1 | #include "machdefs.h"
|
---|
2 | #include <math.h>
|
---|
3 | #include <complex>
|
---|
4 |
|
---|
5 | #include "pexceptions.h"
|
---|
6 | #include "fiondblock.h"
|
---|
7 | #include "spherehealpix.h"
|
---|
8 | #include "strutil.h"
|
---|
9 |
|
---|
10 | extern "C"
|
---|
11 | {
|
---|
12 | #include <stdio.h>
|
---|
13 | #include <stdlib.h>
|
---|
14 | #include <unistd.h>
|
---|
15 | }
|
---|
16 |
|
---|
17 |
|
---|
18 | //*******************************************************************
|
---|
19 | // Class PIXELS_XY
|
---|
20 | // Construction des tableaux necessaires a la traduction des indices RING en
|
---|
21 | // indices NESTED (ou l'inverse)
|
---|
22 | //*******************************************************************
|
---|
23 |
|
---|
24 | PIXELS_XY::PIXELS_XY()
|
---|
25 | {
|
---|
26 | pix2x_.ReSize(1024);
|
---|
27 | pix2x_.Reset();
|
---|
28 | pix2y_.ReSize(1024);
|
---|
29 | pix2y_.Reset();
|
---|
30 | x2pix_.ReSize(128);
|
---|
31 | x2pix_.Reset();
|
---|
32 | y2pix_.ReSize(128);
|
---|
33 | y2pix_.Reset();
|
---|
34 | mk_pix2xy();
|
---|
35 | mk_xy2pix();
|
---|
36 | }
|
---|
37 |
|
---|
38 | PIXELS_XY& PIXELS_XY::instance()
|
---|
39 | {
|
---|
40 | static PIXELS_XY single;
|
---|
41 | return (single);
|
---|
42 | }
|
---|
43 |
|
---|
44 | void PIXELS_XY::mk_pix2xy()
|
---|
45 | {
|
---|
46 | /*
|
---|
47 | ==================================================
|
---|
48 | subroutine mk_pix2xy
|
---|
49 | ==================================================
|
---|
50 | c constructs the array giving x and y in the face from pixel number
|
---|
51 | c for the nested (quad-cube like) ordering of pixels
|
---|
52 | c
|
---|
53 | c the bits corresponding to x and y are interleaved in the pixel number
|
---|
54 | c one breaks up the pixel number by even and odd bits
|
---|
55 | ==================================================
|
---|
56 | */
|
---|
57 | // tranlated from FORTRAN (Gorski) to C, by B. Revenu, revised Guy Le Meur
|
---|
58 | // (16/12/98)
|
---|
59 |
|
---|
60 | int kpix, jpix, IX, IY, IP, ID;
|
---|
61 |
|
---|
62 | for(kpix = 0; kpix < 1024; kpix++)
|
---|
63 | {
|
---|
64 | jpix = kpix;
|
---|
65 | IX = 0;
|
---|
66 | IY = 0;
|
---|
67 | IP = 1 ;// ! bit position (in x and y)
|
---|
68 | while( jpix!=0 )
|
---|
69 | { // ! go through all the bits
|
---|
70 | ID=jpix%2;// ! bit value (in kpix), goes in ix
|
---|
71 | jpix = jpix/2;
|
---|
72 | IX = ID*IP+IX;
|
---|
73 |
|
---|
74 | ID=jpix%2;// ! bit value (in kpix), goes in iy
|
---|
75 | jpix = jpix/2;
|
---|
76 | IY = ID*IP+IY;
|
---|
77 |
|
---|
78 | IP = 2*IP;// ! next bit (in x and y)
|
---|
79 | }
|
---|
80 | pix2x_(kpix) = IX;// ! in 0,31
|
---|
81 | pix2y_(kpix) = IY;// ! in 0,31
|
---|
82 | }
|
---|
83 | }
|
---|
84 |
|
---|
85 | void PIXELS_XY::mk_xy2pix()
|
---|
86 | {
|
---|
87 | /*
|
---|
88 | =================================================
|
---|
89 | subroutine mk_xy2pix
|
---|
90 | =================================================
|
---|
91 | c sets the array giving the number of the pixel lying in (x,y)
|
---|
92 | c x and y are in {1,128}
|
---|
93 | c the pixel number is in {0,128**2-1}
|
---|
94 | c
|
---|
95 | c if i-1 = sum_p=0 b_p * 2^p
|
---|
96 | c then ix = sum_p=0 b_p * 4^p
|
---|
97 | c iy = 2*ix
|
---|
98 | c ix + iy in {0, 128**2 -1}
|
---|
99 | =================================================
|
---|
100 | */
|
---|
101 | // tranlated from FORTRAN (Gorski) to C, by B. Revenu, revised Guy Le Meur
|
---|
102 | // (16/12/98)
|
---|
103 |
|
---|
104 | int K,IP,I,J,ID;
|
---|
105 | for(I = 1; I <= 128; I++)
|
---|
106 | {
|
---|
107 | J = I-1;// !pixel numbers
|
---|
108 | K = 0;//
|
---|
109 | IP = 1;//
|
---|
110 | truc : if( J==0 )
|
---|
111 | {
|
---|
112 | x2pix_(I-1) = K;
|
---|
113 | y2pix_(I-1) = 2*K;
|
---|
114 | }
|
---|
115 | else
|
---|
116 | {
|
---|
117 | ID = (int)fmod(J,2);
|
---|
118 | J = J/2;
|
---|
119 | K = IP*ID+K;
|
---|
120 | IP = IP*4;
|
---|
121 | goto truc;
|
---|
122 | }
|
---|
123 | }
|
---|
124 | }
|
---|
125 |
|
---|
126 | //*******************************************************************
|
---|
127 | //++
|
---|
128 | // Class SphereHEALPix
|
---|
129 | //
|
---|
130 | // include SphereHealpix.h strutil.h
|
---|
131 | //
|
---|
132 | // Pixelisation Gorski
|
---|
133 | //
|
---|
134 | //
|
---|
135 | //| -----------------------------------------------------------------------
|
---|
136 | //| version 0.8.2 Aug97 TAC Eric Hivon, Kris Gorski
|
---|
137 | //| -----------------------------------------------------------------------
|
---|
138 | //
|
---|
139 | // the sphere is split in 12 diamond-faces containing nside**2 pixels each
|
---|
140 | //
|
---|
141 | // the numbering of the pixels (in the nested scheme) is similar to
|
---|
142 | // quad-cube
|
---|
143 | // In each face the first pixel is in the lowest corner of the diamond
|
---|
144 | //
|
---|
145 | // the faces are (x,y) coordinate on each face
|
---|
146 | //| . . . . <--- North Pole
|
---|
147 | //| / \ / \ / \ / \ ^ ^
|
---|
148 | //| . 0 . 1 . 2 . 3 . <--- z = 2/3 \ /
|
---|
149 | //| \ / \ / \ / \ / y \ / x
|
---|
150 | //| 4 . 5 . 6 . 7 . 4 <--- equator \ /
|
---|
151 | //| / \ / \ / \ / \ \/
|
---|
152 | //| . 8 . 9 .10 .11 . <--- z = -2/3 (0,0) : lowest corner
|
---|
153 | //| \ / \ / \ / \ /
|
---|
154 | //| . . . . <--- South Pole
|
---|
155 | //|
|
---|
156 | // phi:0 2Pi
|
---|
157 | //
|
---|
158 | // in the ring scheme pixels are numbered along the parallels
|
---|
159 | // the first parallel is the one closest to the north pole and so on
|
---|
160 | // on each parallel, pixels are numbered starting from the one closest
|
---|
161 | // to phi = 0
|
---|
162 | //
|
---|
163 | // nside MUST be a power of 2 (<= 8192)
|
---|
164 | //--
|
---|
165 | //++
|
---|
166 | //
|
---|
167 | // Links Parents
|
---|
168 | //
|
---|
169 | // SphericalMap
|
---|
170 | //--
|
---|
171 |
|
---|
172 | /* --Methode-- */
|
---|
173 | //++
|
---|
174 | // Titre Constructors
|
---|
175 | //--
|
---|
176 | //++
|
---|
177 |
|
---|
178 | template<class T>
|
---|
179 | SphereHEALPix<T>::SphereHEALPix() : pixels_(), sliceBeginIndex_(),
|
---|
180 | sliceLenght_()
|
---|
181 |
|
---|
182 | //--
|
---|
183 | {
|
---|
184 | InitNul();
|
---|
185 | // SetTemp(false);
|
---|
186 | }
|
---|
187 |
|
---|
188 | //++
|
---|
189 | template<class T>
|
---|
190 | SphereHEALPix<T>::SphereHEALPix(int_4 m)
|
---|
191 |
|
---|
192 | // m is the "nside" of the Gorski algorithm
|
---|
193 | //
|
---|
194 | // The total number of pixels will be Npix = 12*nside**2
