEALPix::GetThetaSlice(int_4 index,r_8& theta,TVector& phi,TVector& value) const // For a theta-slice with index 'index', return : // // the corresponding "theta" // // a vector containing the phi's of the pixels of the slice // // a vector containing the corresponding values of pixels // //-- { if (index<0 || index >= NbThetaSlices()) { // THROW(out_of_range("SphereHEALPix::PIxVal Pixel index out of range")); cout << " SphereHEALPix::GetThetaSlice : Pixel index out of range" < void SphereHEALPix::GetThetaSlice(int_4 sliceIndex,r_8& theta, r_8& phi0, TVector& pixelIndices,TVector& value) const // For a theta-slice with index 'sliceIndex', return : // // the corresponding "theta" // the corresponding "phi" for first pixel of the slice // // a vector containing the indices of the pixels of the slice // (equally distributed in phi) // // a vector containing the corresponding values of pixels // //-- { if (sliceIndex<0 || sliceIndex >= NbThetaSlices()) { // THROW(out_of_range("SphereHEALPix::PIxVal Pixel index out of range")); cout << " SphereHEALPix::GetThetaSlice : Pixel index out of range" < void SphereHEALPix::SetThetaSlices() //-- { sliceBeginIndex_.ReSize(4*nSide_-1); sliceLenght_.ReSize(4*nSide_-1); for (int sliceIndex=0; sliceIndex< nSide_-1; sliceIndex++) { sliceBeginIndex_(sliceIndex) = 2*sliceIndex*(sliceIndex+1); sliceLenght_(sliceIndex) = 4*(sliceIndex+1); } for (int sliceIndex= nSide_-1; sliceIndex< 3*nSide_; sliceIndex++) { sliceBeginIndex_(sliceIndex) = 2*nSide_*(2*sliceIndex-nSide_+1); sliceLenght_(sliceIndex) = 4*nSide_; } for (int sliceIndex= 3*nSide_; sliceIndex< 4*nSide_-1; sliceIndex++) { int_4 nc= 4*nSide_-1-sliceIndex; sliceBeginIndex_(sliceIndex) = nPix_-2*nc*(nc+1); sliceLenght_(sliceIndex) = 4*nc; } } /* --Methode-- */ //++ template T& SphereHEALPix::PixVal(int_4 k) // Return value of pixel with "RING" index k //-- { if((k < 0) || (k >= nPix_)) { throw RangeCheckError("SphereHEALPix::PIxVal Pixel index out of range"); } return pixels_(k); } /* --Methode-- */ //++ template T const& SphereHEALPix::PixVal(int_4 k) const // Return value of pixel with "RING" index k //-- { if((k < 0) || (k >= nPix_)) { throw RangeCheckError("SphereHEALPix::PIxVal Pixel index out of range"); } return *(pixels_.Data()+k); } //++ template T& SphereHEALPix::PixValNest(int_4 k) // Return value of pixel with "NESTED" index k //-- { if((k < 0) || (k >= nPix_)) { throw RangeCheckError("SphereHEALPix::PIxValNest Pixel index out of range"); } return pixels_(nest2ring(nSide_,k)); } //++ template T const& SphereHEALPix::PixValNest(int_4 k) const // Return value of pixel with "NESTED" index k //-- { if((k < 0) || (k >= nPix_)) { throw RangeCheckError("SphereHEALPix::PIxValNest Pixel index out of range"); } int_4 pix= nest2ring(nSide_,k); return *(pixels_.Data()+pix); } /* --Methode-- */ //++ template bool SphereHEALPix::ContainsSph(double /*theta*/, double /*phi*/) const //-- { return(true); } /* --Methode-- */ //++ template int_4 SphereHEALPix::PixIndexSph(double theta,double phi) const // Return "RING" index of the pixel corresponding to // direction (theta, phi). //-- { return ang2pix_ring(nSide_,theta,phi); } //++ template int_4 SphereHEALPix::PixIndexSphNest(double theta,double phi) const // Return "NESTED" index of the pixel corresponding to // direction (theta, phi). //-- { return