1 | // 3-D Geometry
|
---|
2 | // B. Revenu, G. Le Meur 2000
|
---|
3 | // DAPNIA/SPP (Saclay) / CEA LAL - IN2P3/CNRS (Orsay)
|
---|
4 |
|
---|
5 | #ifndef VECTOR3D_H_SEEN
|
---|
6 | #define VECTOR3D_H_SEEN
|
---|
7 |
|
---|
8 | #include <math.h>
|
---|
9 | #include <iostream>
|
---|
10 | #include <stdio.h>
|
---|
11 | #include <string.h>
|
---|
12 | #ifdef __MWERKS__
|
---|
13 | #include "unixmac.h"
|
---|
14 | #endif
|
---|
15 | #include "longlat.h"
|
---|
16 |
|
---|
17 | /*
|
---|
18 | Geometrie en dimension 3.
|
---|
19 | Tous les calculs sont faits en radians
|
---|
20 | et en coordonnees spheriques theta,phi
|
---|
21 | pour les rotations (angles d'Euler) ma source est
|
---|
22 | "Classical Mechanics" 2nd edition, H. Goldstein, Addison Wesley
|
---|
23 | */
|
---|
24 | /*! 3-D geometry.
|
---|
25 |
|
---|
26 | All computations are made with angles in radians and with spherical
|
---|
27 | coordinates theta, phi.
|
---|
28 |
|
---|
29 | Concerning Euler's angles, the reference is :
|
---|
30 |
|
---|
31 | "Classical Mechanics" 2nd edition, H. Goldstein, Addison Wesley
|
---|
32 | */
|
---|
33 |
|
---|
34 | namespace SOPHYA {
|
---|
35 |
|
---|
36 | class Vector3d
|
---|
37 | {
|
---|
38 |
|
---|
39 | public:
|
---|
40 |
|
---|
41 | Vector3d();
|
---|
42 | Vector3d(double x, double y, double z);
|
---|
43 | Vector3d(double theta, double phi);
|
---|
44 | Vector3d(const LongLat&);
|
---|
45 | Vector3d(const Vector3d&);
|
---|
46 |
|
---|
47 | // To manipulate the vector
|
---|
48 | virtual void Setxyz(double x, double y, double z);
|
---|
49 | virtual void SetThetaPhi(double theta, double phi);
|
---|
50 | virtual void ThetaPhi2xyz();
|
---|
51 | virtual void xyz2ThetaPhi();
|
---|
52 |
|
---|
53 | // Acces to coordinates
|
---|
54 | inline double Theta() const {return _theta;}
|
---|
55 | inline double Phi() const {return _phi;}
|
---|
56 | inline double X() const {return _x;}
|
---|
57 | inline double Y() const {return _y;}
|
---|
58 | inline double Z() const {return _z;}
|
---|
59 |
|
---|
60 | virtual Vector3d& Normalize();
|
---|
61 | virtual double Norm() const;
|
---|
62 |
|
---|
63 | // produit scalaire
|
---|
64 | virtual double Psc(const Vector3d&) const;
|
---|
65 |
|
---|
66 | // ecart angulaire entre 2 vecteurs dans [0,Pi]
|
---|
67 | /*! angular gap between 2 vectors in [0,Pi] */
|
---|
68 | virtual double SepAngle(const Vector3d&) const;
|
---|
69 |
|
---|
70 | // produit vectoriel
|
---|
71 | /*! vector product */
|
---|
72 | virtual Vector3d Vect(const Vector3d&) const;
|
---|
73 |
|
---|
74 | // vecteur perpendiculaire de meme phi
|
---|
75 | /*! perpendicular vector, with equal phi */
|
---|
76 | virtual Vector3d VperpPhi() const;
|
---|
77 |
|
---|
78 | // vecteur perpendiculaire de meme theta
|
---|
79 | /*! perpendicular vector with equal theta */
|
---|
80 | virtual Vector3d VperpTheta() const;
|
---|
81 |
|
---|
82 | virtual Vector3d ETheta() const;
|
---|
83 | virtual Vector3d EPhi() const;
|
---|
84 |
|
---|
85 | // rotations d'Euler
|
---|
86 | /*! Euler's rotations */
|
---|
87 | // rotations d Euler
|
---|
88 | virtual Vector3d Euler(double, double, double) const;
|
---|
89 |
|
---|
90 | // rotation inverse
|
---|
91 | /*! inverse rotation */
|
---|
92 | Vector3d InvEuler(double, double, double) const;
|
---|
93 |
|
---|
94 | // rotation d'angle phi autour d'un axe omega (regle du tire-bouchon)
|
---|
95 | /*! rotation of angle phi around an axis omega (Maxwell's rule) */
|
---|
96 | Vector3d Rotate(const Vector3d& omega,double phi) const;
|
---|
97 |
|
---|
98 | /*virtual*/ Vector3d& operator=(const Vector3d&); // $CHECK$ EA 101299
|
---|
99 | virtual Vector3d& operator+=(const Vector3d&);
|
---|
100 | virtual Vector3d& operator-=(const Vector3d&);
|
---|
101 | virtual Vector3d operator+(const Vector3d&) const;
|
---|
102 | virtual Vector3d operator-(const Vector3d&) const;
|
---|
103 |
|
---|
104 | virtual Vector3d& operator+=(double);
|
---|
105 | virtual Vector3d& operator/=(double);
|
---|
106 | virtual Vector3d& operator*=(double);
|
---|
107 |
|
---|
108 | virtual Vector3d operator+(double) const;
|
---|
109 | virtual Vector3d operator-(double) const;
|
---|
110 | virtual Vector3d operator*(double) const;
|
---|
111 | virtual Vector3d operator/(double) const;
|
---|
112 |
|
---|
113 | /*! vector product */
|
---|
114 | virtual Vector3d operator^(const Vector3d&) const; // produit vectoriel
|
---|
115 | /*! dot product */
|
---|
116 | virtual double operator*(const Vector3d&) const; // produit scalaire
|
---|
117 |
|
---|
118 | bool operator==(const Vector3d&);
|
---|
119 |
|
---|
120 | virtual void Print(ostream& os) const;
|
---|
121 |
|
---|
122 | protected:
|
---|
123 |
|
---|
124 | double _x;
|
---|
125 | double _y;
|
---|
126 | double _z;
|
---|
127 | double _theta;
|
---|
128 | double _phi;
|
---|
129 |
|
---|
130 | };
|
---|
131 |
|
---|
132 | inline ostream& operator<<(ostream& s, const Vector3d& v)
|
---|
133 | {
|
---|
134 | v.Print(s);
|
---|
135 | return s;
|
---|
136 | }
|
---|
137 |
|
---|
138 | // fonctions globales
|
---|
139 |
|
---|
140 | inline Vector3d operator*(double d, const Vector3d& v)
|
---|
141 | {
|
---|
142 | return v*d;
|
---|
143 | }
|
---|
144 |
|
---|
145 | inline Vector3d operator+(double d, const Vector3d& v)
|
---|
146 | {
|
---|
147 | return v+d;
|
---|
148 | }
|
---|
149 |
|
---|
150 | } // namespace SOPHYA
|
---|
151 |
|
---|
152 | #endif
|
---|
153 |
|
---|
154 |
|
---|