|
---|
195 | //
|
---|
196 | // nside MUST be a power of 2 (<= 8192)
|
---|
197 | //--
|
---|
198 | {
|
---|
199 |
|
---|
200 | if(m <= 0 || m > 8192)
|
---|
201 | {
|
---|
202 | cout << "SphereHEALPix : m hors bornes [0,8192], m= " << m << endl;
|
---|
203 | throw RangeCheckError("SphereHEALPix<T>::SphereHEALPix() - Out of bound nside (< 8192)!");
|
---|
204 | }
|
---|
205 | // verifier que m est une puissance de deux
|
---|
206 | int x= m;
|
---|
207 | while(x%2 == 0) x/=2;
|
---|
208 | if(x != 1)
|
---|
209 | {
|
---|
210 | cout<<"SphereHEALPix: m doit etre une puissance de deux, m= "<<m<<endl;
|
---|
211 | throw ParmError("SphereHEALPix<T>::SphereHEALPix() - nside != 2^n !");
|
---|
212 | }
|
---|
213 | InitNul();
|
---|
214 | // SetTemp(false);
|
---|
215 | Pixelize(m);
|
---|
216 | SetThetaSlices();
|
---|
217 | }
|
---|
218 | //++
|
---|
219 | template<class T>
|
---|
220 | SphereHEALPix<T>::SphereHEALPix(const SphereHEALPix<T>& s, bool share)
|
---|
221 | : pixels_(s.pixels_, share), sliceBeginIndex_(s.sliceBeginIndex_, share),
|
---|
222 | sliceLenght_(s.sliceLenght_, share)
|
---|
223 | // copy constructor
|
---|
224 | //--
|
---|
225 | {
|
---|
226 | nSide_= s.nSide_;
|
---|
227 | nPix_ = s.nPix_;
|
---|
228 | omeg_ = s.omeg_;
|
---|
229 | if(s.mInfo_) mInfo_= new DVList(*s.mInfo_);
|
---|
230 | }
|
---|
231 | //++
|
---|
232 | template<class T>
|
---|
233 | SphereHEALPix<T>::SphereHEALPix(const SphereHEALPix<T>& s)
|
---|
234 | : pixels_(s.pixels_), sliceBeginIndex_(s.sliceBeginIndex_),
|
---|
235 | sliceLenght_(s.sliceLenght_)
|
---|
236 | // copy constructor
|
---|
237 | //--
|
---|
238 | {
|
---|
239 | nSide_= s.nSide_;
|
---|
240 | nPix_ = s.nPix_;
|
---|
241 | omeg_ = s.omeg_;
|
---|
242 | if(s.mInfo_) mInfo_= new DVList(*s.mInfo_);
|
---|
243 | // CloneOrShare(s);
|
---|
244 | }
|
---|
245 |
|
---|
246 | template<class T>
|
---|
247 | void SphereHEALPix<T>::CloneOrShare(const SphereHEALPix<T>& a)
|
---|
248 | {
|
---|
249 | nSide_= a.nSide_;
|
---|
250 | nPix_ = a.nPix_;
|
---|
251 | omeg_ = a.omeg_;
|
---|
252 | pixels_.CloneOrShare(a.pixels_);
|
---|
253 | sliceBeginIndex_.CloneOrShare(a.sliceBeginIndex_);
|
---|
254 | sliceLenght_.CloneOrShare(a.sliceLenght_);
|
---|
255 |
|
---|
256 | // pas forcement a conserver, pas forcement a cet endroit (GLM)
|
---|
257 | // if (a.IsTemp() ) SetTemp(true);
|
---|
258 | }
|
---|
259 |
|
---|
260 | ////////////////////////// methodes de copie/share
|
---|
261 | template<class T>
|
---|
262 | SphereHEALPix<T>& SphereHEALPix<T>::Set(const SphereHEALPix<T>& a)
|
---|
263 | {
|
---|
264 | if (this != &a)
|
---|
265 | {
|
---|
266 |
|
---|
267 | if (a.NbPixels() < 1)
|
---|
268 | throw RangeCheckError("SphereHEALPix<T>::Set(a ) - Array a not allocated ! ");
|
---|
269 | if (NbPixels() < 1) CloneOrShare(a);
|
---|
270 | else CopyElt(a);
|
---|
271 |
|
---|
272 |
|
---|
273 | // CloneOrShare(a);
|
---|
274 | if (mInfo_) delete mInfo_;
|
---|
275 | mInfo_ = NULL;
|
---|
276 | if (a.mInfo_) mInfo_ = new DVList(*(a.mInfo_));
|
---|
277 | }
|
---|
278 | return(*this);
|
---|
279 | }
|
---|
280 |
|
---|
281 | template<class T>
|
---|
282 | SphereHEALPix<T>& SphereHEALPix<T>::CopyElt(const SphereHEALPix<T>& a)
|
---|
283 | {
|
---|
284 | if (NbPixels() < 1)
|
---|
285 | throw RangeCheckError("SphereHEALPix<T>::CopyElt(const SphereHEALPix<T>& ) - Not Allocated Array ! ");
|
---|
286 | if (NbPixels() != a.NbPixels())
|
---|
287 | throw(SzMismatchError("TArray<T>::MultElt(const TArray<T>&) SizeMismatch")) ;
|
---|
288 | nSide_= a.nSide_;
|
---|
289 | nPix_ = a.nPix_;
|
---|
290 | omeg_ = a.omeg_;
|
---|
291 | int k;
|
---|
292 | for (k=0; k< nPix_; k++) pixels_(k) = a.pixels_(k);
|
---|
293 | for (k=0; k< a.sliceBeginIndex_.Size(); k++) sliceBeginIndex_(k) = a.sliceBeginIndex_(k);
|
---|
294 | for (k=0; k< a.sliceLenght_.Size(); k++) sliceLenght_(k) = a.sliceLenght_(k);
|
---|
295 | return(*this);
|
---|
296 | }
|
---|
297 | //++
|
---|
298 | // Titre Destructor
|
---|
299 | //--
|
---|
300 | //++
|
---|
301 | template<class T>
|
---|
302 | SphereHEALPix<T>::~SphereHEALPix()
|
---|
303 |
|
---|
304 | //--
|
---|
305 | {
|
---|
306 | }
|
---|
307 |
|
---|
308 | //++
|
---|
309 | // Titre Public Methods
|
---|
310 | //--
|
---|
311 |
|
---|
312 | //++
|
---|
313 | template<class T>
|
---|
314 | void SphereHEALPix<T>::Resize(int_4 m)
|
---|
315 |
|
---|
316 | // m is the "nside" of the Gorski algorithm
|
---|
317 | //
|
---|
318 | // The total number of pixels will be Npix = 12*nside**2
|
---|
319 | //
|
---|
320 | // nside MUST be a power of 2 (<= 8192)
|
---|
321 | //--
|
---|
322 | {
|
---|
323 | if (m<=0 || m> 8192) {
|
---|
324 | cout << "SphereHEALPix : m hors bornes [0,8192], m= " << m << endl;
|
---|
325 | exit(1);
|
---|
326 | }
|
---|
327 | // verifier que m est une puissance de deux
|
---|
328 | int x= m;
|
---|
329 | while (x%2==0) x/=2;
|
---|
330 | if(x != 1)
|
---|
331 | {
|
---|
332 | cout<<"SphereHEALPix: m doit etre une puissance de deux, m= "<<m<<endl;
|
---|
333 | exit(1);
|
---|
334 | }
|
---|
335 | InitNul();
|
---|
336 | Pixelize(m);
|
---|
337 | SetThetaSlices();
|
---|
338 | }
|
---|
339 |
|
---|
340 | template<class T>
|
---|
341 | void SphereHEALPix<T>::Pixelize( int_4 m)
|
---|
342 |
|
---|
343 | // prépare la pixelisation Gorski (m a la même signification
|
---|
344 | // que pour le constructeur)
|
---|
345 | //
|
---|
346 | //
|
---|
347 | {
|
---|
348 | // On memorise les arguments d'appel
|
---|
349 | nSide_= m;
|
---|
350 |
|
---|
351 | // Nombre total de pixels sur la sphere entiere
|
---|
352 | nPix_= 12*nSide_*nSide_;
|
---|
353 |
|
---|
354 | // pour le moment les tableaux qui suivent seront ranges dans l'ordre
|
---|
355 | // de l'indexation GORSKY "RING"
|
---|
356 | // on pourra ulterieurement changer de strategie et tirer profit
|
---|
357 | // de la dualite d'indexation GORSKY (RING et NEST) : tout dependra
|
---|
358 | // de pourquoi c'est faire
|
---|
359 |
|
---|
360 | // Creation et initialisation du vecteur des contenus des pixels
|
---|
361 | pixels_.ReSize(nPix_);
|
---|
362 | pixels_.Reset();
|
---|
363 |
|
---|
364 | // solid angle per pixel
|
---|
365 | omeg_= 4.0*Pi/nPix_;
|
---|
366 | }
|
---|
367 |
|
---|
368 | template<class T>
|
---|
369 | void SphereHEALPix<T>::InitNul()
|
---|
370 | //
|
---|
371 | // initialise à zéro les variables de classe
|
---|
372 | {
|
---|
373 | nSide_= 0;
|
---|
374 | nPix_ = 0;
|
---|
375 | omeg_ = 0.;
|
---|
376 | // pixels_.Reset(); - Il ne faut pas mettre les pixels a zero si share !