ang2pix_nest(nSide_,theta,phi); } /* --Methode-- */ //++ template void SphereHEALPix::PixThetaPhi(int_4 k,double& theta,double& phi) const // Return (theta,phi) coordinates of middle of pixel with "RING" index k //-- { pix2ang_ring(nSide_,k,theta,phi); } template T SphereHEALPix::SetPixels(T v) { pixels_.Reset(v); return(v); } //++ template double SphereHEALPix::PixSolAngle(int_4 /*dummy*/) const // Pixel Solid angle (steradians) // All the pixels have the same solid angle. The dummy argument is // for compatibility with eventual pixelizations which would not // fulfil this requirement. //-- { return omeg_; } //++ template void SphereHEALPix::PixThetaPhiNest(int_4 k,double& theta,double& phi) const // Return (theta,phi) coordinates of middle of pixel with "NESTED" index k //-- { pix2ang_nest(nSide_,k,theta,phi); } //++ template int_4 SphereHEALPix::NestToRing(int_4 k) const // translation from NESTED index into RING index // //-- { return nest2ring(nSide_,k); } //++ template int_4 SphereHEALPix::RingToNest(int_4 k) const // // translation from RING index into NESTED index // //-- { return ring2nest(nSide_,k); } template int_4 SphereHEALPix::nest2ring(int_4 nside, int_4 ipnest) const { /* ==================================================== subroutine nest2ring(nside, ipnest, ipring) ==================================================== c conversion from NESTED to RING pixel number ==================================================== */ // tranlated from FORTRAN (Gorski) to C, by B. Revenu, revised Guy Le Meur // (16/12/98) const PIXELS_XY& PXY= PIXELS_XY::instance(); int npix, npface, face_num, ncap, n_before; int ipf, ip_low, ip_trunc, ip_med, ip_hi; int ix, iy, jrt, jr, nr, jpt, jp, kshift, nl4; int ns_max=8192; int jrll[12]={2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4}; int jpll[12]={1, 3, 5, 7, 0, 2, 4, 6, 1, 3, 5, 7}; if( nside<1 || nside>ns_max ) { cout << "nside out of range" << endl; exit(0); } npix = 12 * nside* nside; if( ipnest<0 || ipnest>npix-1 ) { cout << "ipnest out of range" << endl; exit(0); } ncap = 2* nside*( nside-1);// ! number of points in the North Polar cap nl4 = 4* nside; //c finds the face, and the number in the face npface = nside* nside; //cccccc ip = ipnest - 1 ! in {0,npix-1} face_num = ipnest/npface;// ! face number in {0,11} ipf =ipnest%npface;// ! pixel number in the face {0,npface-1} //c finds the x,y on the face (starting from the lowest corner) //c from the pixel number ip_low=ipf%1024; // ! content of the last 10 bits ip_trunc = ipf/1024; // ! truncation of the last 10 bits ip_med=ip_trunc%1024; // ! content of the next 10 bits ip_hi = ip_trunc/1024;// ! content of the high weight 10 bits ix = 1024*PXY.pix2x_(ip_hi)+32*PXY.pix2x_(ip_med)+PXY.pix2x_(ip_low); iy = 1024*PXY.pix2y_(ip_hi)+32*PXY.pix2y_(ip_med)+PXY.pix2y_(ip_low); //c transforms this in (horizontal, vertical) coordinates jrt = ix + iy;// ! 'vertical' in {0,2*(nside-1)} jpt = ix - iy;// ! 'horizontal' in {-nside+1,nside-1} //c computes the z coordinate on the sphere // jr = jrll[face_num+1]*nside - jrt - 1;// ! ring number in {1,4*nside-1} jr = jrll[face_num]*nside - jrt - 1; nr = nside;// ! equatorial region (the most frequent) n_before = ncap + nl4 * (jr - nside); kshift=(jr - nside)%2; if( jr3*nside ) {//then ! south pole region nr = nl4 - jr; n_before = npix - 2 * (nr + 1) * nr; kshift = 0; } //c computes the phi coordinate on the sphere, in [0,2Pi] jp = (jpll[face_num]*nr + jpt + 1 + kshift)/2;// ! 