1 | // 3-D Geometry
|
---|
2 | // B. Revenu, G. Le Meur 2000
|
---|
3 | // R. Ansari 2006
|
---|
4 | // DAPNIA/SPP (Saclay) / CEA LAL - IN2P3/CNRS (Orsay)
|
---|
5 |
|
---|
6 | #ifndef VECTOR3D_H_SEEN
|
---|
7 | #define VECTOR3D_H_SEEN
|
---|
8 |
|
---|
9 | #include <math.h>
|
---|
10 | #include <iostream>
|
---|
11 | #include <stdio.h>
|
---|
12 | #include <string.h>
|
---|
13 |
|
---|
14 | #include "longlat.h"
|
---|
15 |
|
---|
16 |
|
---|
17 | namespace SOPHYA {
|
---|
18 |
|
---|
19 | //! Class to ease angle conversions (radian <> degree <> arcmin <> arcsec)
|
---|
20 | class Angle {
|
---|
21 | public:
|
---|
22 | enum AngleUnit { Radian, Degree, ArcMin, ArcSec };
|
---|
23 | //! Constructor with specification of angle value in radian
|
---|
24 | Angle(double val=0.) { _angrad = val; }
|
---|
25 | //! Constructor with specification of angle value and unit
|
---|
26 | Angle(double val, Angle::AngleUnit un);
|
---|
27 | //! Copy constructor
|
---|
28 | Angle(Angle const& a) { _angrad = a._angrad; }
|
---|
29 |
|
---|
30 | //! Conversion to radian
|
---|
31 | inline double ToRadian() const { return _angrad; }
|
---|
32 | //! Conversion to degree
|
---|
33 | inline double ToDegree() const { return _angrad*_rad2deg; }
|
---|
34 | //! Conversion to arcmin
|
---|
35 | inline double ToArcMin() const { return _angrad*_rad2min; }
|
---|
36 | //! Conversion to arcsec
|
---|
37 | inline double ToArcSec() const { return _angrad*_rad2sec; }
|
---|
38 |
|
---|
39 | //! return the angle value in radian
|
---|
40 | inline operator double () const { return _angrad; }
|
---|
41 |
|
---|
42 | protected:
|
---|
43 | double _angrad; // angle in radians
|
---|
44 |
|
---|
45 | static double _deg2rad; // deg -> radian conversion factor
|
---|
46 | static double _rad2deg; // rad -> degree conversion factor
|
---|
47 | static double _rad2min; // rad -> arcmin conversion factor
|
---|
48 | static double _rad2sec; // rad -> arcmin conversion factor
|
---|
49 |
|
---|
50 | };
|
---|
51 |
|
---|
52 | //! Angle conversion: Radian to degree
|
---|
53 | inline double RadianToDegree(double ar)
|
---|
54 | { return Angle(ar).ToDegree(); }
|
---|
55 | //! Angle conversion: Degree to radian
|
---|
56 | inline double DegreeToRadian(double ad)
|
---|
57 | { return Angle(ad,Angle::Degree).ToRadian(); }
|
---|
58 | //! Angle conversion: Arcminute to radian
|
---|
59 | inline double ArcminToRadian(double aam)
|
---|
60 | { return Angle(aam,Angle::ArcMin).ToRadian(); }
|
---|
61 |
|
---|
62 | /*
|
---|
63 | Geometrie en dimension 3.