|
---|
377 | }
|
---|
378 |
|
---|
379 | /* --Methode-- */
|
---|
380 | //++
|
---|
381 | template<class T>
|
---|
382 | int_4 SphereHEALPix<T>::NbPixels() const
|
---|
383 |
|
---|
384 | // Retourne le nombre de pixels du découpage
|
---|
385 | //--
|
---|
386 | {
|
---|
387 | return(nPix_);
|
---|
388 | }
|
---|
389 |
|
---|
390 | //++
|
---|
391 | template<class T>
|
---|
392 | uint_4 SphereHEALPix<T>::NbThetaSlices() const
|
---|
393 |
|
---|
394 | // Return number of slices in theta direction on the sphere
|
---|
395 | //--
|
---|
396 | {
|
---|
397 | uint_4 nbslices = uint_4(4*nSide_-1);
|
---|
398 | if (nSide_<=0)
|
---|
399 | {
|
---|
400 | nbslices = 0;
|
---|
401 | throw PException(" sphere not pixelized, NbSlice=0 ");
|
---|
402 | }
|
---|
403 | return nbslices;
|
---|
404 | }
|
---|
405 |
|
---|
406 | //++
|
---|
407 | template<class T>
|
---|
408 | void SphereHEALPix<T>::GetThetaSlice(int_4 index,r_8& theta,TVector<r_8>& phi,TVector<T>& value) const
|
---|
409 |
|
---|
410 | // For a theta-slice with index 'index', return :
|
---|
411 | //
|
---|
412 | // the corresponding "theta"
|
---|
413 | //
|
---|
414 | // a vector containing the phi's of the pixels of the slice
|
---|
415 | //
|
---|
416 | // a vector containing the corresponding values of pixels
|
---|
417 | //
|
---|
418 | //--
|
---|
419 | {
|
---|
420 |
|
---|
421 | if (index<0 || index >= NbThetaSlices())
|
---|
422 | {
|
---|
423 | // THROW(out_of_range("SphereHEALPix::PIxVal Pixel index out of range"));
|
---|
424 | cout << " SphereHEALPix::GetThetaSlice : Pixel index out of range" <<endl;
|
---|
425 | throw RangeCheckError(" SphereHEALPix::GetThetaSlice : Pixel index out of range");
|
---|
426 | }
|
---|
427 |
|
---|
428 |
|
---|
429 | int_4 iring= sliceBeginIndex_(index);
|
---|
430 | int_4 lring = sliceLenght_(index);
|
---|
431 |
|
---|
432 | phi.ReSize(lring);
|
---|
433 | value.ReSize(lring);
|
---|
434 |
|
---|
435 | double TH= 0.;
|
---|
436 | double FI= 0.;
|
---|
437 | for(int_4 kk = 0; kk < lring;kk++)
|
---|
438 | {
|
---|
439 | PixThetaPhi(kk+iring,TH,FI);
|
---|
440 | phi(kk)= FI;
|
---|
441 | value(kk)= PixVal(kk+iring);
|
---|
442 | }
|
---|
443 | theta= TH;
|
---|
444 | }
|
---|
445 | //++
|
---|
446 | //++
|
---|
447 |
|
---|
448 | template<class T>
|
---|
449 | void SphereHEALPix<T>::GetThetaSlice(int_4 sliceIndex,r_8& theta, r_8& phi0, TVector<int_4>& pixelIndices,TVector<T>& value) const
|
---|
450 |
|
---|
451 | // For a theta-slice with index 'sliceIndex', return :
|
---|
452 | //
|
---|
453 | // the corresponding "theta"
|
---|
454 | // the corresponding "phi" for first pixel of the slice
|
---|
455 | //
|
---|
456 | // a vector containing the indices of the pixels of the slice
|
---|
457 | // (equally distributed in phi)
|
---|
458 | //
|
---|
459 | // a vector containing the corresponding values of pixels
|
---|
460 | //
|
---|
461 | //--
|
---|
462 | {
|
---|
463 |
|
---|
464 | if (sliceIndex<0 || sliceIndex >= NbThetaSlices())
|
---|
465 | {
|
---|
466 | // THROW(out_of_range("SphereHEALPix::PIxVal Pixel index out of range"));
|
---|
467 | cout << " SphereHEALPix::GetThetaSlice : Pixel index out of range" <<endl;
|
---|
468 | throw RangeCheckError(" SphereHEALPix::GetThetaSlice : Pixel index out of range");
|
---|
469 | }
|
---|
470 | int_4 iring= sliceBeginIndex_(sliceIndex);
|
---|
471 | int_4 lring = sliceLenght_(sliceIndex);
|
---|
472 | pixelIndices.ReSize(lring);
|
---|
473 | value.ReSize(lring);
|
---|
474 |
|
---|
475 | for(int_4 kk = 0; kk < lring;kk++)
|
---|
476 | {
|
---|
477 | pixelIndices(kk)= kk+iring;
|
---|
478 | value(kk)= PixVal(kk+iring);
|
---|
479 | }
|
---|
480 | PixThetaPhi(iring, theta, phi0);
|
---|
481 | }
|
---|
482 | //++
|
---|
483 | template<class T>
|
---|
484 | void SphereHEALPix<T>::SetThetaSlices()
|
---|
485 |
|
---|
486 | //--
|
---|
487 | {
|
---|
488 | sliceBeginIndex_.ReSize(4*nSide_-1);
|
---|
489 | sliceLenght_.ReSize(4*nSide_-1);
|
---|
490 | int sliceIndex;
|
---|
491 | for (sliceIndex=0; sliceIndex< nSide_-1; sliceIndex++)
|
---|
492 | {
|
---|
493 | sliceBeginIndex_(sliceIndex) = 2*sliceIndex*(sliceIndex+1);
|
---|
494 | sliceLenght_(sliceIndex) = 4*(sliceIndex+1);
|
---|
495 | }
|
---|
496 | for (sliceIndex= nSide_-1; sliceIndex< 3*nSide_; sliceIndex++)
|
---|
497 | {
|
---|
498 | sliceBeginIndex_(sliceIndex) = 2*nSide_*(2*sliceIndex-nSide_+1);
|
---|
499 | sliceLenght_(sliceIndex) = 4*nSide_;
|
---|
500 | }
|
---|
501 | for (sliceIndex= 3*nSide_; sliceIndex< 4*nSide_-1; sliceIndex++)
|
---|
502 | {
|
---|
503 | int_4 nc= 4*nSide_-1-sliceIndex;
|
---|
504 | sliceBeginIndex_(sliceIndex) = nPix_-2*nc*(nc+1);
|
---|
505 | sliceLenght_(sliceIndex) = 4*nc;
|
---|
506 | }
|
---|
507 | }
|
---|
508 |
|
---|
509 | /* --Methode-- */
|
---|
510 | //++
|
---|
511 | template<class T>
|
---|
512 | T& SphereHEALPix<T>::PixVal(int_4 k)
|
---|
513 |
|
---|
514 | // Return value of pixel with "RING" index k
|
---|
515 | //--
|
---|
516 | {
|
---|
517 | if((k < 0) || (k >= nPix_))
|
---|
518 | {
|
---|
519 | throw RangeCheckError("SphereHEALPix::PIxVal Pixel index out of range");
|
---|
520 | }
|
---|
521 | return pixels_(k);
|
---|
522 | }
|
---|
523 |
|
---|
524 | /* --Methode-- */
|
---|
525 | //++
|
---|
526 | template<class T>
|
---|
527 | T const& SphereHEALPix<T>::PixVal(int_4 k) const
|
---|
528 |
|
---|
529 | // Return value of pixel with "RING" index k
|
---|
530 | //--
|
---|
531 | {
|
---|
532 | if((k < 0) || (k >= nPix_))
|
---|
533 | {
|
---|
534 | throw RangeCheckError("SphereHEALPix::PIxVal Pixel index out of range");
|
---|
535 | }
|
---|
536 | return *(pixels_.Data()+k);
|
---|