'phi' number in the ring in {1,4*nr} if( jp>nl4 ) jp = jp - nl4; if( jp<1 ) jp = jp + nl4; int aux=n_before + jp - 1; return (n_before + jp - 1);// ! in {0, npix-1} } template int_4 SphereHEALPix::ring2nest(int_4 nside, int_4 ipring) const { /* ================================================== subroutine ring2nest(nside, ipring, ipnest) ================================================== c conversion from RING to NESTED pixel number ================================================== */ // tranlated from FORTRAN (Gorski) to C, by B. Revenu, revised Guy Le Meur // (16/12/98) const PIXELS_XY& PXY= PIXELS_XY::instance(); double fihip, hip; int npix, nl2, nl4, ncap, ip, iphi, ipt, ipring1; int kshift, face_num, nr; int irn, ire, irm, irs, irt, ifm , ifp; int ix, iy, ix_low, ix_hi, iy_low, iy_hi, ipf; int ns_max(8192); // coordinate of the lowest corner of each face int jrll[12]={2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4};// ! in unit of nside int jpll[12]={1, 3, 5, 7, 0, 2, 4, 6, 1, 3, 5, 7};//! in unit of nside/2 if( nside<1 || nside>ns_max ) { cout << "nside out of range" << endl; exit(0); } npix = 12 * nside*nside; if( ipring<0 || ipring>npix-1 ) { cout << "ipring out of range" << endl; exit(0); } nl2 = 2*nside; nl4 = 4*nside; npix = 12*nside*nside;// ! total number of points ncap = 2*nside*(nside-1);// ! points in each polar cap, =0 for nside =1 ipring1 = ipring + 1; //c finds the ring number, the position of the ring and the face number if( ipring1<=ncap ) {//then hip = ipring1/2.; fihip = floor ( hip ); irn = (int)floor( sqrt( hip - sqrt(fihip) ) ) + 1;// ! counted from North pole iphi = ipring1 - 2*irn*(irn - 1); kshift = 0; nr = irn ;// ! 1/4 of the number of points on the current ring face_num = (iphi-1) / irn;// ! in {0,3} } else if( ipring1<=nl2*(5*nside+1) ) {//then ip = ipring1 - ncap - 1; irn = (int)floor( ip / nl4 ) + nside;// ! counted from North pole iphi = (int)fmod(ip,nl4) + 1; kshift = (int)fmod(irn+nside,2);// ! 1 if irn+nside is odd, 0 otherwise nr = nside; ire = irn - nside + 1;// ! in {1, 2*nside +1} irm = nl2 + 2 - ire; ifm = (iphi - ire/2 + nside -1) / nside;// ! face boundary ifp = (iphi - irm/2 + nside -1) / nside; if( ifp==ifm ) {//then ! faces 4 to 7 face_num = (int)fmod(ifp,4) + 4; } else if( ifp + 1==ifm ) {//then ! (half-)faces 0 to 3 face_num = ifp; } else if( ifp - 1==ifm ) {//then ! (half-)faces 8 to 11 face_num = ifp + 7; } } else { ip = npix - ipring1 + 1; hip = ip/2.; fihip = floor ( hip ); irs = (int)floor( sqrt( hip - sqrt(fihip) ) ) + 1;// ! counted from South pole iphi = 4*irs + 1 - (ip - 2*irs*(irs-1)); kshift = 0; nr = irs; irn = nl4 - irs; face_num = (iphi-1) / irs + 8;// ! in {8,11} } //c finds the (x,y) on the face irt = irn - jrll[face_num]*nside + 1;// ! in {-nside+1,0} ipt = 2*iphi - jpll[face_num]*nr - kshift - 1;// ! in {-nside+1,nside-1} if( ipt>=nl2 ) ipt = ipt - 8*nside;// ! for the face #4 ix = (ipt - irt ) / 2; iy = -(ipt + irt ) / 2; ix_low = (int)fmod(ix,128); ix_hi = ix/128; iy_low = (int)fmod(iy,128); iy_hi = iy/128; ipf=(PXY.x2pix_(ix_hi)+PXY.y2pix_(iy_hi))*(128*128)+(PXY.x2pix_(ix_low)+PXY.y2pix_(iy_low)); return (ipf + face_num* nside *nside);// ! in {0, 12*nside**2 - 1} } template int_4 SphereHEALPix::ang2pix_ring(int_4 nside, double theta, double phi) const { /* ================================================== c gives the pixel number ipix (RING) c corresponding to angles theta and phi c================================================== */ // tranlated from FORTRAN (Gorski) to C, by B. Revenu, revised Guy Le Meur // (16/12/98) int nl2, nl4, ncap, npix, jp, jm, ipix1; double z, za, tt, tp, tmp; int ir, ip, kshift; double piover2(Pi/2.); double twopi(2.