[601] | 1 | //--------------------------------------------------------------------------
|
---|
| 2 | // File and Version Information:
|
---|
[909] | 3 | // $Id: radspec.cc,v 1.4 2000-04-13 14:10:44 ansari Exp $
|
---|
[601] | 4 | //
|
---|
| 5 | // Description:
|
---|
| 6 | // Aim of the class: To give the energy density
|
---|
| 7 | // The unity used here is W/m^2/Hz/sr
|
---|
| 8 | //
|
---|
| 9 | // History (add to end):
|
---|
| 10 | // Sophie Oct, 1999 - creation
|
---|
| 11 | //
|
---|
| 12 | //------------------------------------------------------------------------
|
---|
| 13 |
|
---|
| 14 | //---------------
|
---|
| 15 | // C++ Headers --
|
---|
| 16 | //---------------
|
---|
| 17 | #include "machdefs.h"
|
---|
| 18 | #include <iostream.h>
|
---|
| 19 | #include <typeinfo>
|
---|
| 20 | #include <math.h>
|
---|
| 21 |
|
---|
| 22 | #include "radspec.h"
|
---|
| 23 | #include "integ.h"
|
---|
| 24 |
|
---|
[909] | 25 | /*!
|
---|
| 26 | * \class SOPHYA::RadSpectra <BR>
|
---|
| 27 | * This class is an abstract base class for radiation emission spectra. The flux() function returns the value of the flux (the spectral <BR>
|
---|
| 28 | * energy distribution) as a function of the frequency. As in the SpectralResponse class, the () operator has been redefined <BR>
|
---|
| 29 | * at this level, so that the user can access the flux value, either by calling the function or directly by using this operator. <BR>
|
---|
| 30 | * For all the sub-classes, \nu is given in units of Hz and
|
---|
| 31 | * the flux is returned in units of W/m^2/sr/Hz.
|
---|
| 32 | */
|
---|
| 33 |
|
---|
| 34 |
|
---|
[601] | 35 | //----------------
|
---|
| 36 | // Constructor --
|
---|
| 37 | //----------------
|
---|
[909] | 38 | /*! Default constructor */
|
---|
| 39 | /*!
|
---|
| 40 | The constructor takes as an argument the minimum
|
---|
| 41 | and the maximum frequency of the spectrum, if any. <BR>
|
---|
| 42 | In the case the user does not want to specify these
|
---|
| 43 | values, there are set respectively to 0. and 9.E49
|
---|
| 44 | by default.
|
---|
| 45 | */
|
---|
[601] | 46 | RadSpectra::RadSpectra(double numin, double numax)
|
---|
| 47 | {
|
---|
| 48 | _numin = numin;
|
---|
| 49 | _numax = numax;
|
---|
| 50 | }
|
---|
| 51 |
|
---|
| 52 |
|
---|
| 53 | //--------------
|
---|
| 54 | // Destructor --
|
---|
| 55 | //--------------
|
---|
| 56 | RadSpectra::~RadSpectra()
|
---|
| 57 | {
|
---|
| 58 | }
|
---|
| 59 |
|
---|
| 60 | // ---------------------------
|
---|
| 61 | // -- Function Definitions --
|
---|
| 62 | // ---------------------------
|
---|
| 63 |
|
---|
| 64 | double
|
---|
| 65 | RadSpectra::minFreq() const
|
---|
| 66 | {
|
---|
| 67 | return _numin;
|
---|
| 68 | }
|
---|
| 69 |
|
---|
| 70 | double
|
---|
| 71 | RadSpectra::maxFreq() const
|
---|
| 72 | {
|
---|
| 73 | return _numax;
|
---|
| 74 | }
|
---|
| 75 |
|
---|
| 76 | double
|
---|
| 77 | RadSpectra::meanFreq() const
|
---|
| 78 | {
|
---|
| 79 | double result = (_numax+_numin)/2.;
|
---|
| 80 | return result;
|
---|
| 81 | }
|
---|
| 82 |
|
---|