537 | }
|
---|
538 |
|
---|
539 | //++
|
---|
540 | template<class T>
|
---|
541 | T& SphereHEALPix<T>::PixValNest(int_4 k)
|
---|
542 |
|
---|
543 | // Return value of pixel with "NESTED" index k
|
---|
544 | //--
|
---|
545 | {
|
---|
546 | if((k < 0) || (k >= nPix_))
|
---|
547 | {
|
---|
548 | throw RangeCheckError("SphereHEALPix::PIxValNest Pixel index out of range");
|
---|
549 | }
|
---|
550 | return pixels_(nest2ring(nSide_,k));
|
---|
551 | }
|
---|
552 | //++
|
---|
553 |
|
---|
554 | template<class T>
|
---|
555 | T const& SphereHEALPix<T>::PixValNest(int_4 k) const
|
---|
556 |
|
---|
557 | // Return value of pixel with "NESTED" index k
|
---|
558 | //--
|
---|
559 | {
|
---|
560 | if((k < 0) || (k >= nPix_))
|
---|
561 | {
|
---|
562 | throw RangeCheckError("SphereHEALPix::PIxValNest Pixel index out of range");
|
---|
563 | }
|
---|
564 | int_4 pix= nest2ring(nSide_,k);
|
---|
565 | return *(pixels_.Data()+pix);
|
---|
566 | }
|
---|
567 |
|
---|
568 | /* --Methode-- */
|
---|
569 | //++
|
---|
570 | template<class T>
|
---|
571 | bool SphereHEALPix<T>::ContainsSph(double /*theta*/, double /*phi*/) const
|
---|
572 | //--
|
---|
573 | {
|
---|
574 | return(true);
|
---|
575 | }
|
---|
576 |
|
---|
577 | /* --Methode-- */
|
---|
578 | //++
|
---|
579 | template<class T>
|
---|
580 | int_4 SphereHEALPix<T>::PixIndexSph(double theta,double phi) const
|
---|
581 |
|
---|
582 | // Return "RING" index of the pixel corresponding to
|
---|
583 | // direction (theta, phi).
|
---|
584 | //--
|
---|
585 | {
|
---|
586 | return ang2pix_ring(nSide_,theta,phi);
|
---|
587 | }
|
---|
588 |
|
---|
589 | //++
|
---|
590 | template<class T>
|
---|
591 | int_4 SphereHEALPix<T>::PixIndexSphNest(double theta,double phi) const
|
---|
592 |
|
---|
593 | // Return "NESTED" index of the pixel corresponding to
|
---|
594 | // direction (theta, phi).
|
---|
595 | //--
|
---|
596 | {
|
---|
597 | return ang2pix_nest(nSide_,theta,phi);
|
---|
598 | }
|
---|
599 |
|
---|
600 |
|
---|
601 | /* --Methode-- */
|
---|
602 | //++
|
---|
603 | template<class T>
|
---|
604 | void SphereHEALPix<T>::PixThetaPhi(int_4 k,double& theta,double& phi) const
|
---|
605 |
|
---|
606 | // Return (theta,phi) coordinates of middle of pixel with "RING" index k
|
---|
607 | //--
|
---|
608 | {
|
---|
609 | pix2ang_ring(nSide_,k,theta,phi);
|
---|
610 | }
|
---|
611 |
|
---|
612 | template <class T>
|
---|
613 | T SphereHEALPix<T>::SetPixels(T v)
|
---|
614 | {
|
---|
615 | pixels_.Reset(v);
|
---|
616 | return(v);
|
---|
617 | }
|
---|
618 |
|
---|
619 | //++
|
---|
620 | template<class T>
|
---|
621 | double SphereHEALPix<T>::PixSolAngle(int_4 /*dummy*/) const
|
---|
622 | // Pixel Solid angle (steradians)
|
---|
623 | // All the pixels have the same solid angle. The dummy argument is
|
---|
624 | // for compatibility with eventual pixelizations which would not
|
---|
625 | // fulfil this requirement.
|
---|
626 | //--
|
---|
627 | {
|
---|
628 | return omeg_;
|
---|
629 | }
|
---|
630 |
|
---|
631 | //++
|
---|
632 | template<class T>
|
---|
633 | void SphereHEALPix<T>::PixThetaPhiNest(int_4 k,double& theta,double& phi) const
|
---|
634 |
|
---|
635 | // Return (theta,phi) coordinates of middle of pixel with "NESTED" index k
|
---|
636 | //--
|
---|
637 | {
|
---|
638 | pix2ang_nest(nSide_,k,theta,phi);
|
---|
639 | }
|
---|
640 |
|
---|
641 | //++
|
---|
642 | template<class T>
|
---|
643 | int_4 SphereHEALPix<T>::NestToRing(int_4 k) const
|
---|
644 |
|
---|
645 | // translation from NESTED index into RING index
|
---|
646 | //
|
---|
647 | //--
|
---|
648 | {
|
---|
649 | return nest2ring(nSide_,k);
|
---|
650 | }
|
---|
651 |
|
---|
652 | //++
|
---|
653 | template<class T>
|
---|
654 | int_4 SphereHEALPix<T>::RingToNest(int_4 k) const
|
---|
655 | //
|
---|
656 | // translation from RING index into NESTED index
|
---|
657 | //
|
---|
658 | //--
|
---|
659 | {
|
---|
660 | return ring2nest(nSide_,k);
|
---|
661 | }
|
---|
662 |
|
---|
663 |
|
---|
664 | template<class T>
|
---|
665 | int_4 SphereHEALPix<T>::nest2ring(int_4 nside, int_4 ipnest) const
|
---|
666 | {
|
---|
667 | /*
|
---|
668 | ====================================================
|
---|
669 | subroutine nest2ring(nside, ipnest, ipring)
|
---|
670 | ====================================================
|
---|
671 | c conversion from NESTED to RING pixel number
|
---|
672 | ====================================================
|
---|
673 | */
|
---|
674 | // tranlated from FORTRAN (Gorski) to C, by B. Revenu, revised Guy Le Meur
|
---|
675 | // (16/12/98)
|
---|
676 |
|
---|
677 | const PIXELS_XY& PXY= PIXELS_XY::instance();
|
---|
678 |
|
---|
679 | int npix, npface, face_num, ncap, n_before;
|
---|
680 | int ipf, ip_low, ip_trunc, ip_med, ip_hi;
|
---|
681 | int ix, iy, jrt, jr, nr, jpt, jp, kshift, nl4;
|
---|
682 | int ns_max=8192;
|
---|
683 | int jrll[12]={2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4};
|
---|
684 | int jpll[12]={1, 3, 5, 7, 0, 2, 4, 6, 1, 3, 5, 7};
|
---|
685 |
|
---|
686 | if( nside<1 || nside>ns_max ) {
|
---|
687 | cout << "nside out of range" << endl;
|
---|
688 | exit(0);
|
---|
689 | }
|
---|
690 | npix = 12 * nside* nside;
|
---|
691 | if( ipnest<0 || ipnest>npix-1 ) {
|
---|
692 | cout << "ipnest out of range" << endl;
|
---|
693 | exit(0);
|
---|
694 | }
|
---|
695 |
|
---|
696 | ncap = 2* nside*( nside-1);// ! number of points in the North Polar cap
|
---|
697 | nl4 = 4* nside;
|
---|
698 |
|
---|
699 | //c finds the face, and the number in the face
|
---|
700 | npface = nside* nside;
|
---|
701 | //cccccc ip = ipnest - 1 ! in {0,npix-1}
|
---|
702 |
|
---|