*Pi); double z0(2./3.); int ns_max(8192); if( nside<1 || nside>ns_max ) { cout << "nside out of range" << endl; exit(0); } if( theta<0. || theta>Pi) { cout << "theta out of range" << endl; exit(0); } z = cos(theta); za = fabs(z); if( phi >= twopi) phi = phi - twopi; if (phi < 0.) phi = phi + twopi; tt = phi / piover2;// ! in [0,4) nl2 = 2*nside; nl4 = 4*nside; ncap = nl2*(nside-1);// ! number of pixels in the north polar cap npix = 12*nside*nside; if( za <= z0 ) { jp = (int)floor(nside*(0.5 + tt - z*0.75));// ! index of ascending edge line jm = (int)floor(nside*(0.5 + tt + z*0.75));// ! index of descending edge line ir = nside + 1 + jp - jm;// ! in {1,2n+1} (ring number counted from z=2/3) kshift = 0; if (fmod(ir,2)==0.) kshift = 1;// ! kshift=1 if ir even, 0 otherwise ip = (int)floor( ( jp+jm - nside + kshift + 1 ) / 2 ) + 1;// ! in {1,4n} if( ip>nl4 ) ip = ip - nl4; ipix1 = ncap + nl4*(ir-1) + ip ; } else { tp = tt - floor(tt);// !MOD(tt,1.d0) tmp = sqrt( 3.*(1. - za) ); jp = (int)floor( nside * tp * tmp );// ! increasing edge line index jm = (int)floor( nside * (1. - tp) * tmp );// ! decreasing edge line index ir = jp + jm + 1;// ! ring number counted from the closest pole ip = (int)floor( tt * ir ) + 1;// ! in {1,4*ir} if( ip>4*ir ) ip = ip - 4*ir; ipix1 = 2*ir*(ir-1) + ip; if( z<=0. ) { ipix1 = npix - 2*ir*(ir+1) + ip; } } return (ipix1 - 1);// ! in {0, npix-1} } template int_4 SphereHEALPix::ang2pix_nest(int_4 nside, double theta, double phi) const { /* ================================================== subroutine ang2pix_nest(nside, theta, phi, ipix) ================================================== c gives the pixel number ipix (NESTED) c corresponding to angles theta and phi c c the computation is made to the highest resolution available (nside=8192) c and then degraded to that required (by integer division) c this doesn't cost more, and it makes sure c that the treatement of round-off will be consistent c for every resolution ================================================== */ // tranlated from FORTRAN (Gorski) to C, by B. Revenu, revised Guy Le Meur // (16/12/98) const PIXELS_XY& PXY= PIXELS_XY::instance(); double z, za, z0, tt, tp, tmp; int face_num,jp,jm; int ifp, ifm; int ix, iy, ix_low, ix_hi, iy_low, iy_hi, ipf, ntt; double piover2(Pi/2.), twopi(2.*Pi); int ns_max(8192); if( nside<1 || nside>ns_max ) { cout << "nside out of range" << endl; exit(0); } if( theta<0 || theta>Pi ) { cout << "theta out of range" << endl; exit(0); } z = cos(theta); za = fabs(z); z0 = 2./3.; if( phi>=twopi ) phi = phi - twopi; if( phi<0. ) phi = phi + twopi; tt = phi / piover2;// ! in [0,4[ if( za<=z0 ) { // then ! equatorial region //(the index of edge lines increase when the longitude=phi goes up) jp = (int)floor(ns_max*(0.5 + tt - z*0.75));// ! ascending edge line index jm = (int)floor(ns_max*(0.5 + tt + z*0.75));// ! descending edge line index //c finds the face ifp = jp / ns_max;// ! in {0,4} ifm = jm / ns_max; if( ifp==ifm ) face_num = (int)fmod(ifp,4) + 4; //then ! faces 4 to 7 else if( ifp 2/3 ntt = (int)floor(tt); if( ntt>=4 ) ntt = 3; tp = tt - ntt; tmp = sqrt( 3.