|
---|
64 | Tous les calculs sont faits en radians
|
---|
65 | et en coordonnees spheriques theta,phi
|
---|
66 | pour les rotations (angles d'Euler) ma source est
|
---|
67 | B. Revenu / G. Le Meur
|
---|
68 | "Classical Mechanics" 2nd edition, H. Goldstein, Addison Wesley
|
---|
69 | */
|
---|
70 |
|
---|
71 | class Vector3d
|
---|
72 | {
|
---|
73 |
|
---|
74 | public:
|
---|
75 |
|
---|
76 | Vector3d();
|
---|
77 | Vector3d(double x, double y, double z);
|
---|
78 | Vector3d(double theta, double phi);
|
---|
79 | Vector3d(const LongLat&);
|
---|
80 | Vector3d(const Vector3d&);
|
---|
81 |
|
---|
82 | virtual ~Vector3d() { }
|
---|
83 |
|
---|
84 | // To manipulate the vector
|
---|
85 | virtual void Setxyz(double x, double y, double z);
|
---|
86 | virtual void SetThetaPhi(double theta, double phi);
|
---|
87 | virtual void ThetaPhi2xyz();
|
---|
88 | virtual void xyz2ThetaPhi();
|
---|
89 |
|
---|
90 | // Acces to coordinates
|
---|
91 | inline double Theta() const {return _theta;}
|
---|
92 | inline double Phi() const {return _phi;}
|
---|
93 | inline double X() const {return _x;}
|
---|
94 | inline double Y() const {return _y;}
|
---|
95 | inline double Z() const {return _z;}
|
---|
96 |
|
---|
97 | virtual Vector3d& Normalize();
|
---|
98 | virtual double Norm() const;
|
---|
99 |
|
---|
100 | // produit scalaire
|
---|
101 | virtual double Psc(const Vector3d&) const;
|
---|
102 |
|
---|
103 | // ecart angulaire entre 2 vecteurs dans [0,Pi]
|
---|
104 | //! angular gap between 2 vectors in [0,Pi]
|
---|
105 | virtual double SepAngle(const Vector3d&) const;
|
---|
106 |
|
---|
107 | // produit vectoriel
|
---|
108 | //! return the vector product (*this)^v2
|
---|
109 | virtual Vector3d Vect(const Vector3d& v2) const;
|
---|
110 |
|
---|
111 | // vecteur perpendiculaire de meme phi
|
---|
112 | //! return the perpendicular vector, with equal phi
|
---|
113 | virtual Vector3d VperpPhi() const;
|
---|
114 |
|
---|
115 | // vecteur perpendiculaire de meme theta
|
---|
116 | //! return the perpendicular vector, with equal theta
|
---|
117 | virtual Vector3d VperpTheta() const;
|
---|
118 |
|
---|
119 | virtual Vector3d ETheta() const;
|
---|
120 | virtual Vector3d EPhi() const;
|
---|
121 |
|
---|
122 | // rotations d'Euler
|
---|
123 | //! Perform Euler's rotations
|
---|
124 | virtual Vector3d Euler(double, double, double) const;
|
---|
125 |
|
---|
126 | // rotation inverse
|
---|
127 | //! perform inverse Euler rotation
|
---|
128 | Vector3d InvEuler(double, double, double) const;
|
---|
129 |
|
---|
130 | // rotation d'angle phi autour d'un axe omega (regle du tire-bouchon)
|
---|
131 | //! perform rotation of angle phi around an axis omega (Maxwell's rule)
|
---|
132 | Vector3d Rotate(const Vector3d& omega,double phi) const;
|
---|
133 |
|
---|
134 | /*virtual*/ Vector3d& operator=(const Vector3d&); // $CHECK$ EA 101299
|
---|
135 | virtual Vector3d& operator+=(const Vector3d&);
|
---|
136 | virtual Vector3d& operator-=(const Vector3d&);
|
---|
137 | virtual Vector3d operator+(const Vector3d&) const;
|
---|
138 | virtual Vector3d operator-(const Vector3d&) const;
|
---|
139 |
|
---|
140 | virtual Vector3d& operator+=(double);
|
---|
141 | virtual Vector3d& operator/=(double);
|
---|
142 | virtual Vector3d& operator*=(double);
|
---|
143 |
|
---|
144 | virtual Vector3d operator+(double) const;
|
---|
145 | virtual Vector3d operator-(double) const;
|
---|
146 | virtual Vector3d operator*(double) const;
|
---|
147 | virtual Vector3d operator/(double) const;
|
---|
148 |
|
---|
149 | /*! vector product */
|
---|
150 | virtual Vector3d operator^(const Vector3d&) const; // produit vectoriel
|
---|
151 | /*! dot product */
|
---|
152 | virtual double operator*(const Vector3d&) const; // produit scalaire
|
---|
153 |
|
---|
154 | bool operator==(const Vector3d&);
|
---|
155 |
|
---|
156 | virtual void Print(ostream& os) const;
|
---|
157 |
|
---|
158 | protected:
|
---|
159 |
|
---|
160 | double _x;
|
---|
161 | double _y;
|
---|
162 | double _z;
|
---|
163 | double _theta;
|
---|
164 | double _phi;
|
---|
165 |
|
---|
166 | };
|
---|
167 |
|
---|
168 | inline ostream& operator<<(ostream& s, const Vector3d& v)
|
---|
169 | {
|
---|
170 | v.Print(s);
|
---|
171 | return s;
|
---|
172 | }
|
---|
173 |
|
---|
174 | // fonctions globales
|
---|
175 |
|
---|
176 | inline Vector3d operator*(double d, const Vector3d& v)
|
---|
177 | {
|
---|
178 | return v*d;
|
---|
179 | }
|
---|
180 |
|
---|
181 | inline Vector3d operator+(double d, const Vector3d& v)
|
---|
182 | {
|
---|
183 | return v+d;
|
---|
184 | }
|
---|
185 |
|
---|
186 |
|
---|
187 | } // namespace SOPHYA
|
---|
188 |
|
---|
189 | #endif
|
---|
190 |
|
---|
191 |
|
---|