703 | face_num = ipnest/npface;// ! face number in {0,11}
|
---|
704 | ipf =ipnest%npface;// ! pixel number in the face {0,npface-1}
|
---|
705 | //c finds the x,y on the face (starting from the lowest corner)
|
---|
706 | //c from the pixel number
|
---|
707 | ip_low=ipf%1024; // ! content of the last 10 bits
|
---|
708 | ip_trunc = ipf/1024; // ! truncation of the last 10 bits
|
---|
709 | ip_med=ip_trunc%1024; // ! content of the next 10 bits
|
---|
710 | ip_hi = ip_trunc/1024;// ! content of the high weight 10 bits
|
---|
711 |
|
---|
712 | ix = 1024*PXY.pix2x_(ip_hi)+32*PXY.pix2x_(ip_med)+PXY.pix2x_(ip_low);
|
---|
713 | iy = 1024*PXY.pix2y_(ip_hi)+32*PXY.pix2y_(ip_med)+PXY.pix2y_(ip_low);
|
---|
714 |
|
---|
715 | //c transforms this in (horizontal, vertical) coordinates
|
---|
716 | jrt = ix + iy;// ! 'vertical' in {0,2*(nside-1)}
|
---|
717 | jpt = ix - iy;// ! 'horizontal' in {-nside+1,nside-1}
|
---|
718 |
|
---|
719 | //c computes the z coordinate on the sphere
|
---|
720 | // jr = jrll[face_num+1]*nside - jrt - 1;// ! ring number in {1,4*nside-1}
|
---|
721 | jr = jrll[face_num]*nside - jrt - 1;
|
---|
722 | nr = nside;// ! equatorial region (the most frequent)
|
---|
723 | n_before = ncap + nl4 * (jr - nside);
|
---|
724 | kshift=(jr - nside)%2;
|
---|
725 | if( jr<nside ) {//then ! north pole region
|
---|
726 | nr = jr;
|
---|
727 | n_before = 2 * nr * (nr - 1);
|
---|
728 | kshift = 0;
|
---|
729 | }
|
---|
730 | else if( jr>3*nside ) {//then ! south pole region
|
---|
731 | nr = nl4 - jr;
|
---|
732 | n_before = npix - 2 * (nr + 1) * nr;
|
---|
733 | kshift = 0;
|
---|
734 | }
|
---|
735 |
|
---|
736 | //c computes the phi coordinate on the sphere, in [0,2Pi]
|
---|
737 | jp = (jpll[face_num]*nr + jpt + 1 + kshift)/2;// ! 'phi' number in the ring in {1,4*nr}
|
---|
738 |
|
---|
739 | if( jp>nl4 ) jp = jp - nl4;
|
---|
740 | if( jp<1 ) jp = jp + nl4;
|
---|
741 |
|
---|
742 | int aux=n_before + jp - 1;
|
---|
743 | return (n_before + jp - 1);// ! in {0, npix-1}
|
---|
744 | }
|
---|
745 |
|
---|
746 | template<class T>
|
---|
747 | int_4 SphereHEALPix<T>::ring2nest(int_4 nside, int_4 ipring) const
|
---|
748 | {
|
---|
749 | /*
|
---|
750 | ==================================================
|
---|
751 | subroutine ring2nest(nside, ipring, ipnest)
|
---|
752 | ==================================================
|
---|
753 | c conversion from RING to NESTED pixel number
|
---|
754 | ==================================================
|
---|
755 | */
|
---|
756 | // tranlated from FORTRAN (Gorski) to C, by B. Revenu, revised Guy Le Meur
|
---|
757 | // (16/12/98)
|
---|
758 |
|
---|
759 | const PIXELS_XY& PXY= PIXELS_XY::instance();
|
---|
760 |
|
---|
761 | double fihip, hip;
|
---|
762 | int npix, nl2, nl4, ncap, ip, iphi, ipt, ipring1;
|
---|
763 | int kshift, face_num, nr;
|
---|
764 | int irn, ire, irm, irs, irt, ifm , ifp;
|
---|
765 | int ix, iy, ix_low, ix_hi, iy_low, iy_hi, ipf;
|
---|
766 | int ns_max(8192);
|
---|
767 |
|
---|
768 | // coordinate of the lowest corner of each face
|
---|
769 | int jrll[12]={2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4};// ! in unit of nside
|
---|
770 | int jpll[12]={1, 3, 5, 7, 0, 2, 4, 6, 1, 3, 5, 7};//! in unit of nside/2
|
---|
771 |
|
---|
772 | if( nside<1 || nside>ns_max ) {
|
---|
773 | cout << "nside out of range" << endl;
|
---|
774 | exit(0);
|
---|
775 | }
|
---|
776 | npix = 12 * nside*nside;
|
---|
777 | if( ipring<0 || ipring>npix-1 ) {
|
---|
778 | cout << "ipring out of range" << endl;
|
---|
779 | exit(0);
|
---|
780 | }
|
---|
781 |
|
---|
782 | nl2 = 2*nside;
|
---|
783 | nl4 = 4*nside;
|
---|
784 | npix = 12*nside*nside;// ! total number of points
|
---|
785 | ncap = 2*nside*(nside-1);// ! points in each polar cap, =0 for nside =1
|
---|
786 | ipring1 = ipring + 1;
|
---|
787 |
|
---|
788 | //c finds the ring number, the position of the ring and the face number
|
---|
789 | if( ipring1<=ncap ) {//then
|
---|
790 |
|
---|
791 | hip = ipring1/2.;
|
---|
792 | fihip = floor ( hip );
|
---|
793 | irn = (int)floor( sqrt( hip - sqrt(fihip) ) ) + 1;// ! counted from North pole
|
---|
794 | iphi = ipring1 - 2*irn*(irn - 1);
|
---|
795 |
|
---|
796 | kshift = 0;
|
---|
797 | nr = irn ;// ! 1/4 of the number of points on the current ring
|
---|
798 | face_num = (iphi-1) / irn;// ! in {0,3}
|
---|
799 | }
|
---|
800 | else if( ipring1<=nl2*(5*nside+1) ) {//then
|
---|
801 |
|
---|
802 | ip = ipring1 - ncap - 1;
|
---|
803 | irn = (int)floor( ip / nl4 ) + nside;// ! counted from North pole
|
---|
804 | iphi = (int)fmod(ip,nl4) + 1;
|
---|
805 |
|
---|
806 | kshift = (int)fmod(irn+nside,2);// ! 1 if irn+nside is odd, 0 otherwise
|
---|
807 | nr = nside;
|
---|
808 | ire = irn - nside + 1;// ! in {1, 2*nside +1}
|
---|
809 | irm = nl2 + 2 - ire;
|
---|
810 | ifm = (iphi - ire/2 + nside -1) / nside;// ! face boundary
|
---|
811 | ifp = (iphi - irm/2 + nside -1) / nside;
|
---|
812 | if( ifp==ifm ) {//then ! faces 4 to 7
|
---|
813 | face_num = (int)fmod(ifp,4) + 4;
|
---|
814 | }
|
---|
815 | else if( ifp + 1==ifm ) {//then ! (half-)faces 0 to 3
|
---|
816 | face_num = ifp;
|
---|
817 | }
|
---|
818 | else if( ifp - 1==ifm ) {//then ! (half-)faces 8 to 11
|
---|
819 | face_num = ifp + 7;
|
---|
820 | }
|
---|
821 | }
|
---|
822 | else {
|
---|
823 |
|
---|
824 | ip = npix - ipring1 + 1;
|
---|
825 | hip = ip/2.;
|
---|
826 | fihip = floor ( hip );
|
---|
827 | irs = (int)floor( sqrt( hip - sqrt(fihip) ) ) + 1;// ! counted from South pole
|
---|
828 | iphi = 4*irs + 1 - (ip - 2*irs*(irs-1));
|
---|
829 |
|
---|
830 | kshift = 0;
|
---|
831 | nr = irs;
|
---|