| 83 |
|
---|
[909] | 84 | /*
|
---|
| 85 | The peakFreq() function returns the value of the
|
---|
| 86 | frequency for the maximum value of the flux
|
---|
| 87 | */
|
---|
[601] | 88 | double
|
---|
| 89 | RadSpectra::peakFreq() const
|
---|
| 90 | {
|
---|
| 91 | double maxAnswer = -1.e99;
|
---|
| 92 | double maxNu = -10;
|
---|
| 93 | double nu;
|
---|
| 94 | for (int i=1; i<1000;i++)
|
---|
| 95 | {
|
---|
| 96 | nu=(_numax-_numin)*i/1000.+_numin;
|
---|
| 97 | double lookForMax = flux(nu);
|
---|
| 98 | if(maxAnswer <= lookForMax) {
|
---|
| 99 | maxAnswer= lookForMax;
|
---|
| 100 | maxNu = nu;
|
---|
| 101 | }
|
---|
| 102 | }
|
---|
| 103 | return maxNu;
|
---|
| 104 | }
|
---|
| 105 |
|
---|
| 106 | void
|
---|
| 107 | RadSpectra::setMinMaxFreq(double numin, double numax)
|
---|
| 108 | {
|
---|
| 109 | _numin = numin;
|
---|
| 110 | _numax = numax;
|
---|
| 111 | }
|
---|
| 112 |
|
---|
| 113 | // the RadSpectra_fluxFunction function is used to call TrpzInteg double(double)
|
---|
| 114 | // (integration over a range of frequencies)
|
---|
| 115 | static RadSpectra* _raypourfinteg = NULL;
|
---|
| 116 | static double RadSpectra_fluxFunction(double nu)
|
---|
| 117 | {
|
---|
| 118 | return(_raypourfinteg->flux(nu));
|
---|
| 119 | }
|
---|
[909] | 120 | /*!
|
---|
| 121 | The integratedFlux() function performs the integration
|
---|
| 122 | of the flux function in a frequency range <BR> defined by
|
---|
| 123 | f1 and f2.
|
---|
| 124 | */
|
---|
[601] | 125 | double
|
---|
| 126 | RadSpectra::integratedFlux(double f1, double f2) const
|
---|
| 127 | {
|
---|
[668] | 128 | if(f1 < this->minFreq()) f1 = this->minFreq();
|
---|
| 129 | if(f2 > this->maxFreq()) f2 = this->maxFreq();
|
---|
| 130 | _raypourfinteg = const_cast<RadSpectra *>(this);
|
---|
| 131 | TrpzInteg I(RadSpectra_fluxFunction , f1, f2);
|
---|
| 132 | double val = (double)I;
|
---|
| 133 | _raypourfinteg = NULL; // On ne peut pas faire ca avant la destruction de I
|
---|
| 134 | return(val);
|
---|
[601] | 135 | }
|
---|
[909] | 136 |
|
---|
| 137 | /*!
|
---|
| 138 | Same than integratedFlux() over the frequency range
|
---|
| 139 | of definition of the flux function
|
---|
| 140 | */
|
---|
[601] | 141 | double
|
---|
| 142 | RadSpectra::integratedFlux() const
|
---|
| 143 | {
|
---|
[668] | 144 | return integratedFlux(this->minFreq(),this->maxFreq());
|
---|
[601] | 145 | }
|
---|
| 146 |
|
---|
| 147 | // integration using the logarithm !!
|
---|
| 148 | // Carefull!! Base 10....
|
---|
| 149 | static RadSpectra* _rayIntLog = NULL;
|
---|
| 150 |
|
---|
| 151 | static double RadSpectra_logFluxFunction(double tau)
|
---|
| 152 | {
|
---|
| 153 | double value = _rayIntLog->flux(pow(10,tau))*pow(10,tau);
|
---|
| 154 | return(value);
|
---|
| 155 | }
|
---|
| 156 |
|
---|
[909] | 157 | /*!
|
---|
| 158 | The logIntegratedFlux() function performs the integration
|
---|
| 159 | of the flux function in a frequency range <BR> defined by
|
---|
| 160 | f1 and f2. The integration is here performed
|
---|
| 161 | on the logarithm of the flux function.
