[1371] | 1 | // 3-D Geometry
|
---|
| 2 | // B. Revenu, G. Le Meur 2000
|
---|
[2973] | 3 | // R. Ansari 2006
|
---|
[1371] | 4 | // DAPNIA/SPP (Saclay) / CEA LAL - IN2P3/CNRS (Orsay)
|
---|
| 5 |
|
---|
[764] | 6 | #ifndef VECTOR3D_H_SEEN
|
---|
| 7 | #define VECTOR3D_H_SEEN
|
---|
| 8 |
|
---|
| 9 | #include <math.h>
|
---|
[2322] | 10 | #include <iostream>
|
---|
[764] | 11 | #include <stdio.h>
|
---|
| 12 | #include <string.h>
|
---|
[3206] | 13 |
|
---|
[764] | 14 | #include "longlat.h"
|
---|
| 15 |
|
---|
[2973] | 16 |
|
---|
| 17 | namespace SOPHYA {
|
---|
| 18 |
|
---|
| 19 | //! Class to ease angle conversions (radian <> degree <> arcmin <> arcsec)
|
---|
| 20 | class Angle {
|
---|
| 21 | public:
|
---|
| 22 | enum AngleUnit { Radian, Degree, ArcMin, ArcSec };
|
---|
| 23 | //! Constructor with specification of angle value in radian
|
---|
| 24 | Angle(double val=0.) { _angrad = val; }
|
---|
| 25 | //! Constructor with specification of angle value and unit
|
---|
| 26 | Angle(double val, Angle::AngleUnit un);
|
---|
| 27 | //! Copy constructor
|
---|
| 28 | Angle(Angle const& a) { _angrad = a._angrad; }
|
---|
| 29 |
|
---|
| 30 | //! Conversion to radian
|
---|
| 31 | inline double ToRadian() const { return _angrad; }
|
---|
| 32 | //! Conversion to degree
|
---|
| 33 | inline double ToDegree() const { return _angrad*_rad2deg; }
|
---|
| 34 | //! Conversion to arcmin
|
---|
| 35 | inline double ToArcMin() const { return _angrad*_rad2min; }
|
---|
| 36 | //! Conversion to arcsec
|
---|
| 37 | inline double ToArcSec() const { return _angrad*_rad2sec; }
|
---|
| 38 |
|
---|
| 39 | //! return the angle value in radian
|
---|
| 40 | inline operator double () const { return _angrad; }
|
---|
| 41 |
|
---|
| 42 | protected:
|
---|
| 43 | double _angrad; // angle in radians
|
---|
| 44 |
|
---|
| 45 | static double _deg2rad; // deg -> radian conversion factor
|
---|
| 46 | static double _rad2deg; // rad -> degree conversion factor
|
---|
| 47 | static double _rad2min; // rad -> arcmin conversion factor
|
---|
| 48 | static double _rad2sec; // rad -> arcmin conversion factor
|
---|
| 49 |
|
---|
| 50 | };
|
---|
| 51 |
|
---|
[3786] | 52 | //! Angle conversion: Radian to degree
|
---|
| 53 | inline double RadianToDegree(double ar)
|
---|
| 54 | { return Angle(ar).ToDegree(); }
|
---|
| 55 | //! Angle conversion: Degree to radian
|
---|
| 56 | inline double DegreeToRadian(double ad)
|
---|
| 57 | { return Angle(ad,Angle::Degree).ToRadian(); }
|
---|
| 58 | //! Angle conversion: Arcminute to radian
|
---|
| 59 | inline double ArcminToRadian(double aam)
|
---|
| 60 | { return Angle(aam,Angle::ArcMin).ToRadian(); }
|
---|
| 61 |
|
---|
[764] | 62 | /*
|
---|
| 63 | Geometrie en dimension 3.