832 | irn = nl4 - irs;
|
---|
833 | face_num = (iphi-1) / irs + 8;// ! in {8,11}
|
---|
834 | }
|
---|
835 |
|
---|
836 | //c finds the (x,y) on the face
|
---|
837 | irt = irn - jrll[face_num]*nside + 1;// ! in {-nside+1,0}
|
---|
838 | ipt = 2*iphi - jpll[face_num]*nr - kshift - 1;// ! in {-nside+1,nside-1}
|
---|
839 |
|
---|
840 |
|
---|
841 | if( ipt>=nl2 ) ipt = ipt - 8*nside;// ! for the face #4
|
---|
842 |
|
---|
843 | ix = (ipt - irt ) / 2;
|
---|
844 | iy = -(ipt + irt ) / 2;
|
---|
845 |
|
---|
846 | ix_low = (int)fmod(ix,128);
|
---|
847 | ix_hi = ix/128;
|
---|
848 | iy_low = (int)fmod(iy,128);
|
---|
849 | iy_hi = iy/128;
|
---|
850 | ipf=(PXY.x2pix_(ix_hi)+PXY.y2pix_(iy_hi))*(128*128)+(PXY.x2pix_(ix_low)+PXY.y2pix_(iy_low));
|
---|
851 |
|
---|
852 | return (ipf + face_num* nside *nside);// ! in {0, 12*nside**2 - 1}
|
---|
853 | }
|
---|
854 |
|
---|
855 | template<class T>
|
---|
856 | int_4 SphereHEALPix<T>::ang2pix_ring(int_4 nside, double theta, double phi) const
|
---|
857 | {
|
---|
858 | /*
|
---|
859 | ==================================================
|
---|
860 | c gives the pixel number ipix (RING)
|
---|
861 | c corresponding to angles theta and phi
|
---|
862 | c==================================================
|
---|
863 | */
|
---|
864 | // tranlated from FORTRAN (Gorski) to C, by B. Revenu, revised Guy Le Meur
|
---|
865 | // (16/12/98)
|
---|
866 |
|
---|
867 | int nl2, nl4, ncap, npix, jp, jm, ipix1;
|
---|
868 | double z, za, tt, tp, tmp;
|
---|
869 | int ir, ip, kshift;
|
---|
870 |
|
---|
871 | double piover2(Pi/2.);
|
---|
872 | double twopi(2.*Pi);
|
---|
873 | double z0(2./3.);
|
---|
874 | int ns_max(8192);
|
---|
875 |
|
---|
876 | if( nside<1 || nside>ns_max ) {
|
---|
877 | cout << "nside out of range" << endl;
|
---|
878 | exit(0);
|
---|
879 | }
|
---|
880 |
|
---|
881 | if( theta<0. || theta>Pi) {
|
---|
882 | cout << "theta out of range" << endl;
|
---|
883 | exit(0);
|
---|
884 | }
|
---|
885 |
|
---|
886 | z = cos(theta);
|
---|
887 | za = fabs(z);
|
---|
888 | if( phi >= twopi) phi = phi - twopi;
|
---|
889 | if (phi < 0.) phi = phi + twopi;
|
---|
890 | tt = phi / piover2;// ! in [0,4)
|
---|
891 |
|
---|
892 | nl2 = 2*nside;
|
---|
893 | nl4 = 4*nside;
|
---|
894 | ncap = nl2*(nside-1);// ! number of pixels in the north polar cap
|
---|
895 | npix = 12*nside*nside;
|
---|
896 |
|
---|
897 | if( za <= z0 ) {
|
---|
898 |
|
---|
899 | jp = (int)floor(nside*(0.5 + tt - z*0.75));// ! index of ascending edge line
|
---|
900 | jm = (int)floor(nside*(0.5 + tt + z*0.75));// ! index of descending edge line
|
---|
901 |
|
---|
902 | ir = nside + 1 + jp - jm;// ! in {1,2n+1} (ring number counted from z=2/3)
|
---|
903 | kshift = 0;
|
---|
904 | if (fmod(ir,2)==0.) kshift = 1;// ! kshift=1 if ir even, 0 otherwise
|
---|
905 |
|
---|
906 | ip = (int)floor( ( jp+jm - nside + kshift + 1 ) / 2 ) + 1;// ! in {1,4n}
|
---|
907 | if( ip>nl4 ) ip = ip - nl4;
|
---|
908 |
|
---|
909 | ipix1 = ncap + nl4*(ir-1) + ip ;
|
---|
910 | }
|
---|
911 | else {
|
---|
912 |
|
---|
913 | tp = tt - floor(tt);// !MOD(tt,1.d0)
|
---|
914 | tmp = sqrt( 3.*(1. - za) );
|
---|
915 |
|
---|
916 | jp = (int)floor( nside * tp * tmp );// ! increasing edge line index
|
---|
917 | jm = (int)floor( nside * (1. - tp) * tmp );// ! decreasing edge line index
|
---|
918 |
|
---|
919 | ir = jp + jm + 1;// ! ring number counted from the closest pole
|
---|
920 | ip = (int)floor( tt * ir ) + 1;// ! in {1,4*ir}
|
---|
921 | if( ip>4*ir ) ip = ip - 4*ir;
|
---|
922 |
|
---|
923 | ipix1 = 2*ir*(ir-1) + ip;
|
---|
924 | if( z<=0. ) {
|
---|
925 | ipix1 = npix - 2*ir*(ir+1) + ip;
|
---|
926 | }
|
---|
927 | }
|
---|
928 | return (ipix1 - 1);// ! in {0, npix-1}
|
---|
929 | }
|
---|
930 |
|
---|
931 | template<class T>
|
---|
932 | int_4 SphereHEALPix<T>::ang2pix_nest(int_4 nside, double theta, double phi) const
|
---|
933 | {
|
---|
934 | /*
|
---|
935 | ==================================================
|
---|
936 | subroutine ang2pix_nest(nside, theta, phi, ipix)
|
---|
937 | ==================================================
|
---|
938 | c gives the pixel number ipix (NESTED)
|
---|
939 | c corresponding to angles theta and phi
|
---|
940 | c
|
---|
941 | c the computation is made to the highest resolution available (nside=8192)
|
---|
942 | c and then degraded to that required (by integer division)
|
---|
943 | c this doesn't cost more, and it makes sure
|
---|
944 | c that the treatement of round-off will be consistent
|
---|
945 | c for every resolution
|
---|
946 | ==================================================
|
---|
947 | */
|
---|
948 | // tranlated from FORTRAN (Gorski) to C, by B. Revenu, revised Guy Le Meur
|
---|
949 | // (16/12/98)
|
---|
950 |
|
---|
951 | const PIXELS_XY& PXY= PIXELS_XY::instance();
|
---|
952 |
|
---|
953 | double z, za, z0, tt, tp, tmp;
|
---|
954 | int face_num,jp,jm;
|
---|
955 | int ifp, ifm;
|
---|
956 | int ix, iy, ix_low, ix_hi, iy_low, iy_hi, ipf, ntt;
|
---|
957 | double piover2(Pi/2.), twopi(2.*Pi);
|
---|
958 | int ns_max(8192);
|
---|
959 |
|
---|
960 | if( nside<1 || nside>ns_max ) {
|
---|
961 | cout << "nside out of range" << endl;
|
---|
962 | exit(0);
|
---|
963 | }
|
---|
964 | if( theta<0 || theta>Pi ) {
|
---|
965 | cout << "theta out of range" << endl;
|
---|
966 | exit(0);
|
---|
967 | }
|
---|
968 | z = cos(theta);
|
---|
969 | za = fabs(z);
|
---|
970 | z0 = 2./3.;
|
---|
971 | if( phi>=twopi ) phi = phi - twopi;
|
---|
972 | if( phi<0. ) phi = phi + twopi;
|
---|
973 | tt = phi / piover2;// ! in [0,4[
|
---|
974 | if( za<=z0 ) { // then ! equatorial region
|
---|
975 |
|
---|