*(1. - za) );// ! in ]0,1] //(the index of edge lines increase when distance from the closest pole goes up) jp = (int)floor(ns_max*tp*tmp); // ! line going toward the pole as phi increases jm = (int)floor(ns_max*(1.-tp)*tmp); // ! that one goes away of the closest pole jp = (int)min(ns_max-1, jp);// ! for points too close to the boundary jm = (int)min(ns_max-1, jm); // finds the face and pixel's (x,y) if( z>=0 ) { face_num = ntt;// ! in {0,3} ix = ns_max - jm - 1; iy = ns_max - jp - 1; } else { face_num = ntt + 8;// ! in {8,11} ix = jp; iy = jm; } } ix_low = (int)fmod(ix,128); ix_hi = ix/128; iy_low = (int)fmod(iy,128); iy_hi = iy/128; ipf= (PXY.x2pix_(ix_hi)+PXY.y2pix_(iy_hi))*(128*128)+(PXY.x2pix_(ix_low)+PXY.y2pix_(iy_low)); // ipf = ipf / pow(ns_max/nside,2.);// ! in {0, nside**2 - 1} // return ( ipf + face_num*pow(nside,2));// ! in {0, 12*nside**2 - 1} // $CHECK$ Reza 25/10/99 , pow remplace par * ipf = ipf / ((ns_max/nside)*(ns_max/nside)); return (ipf + face_num*nside*nside); } template void SphereHEALPix::pix2ang_ring(int_4 nside,int_4 ipix,double& theta,double& phi) const { /* =================================================== c gives theta and phi corresponding to pixel ipix (RING) c for a parameter nside =================================================== */ // tranlated from FORTRAN (Gorski) to C, by B. Revenu, revised Guy Le Meur // (16/12/98) int nl2, nl4, npix, ncap, iring, iphi, ip, ipix1; double fact1, fact2, fodd, hip, fihip; int ns_max(8192); if( nside<1 || nside>ns_max ) { cout << "nside out of range" << endl; exit(0); } npix = 12*nside*nside; // ! total number of points if( ipix<0 || ipix>npix-1 ) { cout << "ipix out of range" << endl; exit(0); } ipix1 = ipix + 1; // in {1, npix} nl2 = 2*nside; nl4 = 4*nside; ncap = 2*nside*(nside-1);// ! points in each polar cap, =0 for nside =1 fact1 = 1.5*nside; fact2 = 3.0*nside*nside; if( ipix1 <= ncap ) { //! North Polar cap ------------- hip = ipix1/2.; fihip = floor(hip); iring = (int)floor( sqrt( hip - sqrt(fihip) ) ) + 1;// ! counted from North pole iphi = ipix1 - 2*iring*(iring - 1); theta = acos( 1. - iring*iring / fact2 ); phi = ((double)iphi - 0.5) * Pi/(2.*iring); // cout << theta << " " << phi << endl; } else if( ipix1 <= nl2*(5*nside+1) ) {//then ! Equatorial region ------ ip = ipix1 - ncap - 1; iring = (int)floor( ip / nl4 ) + nside;// ! counted from North pole iphi = ip%nl4 + 1; fodd = 0.5 * (1 + (iring+nside)%2 );// ! 1 if iring+nside is odd, 1/2 otherwise theta = acos( (nl2 - iring) / fact1 ); phi = ((double)iphi - fodd) * Pi /(2.*nside); } else {//! South Polar cap ----------------------------------- ip = npix - ipix1 + 1; hip = ip/2.; fihip = floor(hip); iring = (int)floor( sqrt( hip - sqrt(fihip) ) ) + 1;// ! counted from South pole iphi = (int)(4.*iring + 1 - (ip - 2.*iring*(iring-1))); theta = acos( -1. + iring*iring / fact2 ); phi = ((double)iphi - 0.5) * Pi/(2.