|
---|
| 64 | Tous les calculs sont faits en radians
|
---|
| 65 | et en coordonnees spheriques theta,phi
|
---|
| 66 | pour les rotations (angles d'Euler) ma source est
|
---|
[2973] | 67 | B. Revenu / G. Le Meur
|
---|
[764] | 68 | "Classical Mechanics" 2nd edition, H. Goldstein, Addison Wesley
|
---|
| 69 | */
|
---|
| 70 |
|
---|
| 71 | class Vector3d
|
---|
| 72 | {
|
---|
| 73 |
|
---|
| 74 | public:
|
---|
| 75 |
|
---|
| 76 | Vector3d();
|
---|
| 77 | Vector3d(double x, double y, double z);
|
---|
| 78 | Vector3d(double theta, double phi);
|
---|
| 79 | Vector3d(const LongLat&);
|
---|
| 80 | Vector3d(const Vector3d&);
|
---|
| 81 |
|
---|
[3866] | 82 | virtual ~Vector3d() { }
|
---|
| 83 |
|
---|
[764] | 84 | // To manipulate the vector
|
---|
| 85 | virtual void Setxyz(double x, double y, double z);
|
---|
| 86 | virtual void SetThetaPhi(double theta, double phi);
|
---|
| 87 | virtual void ThetaPhi2xyz();
|
---|
| 88 | virtual void xyz2ThetaPhi();
|
---|
| 89 |
|
---|
| 90 | // Acces to coordinates
|
---|
| 91 | inline double Theta() const {return _theta;}
|
---|
| 92 | inline double Phi() const {return _phi;}
|
---|
| 93 | inline double X() const {return _x;}
|
---|
| 94 | inline double Y() const {return _y;}
|
---|
| 95 | inline double Z() const {return _z;}
|
---|
| 96 |
|
---|
| 97 | virtual Vector3d& Normalize();
|
---|
| 98 | virtual double Norm() const;
|
---|
| 99 |
|
---|
| 100 | // produit scalaire
|
---|
| 101 | virtual double Psc(const Vector3d&) const;
|
---|
| 102 |
|
---|
| 103 | // ecart angulaire entre 2 vecteurs dans [0,Pi]
|
---|
[2973] | 104 | //! angular gap between 2 vectors in [0,Pi]
|
---|
[764] | 105 | virtual double SepAngle(const Vector3d&) const;
|
---|
| 106 |
|
---|
| 107 | // produit vectoriel
|
---|
[2973] | 108 | //! return the vector product (*this)^v2
|
---|
| 109 | virtual Vector3d Vect(const Vector3d& v2) const;
|
---|
[764] | 110 |
|
---|
| 111 | // vecteur perpendiculaire de meme phi
|
---|
[2973] | 112 | //! return the perpendicular vector, with equal phi
|
---|
[764] | 113 | virtual Vector3d VperpPhi() const;
|
---|
| 114 |
|
---|
| 115 | // vecteur perpendiculaire de meme theta
|
---|
[2973] | 116 | //! return the perpendicular vector, with equal theta
|
---|
[764] | 117 | virtual Vector3d VperpTheta() const;
|
---|
| 118 |
|
---|
| 119 | virtual Vector3d ETheta() const;
|
---|
| 120 | virtual Vector3d EPhi() const;
|
---|
| 121 |
|
---|
| 122 | // rotations d'Euler
|
---|
[2973] | 123 | //! Perform Euler's rotations
|
---|
[764] | 124 | virtual Vector3d Euler(double, double, double) const;
|
---|
| 125 |
|
---|
| 126 | // rotation inverse
|
---|
[2973] | 127 | //! perform inverse Euler rotation
|
---|
[764] | 128 | Vector3d InvEuler(double, double, double) const;
|
---|
| 129 |
|
---|
| 130 | // rotation d'angle phi autour d'un axe omega (regle du tire-bouchon)
|
---|
[2973] | 131 | //! perform rotation of angle phi around an axis omega (Maxwell's rule)
|
---|
[792] | 132 | Vector3d Rotate(const Vector3d& omega,double phi) const;
|
---|
[764] | 133 |
|
---|
| 134 | /*virtual*/ Vector3d& operator=(const Vector3d&); // $CHECK$ EA 101299
|
---|
| 135 | virtual Vector3d& operator+=(const Vector3d&);
|
---|
| 136 | virtual Vector3d& operator-=(const Vector3d&);
|
---|
| 137 | virtual Vector3d operator+(const Vector3d&) const;
|
---|
| 138 | virtual Vector3d operator-(const Vector3d&) const;
|
---|
| 139 |
|
---|
| 140 | virtual Vector3d& operator+=(double);
|
---|
| 141 | virtual Vector3d& operator/=(double);
|
---|
| 142 | virtual Vector3d& operator*=(double);
|
---|
| 143 |
|
---|
| 144 | virtual Vector3d operator+(double) const;
|
---|
| 145 | virtual Vector3d operator-(double) const;
|
---|
| 146 | virtual Vector3d operator*(double) const;
|
---|
| 147 | virtual Vector3d operator/(double) const;
|
---|
| 148 |
|
---|
| 149 | /*! vector product */
|
---|
| 150 | virtual Vector3d operator^(const Vector3d&) const; // produit vectoriel
|
---|
| 151 | /*! dot product */
|
---|
| 152 | virtual double operator*(const Vector3d&) const; // produit scalaire
|
---|
| 153 |
|
---|
| 154 | bool operator==(const Vector3d&);
|
---|
| 155 |
|
---|
| 156 | virtual void Print(ostream& os) const;
|
---|
| 157 |
|
---|
| 158 | protected:
|
---|
| 159 |
|
---|
| 160 | double _x;
|
---|
| 161 | double _y;
|
---|
| 162 | double _z;
|
---|
| 163 | double _theta;
|
---|
| 164 | double _phi;
|
---|
| 165 |
|
---|
| 166 | };
|
---|
| 167 |
|
---|
| 168 | inline ostream& operator<<(ostream& s, const Vector3d& v)
|
---|
| 169 | {
|
---|
| 170 | v.Print(s);
|
---|
| 171 | return s;
|
---|
| 172 | }
|
---|
| 173 |
|
---|
| 174 | // fonctions globales
|
---|
| 175 |
|
---|
| 176 | inline Vector3d operator*(double d, const Vector3d& v)
|
---|
| 177 | {
|
---|
| 178 | return v*d;
|
---|
| 179 | }
|
---|
| 180 |
|
---|
| 181 | inline Vector3d operator+(double d, const Vector3d& v)
|
---|
| 182 | {
|
---|
| 183 | return v+d;
|
---|
| 184 | }
|
---|
| 185 |
|
---|
[2973] | 186 |
|
---|
[1371] | 187 | } // namespace SOPHYA
|
---|
| 188 |
|
---|
[764] | 189 | #endif
|
---|
| 190 |
|
---|
| 191 |
|
---|