976 | //(the index of edge lines increase when the longitude=phi goes up)
|
---|
977 | jp = (int)floor(ns_max*(0.5 + tt - z*0.75));// ! ascending edge line index
|
---|
978 | jm = (int)floor(ns_max*(0.5 + tt + z*0.75));// ! descending edge line index
|
---|
979 |
|
---|
980 | //c finds the face
|
---|
981 | ifp = jp / ns_max;// ! in {0,4}
|
---|
982 | ifm = jm / ns_max;
|
---|
983 | if( ifp==ifm ) face_num = (int)fmod(ifp,4) + 4; //then ! faces 4 to 7
|
---|
984 | else if( ifp<ifm ) face_num = (int)fmod(ifp,4); // (half-)faces 0 to 3
|
---|
985 | else face_num = (int)fmod(ifm,4) + 8;//! (half-)faces 8 to 11
|
---|
986 |
|
---|
987 | ix = (int)fmod(jm, ns_max);
|
---|
988 | iy = ns_max - (int)fmod(jp, ns_max) - 1;
|
---|
989 | }
|
---|
990 | else { //! polar region, za > 2/3
|
---|
991 |
|
---|
992 | ntt = (int)floor(tt);
|
---|
993 | if( ntt>=4 ) ntt = 3;
|
---|
994 | tp = tt - ntt;
|
---|
995 | tmp = sqrt( 3.*(1. - za) );// ! in ]0,1]
|
---|
996 |
|
---|
997 | //(the index of edge lines increase when distance from the closest pole goes up)
|
---|
998 | jp = (int)floor(ns_max*tp*tmp); // ! line going toward the pole as phi increases
|
---|
999 | jm = (int)floor(ns_max*(1.-tp)*tmp); // ! that one goes away of the closest pole
|
---|
1000 | jp = (int)min(ns_max-1, jp);// ! for points too close to the boundary
|
---|
1001 | jm = (int)min(ns_max-1, jm);
|
---|
1002 |
|
---|
1003 | // finds the face and pixel's (x,y)
|
---|
1004 | if( z>=0 ) {
|
---|
1005 | face_num = ntt;// ! in {0,3}
|
---|
1006 | ix = ns_max - jm - 1;
|
---|
1007 | iy = ns_max - jp - 1;
|
---|
1008 | }
|
---|
1009 | else {
|
---|
1010 | face_num = ntt + 8;// ! in {8,11}
|
---|
1011 | ix = jp;
|
---|
1012 | iy = jm;
|
---|
1013 | }
|
---|
1014 | }
|
---|
1015 |
|
---|
1016 | ix_low = (int)fmod(ix,128);
|
---|
1017 | ix_hi = ix/128;
|
---|
1018 | iy_low = (int)fmod(iy,128);
|
---|
1019 | iy_hi = iy/128;
|
---|
1020 | ipf= (PXY.x2pix_(ix_hi)+PXY.y2pix_(iy_hi))*(128*128)+(PXY.x2pix_(ix_low)+PXY.y2pix_(iy_low));
|
---|
1021 | // ipf = ipf / pow(ns_max/nside,2.);// ! in {0, nside**2 - 1}
|
---|
1022 | // return ( ipf + face_num*pow(nside,2));// ! in {0, 12*nside**2 - 1}
|
---|
1023 | // $CHECK$ Reza 25/10/99 , pow remplace par *
|
---|
1024 | ipf = ipf / ((ns_max/nside)*(ns_max/nside));
|
---|
1025 | return (ipf + face_num*nside*nside);
|
---|
1026 | }
|
---|
1027 |
|
---|
1028 | template<class T>
|
---|
1029 | void SphereHEALPix<T>::pix2ang_ring(int_4 nside,int_4 ipix,double& theta,double& phi) const {
|
---|
1030 | /*
|
---|
1031 | ===================================================
|
---|
1032 | c gives theta and phi corresponding to pixel ipix (RING)
|
---|
1033 | c for a parameter nside
|
---|
1034 | ===================================================
|
---|
1035 | */
|
---|
1036 | // tranlated from FORTRAN (Gorski) to C, by B. Revenu, revised Guy Le Meur
|
---|
1037 | // (16/12/98)
|
---|
1038 |
|
---|
1039 | int nl2, nl4, npix, ncap, iring, iphi, ip, ipix1;
|
---|
1040 | double fact1, fact2, fodd, hip, fihip;
|
---|
1041 |
|
---|
1042 | int ns_max(8192);
|
---|
1043 |
|
---|
1044 | if( nside<1 || nside>ns_max ) {
|
---|
1045 | cout << "nside out of range" << endl;
|
---|
1046 | exit(0);
|
---|
1047 | }
|
---|
1048 | npix = 12*nside*nside; // ! total number of points
|
---|
1049 | if( ipix<0 || ipix>npix-1 ) {
|
---|
1050 | cout << "ipix out of range" << endl;
|
---|
1051 | exit(0);
|
---|
1052 | }
|
---|
1053 |
|
---|
1054 | ipix1 = ipix + 1; // in {1, npix}
|
---|
1055 | nl2 = 2*nside;
|
---|
1056 | nl4 = 4*nside;
|
---|
1057 | ncap = 2*nside*(nside-1);// ! points in each polar cap, =0 for nside =1
|
---|
1058 | fact1 = 1.5*nside;
|
---|
1059 | fact2 = 3.0*nside*nside;
|
---|
1060 |
|
---|
1061 | if( ipix1 <= ncap ) { //! North Polar cap -------------
|
---|
1062 |
|
---|
1063 | hip = ipix1/2.;
|
---|
1064 | fihip = floor(hip);
|
---|
1065 | iring = (int)floor( sqrt( hip - sqrt(fihip) ) ) + 1;// ! counted from North pole
|
---|
1066 | iphi = ipix1 - 2*iring*(iring - 1);
|
---|
1067 |
|
---|
1068 | theta = acos( 1. - iring*iring / fact2 );
|
---|
1069 | phi = ((double)iphi - 0.5) * Pi/(2.*iring);
|
---|
1070 | // cout << theta << " " << phi << endl;
|
---|
1071 | }
|
---|
1072 | else if( ipix1 <= nl2*(5*nside+1) ) {//then ! Equatorial region ------
|
---|
1073 |
|
---|
1074 | ip = ipix1 - ncap - 1;
|
---|
1075 | iring = (int)floor( ip / nl4 ) + nside;// ! counted from North pole
|
---|
1076 | iphi = ip%nl4 + 1;
|
---|
1077 |
|
---|
1078 | fodd = 0.5 * (1 + (iring+nside)%2 );// ! 1 if iring+nside is odd, 1/2 otherwise
|
---|
1079 | theta = acos( (nl2 - iring) / fact1 );
|
---|
1080 | phi = ((double)iphi - fodd) * Pi /(2.*nside);
|
---|
1081 | }
|
---|
1082 | else {//! South Polar cap -----------------------------------
|
---|
1083 |
|
---|
1084 | ip = npix - ipix1 + 1;
|
---|
1085 | hip = ip/2.;
|
---|
1086 | fihip = floor(hip);
|
---|
1087 | iring = (int)floor( sqrt( hip - sqrt(fihip) ) ) + 1;// ! counted from South pole
|
---|
1088 | iphi = (int)(4.*iring + 1 - (ip - 2.*iring*(iring-1)));
|
---|
1089 |
|
---|
1090 | theta = acos( -1. + iring*iring / fact2 );
|
---|
1091 | phi = ((double)iphi - 0.5) * Pi/(2.*iring);
|
---|
1092 | // cout << theta << " " << phi << endl;
|
---|
1093 | }
|
---|
1094 | }
|
---|
1095 |
|
---|
1096 | template<class T>
|
---|
1097 | void SphereHEALPix<T>::pix2ang_nest(int_4 nside,int_4 ipix,double& theta,double& phi) const {
|
---|
1098 | /*
|
---|
1099 | ==================================================
|
---|
1100 | subroutine pix2ang_nest(nside, ipix, theta, phi)
|
---|
1101 | ==================================================
|
---|