|
---|
| 162 | */
|
---|
[601] | 163 | double
|
---|
| 164 | RadSpectra::logIntegratedFlux(double f1, double f2) const
|
---|
| 165 | {
|
---|
[668] | 166 | if(f1 < this->minFreq()) f1 = this->minFreq();
|
---|
| 167 | if(f2 > this->maxFreq()) f2 = this->maxFreq();
|
---|
| 168 |
|
---|
[601] | 169 | double f1Log = log10(f1);
|
---|
| 170 | double f2Log = log10(f2);
|
---|
| 171 | if(f1Log < -1.e99) f1Log = -1.e99;
|
---|
| 172 | if(f2Log > 1.e99) f2Log = 1.e99;
|
---|
| 173 | _rayIntLog = const_cast<RadSpectra *>(this);
|
---|
| 174 | TrpzInteg I(RadSpectra_logFluxFunction,f1Log,f2Log);
|
---|
| 175 | double value = (double)I * log(10.);
|
---|
| 176 | _rayIntLog = NULL;
|
---|
| 177 | return(value);
|
---|
| 178 | }
|
---|
| 179 |
|
---|
[909] | 180 | /*!
|
---|
| 181 | same than logIntegratedFlux over the frequency range
|
---|
| 182 | of definition of the flux function
|
---|
| 183 | */
|
---|
[601] | 184 | double
|
---|
| 185 | RadSpectra::logIntegratedFlux() const
|
---|
| 186 | {
|
---|
| 187 | return logIntegratedFlux(_numin,_numax);
|
---|
| 188 | }
|
---|
| 189 |
|
---|
| 190 | // the RadSpectra_filteredFlux function is used to call TrpzInteg double(double)
|
---|
| 191 | // (integration over a range of frequencies with a filter)
|
---|
| 192 | static SpectralResponse* _filter = NULL ;
|
---|
| 193 | static double RadSpectra_filteredFlux(double nu)
|
---|
| 194 | {
|
---|
| 195 | double flux = _raypourfinteg->flux(nu);
|
---|
| 196 | return(flux * _filter->transmission(nu));
|
---|
| 197 | }
|
---|
| 198 |
|
---|
[909] | 199 | /*!
|
---|
| 200 | The filteredIntegratedFlux() function performs the integration
|
---|
| 201 | of the flux function in a frequency range <BR> defined by
|
---|
| 202 | f1 and f2 convolved by a SpectralResponse filter.
|
---|
| 203 | */
|
---|
[601] | 204 | double
|
---|
| 205 | RadSpectra::filteredIntegratedFlux(SpectralResponse const& filter, double f1, double f2) const
|
---|
| 206 | {
|
---|
| 207 | _raypourfinteg = const_cast<RadSpectra *>(this);
|
---|
| 208 | _filter = const_cast<SpectralResponse *>(&filter);
|
---|
[668] | 209 | if(f1 < this->minFreq()) f1 = this->minFreq();
|
---|
| 210 | if(f2 > this->maxFreq()) f2 = this->maxFreq();
|
---|
| 211 |
|
---|
[607] | 212 | TrpzInteg I(RadSpectra_filteredFlux,f1,f2);
|
---|
| 213 | double val = (double)I;
|
---|
[601] | 214 | _raypourfinteg = NULL;
|
---|
| 215 | _filter = NULL;
|
---|
[607] | 216 | return(val);
|
---|
[601] | 217 | }
|
---|
| 218 |
|
---|
[909] | 219 | /*!