*iring); // cout << theta << " " << phi << endl; } } template void SphereHEALPix::pix2ang_nest(int_4 nside,int_4 ipix,double& theta,double& phi) const { /* ================================================== subroutine pix2ang_nest(nside, ipix, theta, phi) ================================================== c gives theta and phi corresponding to pixel ipix (NESTED) c for a parameter nside ================================================== */ // tranlated from FORTRAN (Gorski) to C, by B. Revenu, revised Guy Le Meur // (16/12/98) const PIXELS_XY& PXY= PIXELS_XY::instance(); int npix, npface, face_num; int ipf, ip_low, ip_trunc, ip_med, ip_hi; int ix, iy, jrt, jr, nr, jpt, jp, kshift, nl4; double z, fn, fact1, fact2; double piover2(Pi/2.); int ns_max(8192); // ! coordinate of the lowest corner of each face int jrll[12]={2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4};//! in unit of nside int jpll[12]={1, 3, 5, 7, 0, 2, 4, 6, 1, 3, 5, 7};// ! in unit of nside/2 if( nside<1 || nside>ns_max ) { cout << "nside out of range" << endl; exit(0); } npix = 12 * nside*nside; if( ipix<0 || ipix>npix-1 ) { cout << "ipix out of range" << endl; exit(0); } fn = 1.*nside; fact1 = 1./(3.*fn*fn); fact2 = 2./(3.*fn); nl4 = 4*nside; //c finds the face, and the number in the face npface = nside*nside; face_num = ipix/npface;// ! face number in {0,11} ipf = (int)fmod(ipix,npface);// ! pixel number in the face {0,npface-1} //c finds the x,y on the face (starting from the lowest corner) //c from the pixel number ip_low = (int)fmod(ipf,1024);// ! content of the last 10 bits ip_trunc = ipf/1024 ;// ! truncation of the last 10 bits ip_med = (int)fmod(ip_trunc,1024);// ! content of the next 10 bits ip_hi = ip_trunc/1024 ;//! content of the high weight 10 bits ix = 1024*PXY.pix2x_(ip_hi)+32*PXY.pix2x_(ip_med)+PXY.pix2x_(ip_low); iy = 1024*PXY.pix2y_(ip_hi)+32*PXY.pix2y_(ip_med)+PXY.pix2y_(ip_low); //c transforms this in (horizontal, vertical) coordinates jrt = ix + iy;// ! 'vertical' in {0,2*(nside-1)} jpt = ix - iy;// ! 'horizontal' in {-nside+1,nside-1} //c computes the z coordinate on the sphere // jr = jrll[face_num+1]*nside - jrt - 1;// ! ring number in {1,4*nside-1} jr = jrll[face_num]*nside - jrt - 1; nr = nside;// ! equatorial region (the most frequent) z = (2*nside-jr)*fact2; kshift = (int)fmod(jr - nside, 2); if( jr3*nside ) {// then ! south pole region nr = nl4 - jr; z = - 1. + nr*nr*fact1; kshift = 0; } } theta = acos(z); //c computes the phi coordinate on the sphere, in [0,2Pi] // jp = (jpll[face_num+1]*nr + jpt + 1 + kshift)/2;// ! 'phi' number in the ring in {1,4*nr} jp = (jpll[face_num]*nr + jpt + 1 + kshift)/2; if( jp>nl4 ) jp = jp - nl4; if( jp<1 ) jp = jp + nl4; phi = (jp - (kshift+1)*0.5) * (piover2 / nr); } template void SphereHEALPix::print(ostream& os) const { if(mInfo_) os << " DVList Info= " << *mInfo_ << endl; // os << " nSide_ = " << nSide_ << endl; os << " nPix_ = " << nPix_ << endl; os << " omeg_ = " << omeg_ << endl; os << " content of pixels : "; for(int i=0; i < nPix_; i++) { if(i%5 == 0) os << endl; os << pixels_(i) <<", "; } os << endl; os << endl; //const PIXELS_XY& PXY= PIXELS_XY::instance(); //os << endl; os << " contenu des tableaux conversions "< #pragma define_template SphereHEALPix #pragma define_template SphereHEALPix #pragma define_template SphereHEALPix< complex > #pragma define_template SphereHEALPix< complex > #endif #if defined(ANSI_TEMPLATES) || defined(GNU_TEMPLATES) template class SphereHEALPix; template class SphereHEALPix; template class SphereHEALPix; template class SphereHEALPix< complex >; template class SphereHEALPix< complex >; #endif