1102 | c gives theta and phi corresponding to pixel ipix (NESTED)
|
---|
1103 | c for a parameter nside
|
---|
1104 | ==================================================
|
---|
1105 | */
|
---|
1106 | // tranlated from FORTRAN (Gorski) to C, by B. Revenu, revised Guy Le Meur
|
---|
1107 | // (16/12/98)
|
---|
1108 |
|
---|
1109 | const PIXELS_XY& PXY= PIXELS_XY::instance();
|
---|
1110 |
|
---|
1111 | int npix, npface, face_num;
|
---|
1112 | int ipf, ip_low, ip_trunc, ip_med, ip_hi;
|
---|
1113 | int ix, iy, jrt, jr, nr, jpt, jp, kshift, nl4;
|
---|
1114 | double z, fn, fact1, fact2;
|
---|
1115 | double piover2(Pi/2.);
|
---|
1116 | int ns_max(8192);
|
---|
1117 |
|
---|
1118 | // ! coordinate of the lowest corner of each face
|
---|
1119 | int jrll[12]={2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4};//! in unit of nside
|
---|
1120 | int jpll[12]={1, 3, 5, 7, 0, 2, 4, 6, 1, 3, 5, 7};// ! in unit of nside/2
|
---|
1121 |
|
---|
1122 | if( nside<1 || nside>ns_max ) {
|
---|
1123 | cout << "nside out of range" << endl;
|
---|
1124 | exit(0);
|
---|
1125 | }
|
---|
1126 | npix = 12 * nside*nside;
|
---|
1127 | if( ipix<0 || ipix>npix-1 ) {
|
---|
1128 | cout << "ipix out of range" << endl;
|
---|
1129 | exit(0);
|
---|
1130 | }
|
---|
1131 |
|
---|
1132 | fn = 1.*nside;
|
---|
1133 | fact1 = 1./(3.*fn*fn);
|
---|
1134 | fact2 = 2./(3.*fn);
|
---|
1135 | nl4 = 4*nside;
|
---|
1136 |
|
---|
1137 | //c finds the face, and the number in the face
|
---|
1138 | npface = nside*nside;
|
---|
1139 |
|
---|
1140 | face_num = ipix/npface;// ! face number in {0,11}
|
---|
1141 | ipf = (int)fmod(ipix,npface);// ! pixel number in the face {0,npface-1}
|
---|
1142 |
|
---|
1143 | //c finds the x,y on the face (starting from the lowest corner)
|
---|
1144 | //c from the pixel number
|
---|
1145 | ip_low = (int)fmod(ipf,1024);// ! content of the last 10 bits
|
---|
1146 | ip_trunc = ipf/1024 ;// ! truncation of the last 10 bits
|
---|
1147 | ip_med = (int)fmod(ip_trunc,1024);// ! content of the next 10 bits
|
---|
1148 | ip_hi = ip_trunc/1024 ;//! content of the high weight 10 bits
|
---|
1149 |
|
---|
1150 | ix = 1024*PXY.pix2x_(ip_hi)+32*PXY.pix2x_(ip_med)+PXY.pix2x_(ip_low);
|
---|
1151 | iy = 1024*PXY.pix2y_(ip_hi)+32*PXY.pix2y_(ip_med)+PXY.pix2y_(ip_low);
|
---|
1152 |
|
---|
1153 | //c transforms this in (horizontal, vertical) coordinates
|
---|
1154 | jrt = ix + iy;// ! 'vertical' in {0,2*(nside-1)}
|
---|
1155 | jpt = ix - iy;// ! 'horizontal' in {-nside+1,nside-1}
|
---|
1156 |
|
---|
1157 | //c computes the z coordinate on the sphere
|
---|
1158 | // jr = jrll[face_num+1]*nside - jrt - 1;// ! ring number in {1,4*nside-1}
|
---|
1159 | jr = jrll[face_num]*nside - jrt - 1;
|
---|
1160 | nr = nside;// ! equatorial region (the most frequent)
|
---|
1161 | z = (2*nside-jr)*fact2;
|
---|
1162 | kshift = (int)fmod(jr - nside, 2);
|
---|
1163 | if( jr<nside ) { //then ! north pole region
|
---|
1164 | nr = jr;
|
---|
1165 | z = 1. - nr*nr*fact1;
|
---|
1166 | kshift = 0;
|
---|
1167 | }
|
---|
1168 | else {
|
---|
1169 | if( jr>3*nside ) {// then ! south pole region
|
---|
1170 | nr = nl4 - jr;
|
---|
1171 | z = - 1. + nr*nr*fact1;
|
---|
1172 | kshift = 0;
|
---|
1173 | }
|
---|
1174 | }
|
---|
1175 | theta = acos(z);
|
---|
1176 |
|
---|
1177 | //c computes the phi coordinate on the sphere, in [0,2Pi]
|
---|
1178 | // jp = (jpll[face_num+1]*nr + jpt + 1 + kshift)/2;// ! 'phi' number in the ring in {1,4*nr}
|
---|
1179 | jp = (jpll[face_num]*nr + jpt + 1 + kshift)/2;
|
---|
1180 | if( jp>nl4 ) jp = jp - nl4;
|
---|
1181 | if( jp<1 ) jp = jp + nl4;
|
---|
1182 | phi = (jp - (kshift+1)*0.5) * (piover2 / nr);
|
---|
1183 | }
|
---|
1184 |
|
---|
1185 |
|
---|
1186 |
|
---|
1187 | template <class T>
|
---|
1188 | void SphereHEALPix<T>::print(ostream& os) const
|
---|
1189 | {
|
---|
1190 | if(mInfo_) os << " DVList Info= " << *mInfo_ << endl;
|
---|
1191 | //
|
---|
1192 | os << " nSide_ = " << nSide_ << endl;
|
---|
1193 | os << " nPix_ = " << nPix_ << endl;
|
---|
1194 | os << " omeg_ = " << omeg_ << endl;
|
---|
1195 |
|
---|
1196 | os << " content of pixels : ";
|
---|
1197 | for(int i=0; i < nPix_; i++)
|
---|
1198 | {
|
---|
1199 | if(i%5 == 0) os << endl;
|
---|
1200 | os << pixels_(i) <<", ";
|
---|
1201 | }
|
---|
1202 | os << endl;
|
---|
1203 |
|
---|
1204 | os << endl;
|
---|
1205 | //const PIXELS_XY& PXY= PIXELS_XY::instance();
|
---|
1206 |
|
---|
1207 | //os << endl; os << " contenu des tableaux conversions "<<endl;
|
---|
1208 | //for(int i=0; i < 5; i++)
|
---|
1209 | // {
|
---|
1210 | // os<<PXY.pix2x_(i)<<", "<<PXY.pix2y_(i)<<", "<<PXY.x2pix_(i)<<", "<<PXY.y2pix_(i)<<endl;
|
---|
1211 | // }
|
---|
1212 | os << endl;
|
---|
1213 |
|
---|
1214 | }
|
---|
1215 |
|
---|
1216 |
|
---|
1217 |
|
---|
1218 | //*******************************************************************
|
---|
1219 |
|
---|
1220 | #ifdef __CXX_PRAGMA_TEMPLATES__
|
---|
1221 | #pragma define_template SphereHEALPix<uint_2>
|
---|
1222 | #pragma define_template SphereHEALPix<r_8>
|
---|
1223 | #pragma define_template SphereHEALPix<r_4>
|
---|
1224 | #pragma define_template SphereHEALPix< complex<r_4> >
|
---|
1225 | #pragma define_template SphereHEALPix< complex<r_8> >
|
---|
1226 | #endif
|
---|
1227 | #if defined(ANSI_TEMPLATES) || defined(GNU_TEMPLATES)
|
---|
1228 | template class SphereHEALPix<uint_2>;
|
---|
1229 | template class SphereHEALPix<r_8>;
|
---|
1230 | template class SphereHEALPix<r_4>;
|
---|
1231 | template class SphereHEALPix< complex<r_4> >;
|
---|
1232 | template class SphereHEALPix< complex<r_8> >;
|
---|
1233 | #endif
|
---|
1234 |
|
---|