|
---|
| 220 | Same than filteredIntegratedFlux() over the frequency range
|
---|
| 221 | defined as: <BR>
|
---|
| 222 | min_freq = MAX(minfreq_flux, minfreq_filter), <BR>
|
---|
| 223 | max_freq = MIN(maxfreq_flux, maxfreq_filter), <BR>
|
---|
| 224 | where:
|
---|
| 225 | <UL>
|
---|
| 226 | <LI> minfreq_flux is the minimum frequency of the flux definition
|
---|
| 227 | <LI> maxfreq_flux is the maximum frequency of the flux definition
|
---|
| 228 | <LI> minfreq_filter is the minimum frequency of the filter definition
|
---|
| 229 | <LI> maxfreq_filter is the maximum frequency of the filter definition
|
---|
| 230 | </UL>
|
---|
| 231 | */
|
---|
[601] | 232 | double
|
---|
| 233 | RadSpectra::filteredIntegratedFlux(SpectralResponse const& filter)
|
---|
| 234 | {
|
---|
| 235 | double minOfMin = filter.minFreq();
|
---|
| 236 | double maxOfMax = filter.maxFreq();
|
---|
| 237 | if(minOfMin < this->minFreq()) minOfMin = this->minFreq();
|
---|
| 238 | if(maxOfMax > this->maxFreq()) maxOfMax = this->maxFreq();
|
---|
| 239 | return(filteredIntegratedFlux(filter, minOfMin, maxOfMax ) );
|
---|
| 240 | }
|
---|
| 241 |
|
---|
| 242 |
|
---|
| 243 | // the RadSpectraVec_filteredFlux function is used to call TrpzInteg double(double)
|
---|
| 244 | // (integration over a range of frequencies with a filter)
|
---|
| 245 | static double RadSpectra_logFilteredFlux(double tau)
|
---|
| 246 | {
|
---|
| 247 | double nu = pow(10,tau);
|
---|
| 248 | double flux = _raypourfinteg->flux(nu)*nu;
|
---|
[668] | 249 | double result = flux * _filter->transmission(nu);
|
---|
| 250 | return(result);
|
---|
[601] | 251 | }
|
---|
| 252 |
|
---|
| 253 |
|
---|
[909] | 254 | /*!
|
---|
| 255 | * The filteredIntegratedFlux() function performs the integration
|
---|
| 256 | * of the flux function in a frequency range <BR> defined by
|
---|
| 257 | * f1 and f2 convolved by a SpectralResponse filter (using the
|
---|
| 258 | * logarithm of the function).
|
---|
| 259 | */
|
---|
[601] | 260 | double
|
---|
| 261 | RadSpectra::filteredLogIntFlux(SpectralResponse const& filter, double f1, double f2) const
|
---|
| 262 | {
|
---|
| 263 |
|
---|
| 264 | _raypourfinteg = NULL;
|
---|
| 265 | _filter = NULL;
|
---|
[668] | 266 | if(f1 < this->minFreq()) f1 = this->minFreq();
|
---|
| 267 | if(f2 > this->maxFreq()) f2 = this->maxFreq();
|
---|
| 268 |
|
---|
[601] | 269 | double f1Log = log10(f1);
|
---|
| 270 | double f2Log = log10(f2);
|
---|
| 271 | if(f1Log < -1.e99) f1Log = -1.e99;
|
---|
| 272 | if(f2Log > 1.e99) f2Log = 1.e99;
|
---|
| 273 | _raypourfinteg = const_cast<RadSpectra *>(this);
|
---|
| 274 | _filter = const_cast<SpectralResponse *>(&filter);
|
---|
| 275 | TrpzInteg I(RadSpectra_logFilteredFlux,f1Log,f2Log);
|
---|
[607] | 276 | double val = (double)I;
|
---|
[601] | 277 | _raypourfinteg = NULL;
|
---|
| 278 | _filter = NULL;
|
---|
[607] | 279 | return(val* log(10.));
|
---|
[601] | 280 | }
|
---|
| 281 |
|
---|
| 282 | double
|
---|
| 283 | RadSpectra::filteredLogIntFlux(SpectralResponse const& filter)
|
---|
| 284 | {
|
---|
| 285 | return(filteredLogIntFlux(filter, filter.minFreq(), filter.maxFreq() ) );
|
---|
| 286 | }
|
---|
| 287 |
|
---|
| 288 |
|
---|
| 289 |
|
---|
[668] | 290 |
|
---|
[601] | 291 | void
|
---|
| 292 | RadSpectra::Print(ostream& os) const
|
---|
| 293 | {
|
---|
| 294 | // os << "RadSpectra::Print (" << typeid(*this).name()
|
---|
| 295 | // << ") - Fmin,Fmax= " << minFreq() << "," << maxFreq() << endl;
|
---|
| 296 | os << "RadSpectra::Print - Fmin,Fmax= " << minFreq() << "," << maxFreq() << endl;
|
---|
| 297 | os << "MeanFreq= " << meanFreq() << " Emission= " << flux(meanFreq()) << endl;
|
---|
| 298 | os << "PeakFreq= " << peakFreq() << " Emission= " << flux(peakFreq()) << endl;
|
---|
| 299 |
|
---|
| 300 | }
|
---|
| 301 |
|
---|
| 302 |
|
---|