| 1 | //   3-D Geometry | 
|---|
| 2 | //        B. Revenu, G. Le Meur   2000 | 
|---|
| 3 | //        R. Ansari 2006 | 
|---|
| 4 | // DAPNIA/SPP (Saclay) / CEA    LAL - IN2P3/CNRS  (Orsay) | 
|---|
| 5 |  | 
|---|
| 6 | #ifndef VECTOR3D_H_SEEN | 
|---|
| 7 | #define VECTOR3D_H_SEEN | 
|---|
| 8 |  | 
|---|
| 9 | #include <math.h> | 
|---|
| 10 | #include <iostream> | 
|---|
| 11 | #include <stdio.h> | 
|---|
| 12 | #include <string.h> | 
|---|
| 13 |  | 
|---|
| 14 | #include "longlat.h" | 
|---|
| 15 |  | 
|---|
| 16 |  | 
|---|
| 17 | namespace SOPHYA { | 
|---|
| 18 |  | 
|---|
| 19 | //! Class to ease angle conversions (radian <> degree <> arcmin <> arcsec) | 
|---|
| 20 | class Angle { | 
|---|
| 21 | public: | 
|---|
| 22 | enum AngleUnit { Radian, Degree, ArcMin, ArcSec }; | 
|---|
| 23 | //! Constructor with specification of angle value in radian | 
|---|
| 24 | Angle(double val=0.) { _angrad = val; } | 
|---|
| 25 | //! Constructor with specification of angle value and unit | 
|---|
| 26 | Angle(double val, Angle::AngleUnit un); | 
|---|
| 27 | //! Copy constructor | 
|---|
| 28 | Angle(Angle const& a) { _angrad = a._angrad; } | 
|---|
| 29 |  | 
|---|
| 30 | //! Conversion to radian | 
|---|
| 31 | inline double ToRadian() const { return _angrad; } | 
|---|
| 32 | //! Conversion to degree | 
|---|
| 33 | inline double ToDegree() const { return _angrad*_rad2deg; } | 
|---|
| 34 | //! Conversion to arcmin | 
|---|
| 35 | inline double ToArcMin() const { return _angrad*_rad2min; } | 
|---|
| 36 | //! Conversion to arcsec | 
|---|
| 37 | inline double ToArcSec() const { return _angrad*_rad2sec; } | 
|---|
| 38 |  | 
|---|
| 39 | //! return the angle value in radian | 
|---|
| 40 | inline operator double () const { return _angrad; } | 
|---|
| 41 |  | 
|---|
| 42 | protected: | 
|---|
| 43 | double _angrad;  // angle in radians | 
|---|
| 44 |  | 
|---|
| 45 | static double _deg2rad;  // deg -> radian conversion factor | 
|---|
| 46 | static double _rad2deg;  // rad -> degree conversion factor | 
|---|
| 47 | static double _rad2min;  // rad -> arcmin conversion factor | 
|---|
| 48 | static double _rad2sec;  // rad -> arcmin conversion factor | 
|---|
| 49 |  | 
|---|
| 50 | }; | 
|---|
| 51 |  | 
|---|
| 52 | /* | 
|---|
| 53 | Geometrie en dimension 3. | 
|---|
| 54 | Tous les calculs sont faits en radians | 
|---|
| 55 | et en coordonnees spheriques theta,phi | 
|---|
| 56 | pour les rotations (angles d'Euler) ma source est | 
|---|
| 57 | B. Revenu / G. Le Meur | 
|---|
| 58 | "Classical Mechanics" 2nd edition, H. Goldstein, Addison Wesley | 
|---|
| 59 | */ | 
|---|
| 60 |  | 
|---|
| 61 | class Vector3d | 
|---|
| 62 | { | 
|---|
| 63 |  | 
|---|
| 64 | public: | 
|---|
| 65 |  | 
|---|
| 66 | Vector3d(); | 
|---|
| 67 | Vector3d(double x, double y, double z); | 
|---|
| 68 | Vector3d(double theta, double phi); | 
|---|
| 69 | Vector3d(const LongLat&); | 
|---|
| 70 | Vector3d(const Vector3d&); | 
|---|
| 71 |  | 
|---|
| 72 | //   To manipulate the vector | 
|---|
| 73 | virtual void Setxyz(double x, double y, double z); | 
|---|
| 74 | virtual void SetThetaPhi(double theta,  double phi); | 
|---|
| 75 | virtual void ThetaPhi2xyz(); | 
|---|
| 76 | virtual void xyz2ThetaPhi(); | 
|---|
| 77 |  | 
|---|
| 78 | // Acces to coordinates | 
|---|
| 79 | inline double Theta() const {return _theta;} | 
|---|
| 80 | inline double Phi() const {return _phi;} | 
|---|
| 81 | inline double X() const {return _x;} | 
|---|
| 82 | inline double Y() const {return _y;} | 
|---|
| 83 | inline double Z() const {return _z;} | 
|---|
| 84 |  | 
|---|
| 85 | virtual Vector3d& Normalize(); | 
|---|
| 86 | virtual double Norm() const; | 
|---|
| 87 |  | 
|---|
| 88 | // produit scalaire | 
|---|
| 89 | virtual double Psc(const Vector3d&) const; | 
|---|
| 90 |  | 
|---|
| 91 | // ecart angulaire entre 2 vecteurs dans [0,Pi] | 
|---|
| 92 | //!   angular gap between 2 vectors in [0,Pi] | 
|---|
| 93 | virtual double SepAngle(const Vector3d&) const; | 
|---|
| 94 |  | 
|---|
| 95 | // produit vectoriel | 
|---|
| 96 | //! return the vector product (*this)^v2 | 
|---|
| 97 | virtual Vector3d Vect(const Vector3d& v2) const; | 
|---|
| 98 |  | 
|---|
| 99 | // vecteur perpendiculaire de meme phi | 
|---|
| 100 | //! return the perpendicular vector, with equal phi | 
|---|
| 101 | virtual Vector3d VperpPhi() const; | 
|---|
| 102 |  | 
|---|
| 103 | // vecteur perpendiculaire de meme theta | 
|---|
| 104 | //! return the perpendicular vector, with equal theta | 
|---|
| 105 | virtual Vector3d VperpTheta() const; | 
|---|
| 106 |  | 
|---|
| 107 | virtual Vector3d ETheta() const; | 
|---|
| 108 | virtual Vector3d EPhi() const; | 
|---|
| 109 |  | 
|---|
| 110 | // rotations d'Euler | 
|---|
| 111 | //! Perform   Euler's rotations | 
|---|
| 112 | virtual Vector3d Euler(double, double, double) const; | 
|---|
| 113 |  | 
|---|
| 114 | // rotation inverse | 
|---|
| 115 | //! perform   inverse Euler rotation | 
|---|
| 116 | Vector3d InvEuler(double, double, double) const; | 
|---|
| 117 |  | 
|---|
| 118 | // rotation d'angle phi autour d'un axe omega (regle du tire-bouchon) | 
|---|
| 119 | //! perform rotation of angle phi around an axis omega (Maxwell's rule) | 
|---|
| 120 | Vector3d Rotate(const Vector3d& omega,double phi) const; | 
|---|
| 121 |  | 
|---|
| 122 | /*virtual*/ Vector3d& operator=(const Vector3d&); // $CHECK$ EA 101299 | 
|---|
| 123 | virtual Vector3d& operator+=(const Vector3d&); | 
|---|
| 124 | virtual Vector3d& operator-=(const Vector3d&); | 
|---|
| 125 | virtual Vector3d operator+(const Vector3d&) const; | 
|---|
| 126 | virtual Vector3d operator-(const Vector3d&) const; | 
|---|
| 127 |  | 
|---|
| 128 | virtual Vector3d& operator+=(double); | 
|---|
| 129 | virtual Vector3d& operator/=(double); | 
|---|
| 130 | virtual Vector3d& operator*=(double); | 
|---|
| 131 |  | 
|---|
| 132 | virtual Vector3d operator+(double) const; | 
|---|
| 133 | virtual Vector3d operator-(double) const; | 
|---|
| 134 | virtual Vector3d operator*(double) const; | 
|---|
| 135 | virtual Vector3d operator/(double) const; | 
|---|
| 136 |  | 
|---|
| 137 | /*!    vector product */ | 
|---|
| 138 | virtual Vector3d operator^(const Vector3d&) const; // produit vectoriel | 
|---|
| 139 | /*!    dot product */ | 
|---|
| 140 | virtual double operator*(const Vector3d&) const; // produit scalaire | 
|---|
| 141 |  | 
|---|
| 142 | bool operator==(const Vector3d&); | 
|---|
| 143 |  | 
|---|
| 144 | virtual void Print(ostream& os) const; | 
|---|
| 145 |  | 
|---|
| 146 | protected: | 
|---|
| 147 |  | 
|---|
| 148 | double _x; | 
|---|
| 149 | double _y; | 
|---|
| 150 | double _z; | 
|---|
| 151 | double _theta; | 
|---|
| 152 | double _phi; | 
|---|
| 153 |  | 
|---|
| 154 | }; | 
|---|
| 155 |  | 
|---|
| 156 | inline ostream& operator<<(ostream& s, const Vector3d& v) | 
|---|
| 157 | { | 
|---|
| 158 | v.Print(s); | 
|---|
| 159 | return s; | 
|---|
| 160 | } | 
|---|
| 161 |  | 
|---|
| 162 | // fonctions globales | 
|---|
| 163 |  | 
|---|
| 164 | inline Vector3d operator*(double d, const Vector3d& v) | 
|---|
| 165 | { | 
|---|
| 166 | return v*d; | 
|---|
| 167 | } | 
|---|
| 168 |  | 
|---|
| 169 | inline Vector3d operator+(double d, const Vector3d& v) | 
|---|
| 170 | { | 
|---|
| 171 | return v+d; | 
|---|
| 172 | } | 
|---|
| 173 |  | 
|---|
| 174 |  | 
|---|
| 175 | } // namespace SOPHYA | 
|---|
| 176 |  | 
|---|
| 177 | #endif | 
|---|
| 178 |  | 
|---|
| 179 |  | 
|---|