| [601] | 1 | //--------------------------------------------------------------------------
 | 
|---|
 | 2 | // File and Version Information:
 | 
|---|
| [909] | 3 | //      $Id: radspec.cc,v 1.4 2000-04-13 14:10:44 ansari Exp $
 | 
|---|
| [601] | 4 | //
 | 
|---|
 | 5 | // Description:
 | 
|---|
 | 6 | //      Aim of the class: To give the energy density
 | 
|---|
 | 7 | //                        The unity used here is W/m^2/Hz/sr
 | 
|---|
 | 8 | //
 | 
|---|
 | 9 | // History (add to end):
 | 
|---|
 | 10 | //      Sophie   Oct, 1999  - creation
 | 
|---|
 | 11 | //
 | 
|---|
 | 12 | //------------------------------------------------------------------------
 | 
|---|
 | 13 | 
 | 
|---|
 | 14 | //---------------
 | 
|---|
 | 15 | // C++ Headers --
 | 
|---|
 | 16 | //---------------
 | 
|---|
 | 17 | #include "machdefs.h"
 | 
|---|
 | 18 | #include <iostream.h>
 | 
|---|
 | 19 | #include <typeinfo>
 | 
|---|
 | 20 | #include <math.h>
 | 
|---|
 | 21 | 
 | 
|---|
 | 22 | #include "radspec.h"
 | 
|---|
 | 23 | #include "integ.h"
 | 
|---|
 | 24 | 
 | 
|---|
| [909] | 25 | /*! 
 | 
|---|
 | 26 |  * \class SOPHYA::RadSpectra <BR>
 | 
|---|
 | 27 |  * This class is an abstract base class for radiation emission spectra. The flux() function returns the value of the flux (the spectral      <BR>
 | 
|---|
 | 28 |  * energy distribution) as a function of the frequency.  As in the SpectralResponse class, the () operator has been redefined <BR>
 | 
|---|
 | 29 |  * at this level, so that the user can access the flux value, either by  calling the function or directly by using this operator. <BR>
 | 
|---|
 | 30 |  * For all the sub-classes, \nu is given in units of Hz and
 | 
|---|
 | 31 |  * the flux is returned in units of W/m^2/sr/Hz.
 | 
|---|
 | 32 | */
 | 
|---|
 | 33 | 
 | 
|---|
 | 34 | 
 | 
|---|
| [601] | 35 | //----------------
 | 
|---|
 | 36 | // Constructor --
 | 
|---|
 | 37 | //----------------
 | 
|---|
| [909] | 38 | /*! Default constructor */
 | 
|---|
 | 39 | /*!
 | 
|---|
 | 40 |   The constructor takes as an argument the minimum
 | 
|---|
 | 41 |   and the maximum frequency of the spectrum, if any. <BR>
 | 
|---|
 | 42 |   In the case the user does not want to specify these
 | 
|---|
 | 43 |   values, there are set respectively to 0. and 9.E49
 | 
|---|
 | 44 |   by default.
 | 
|---|
 | 45 | */
 | 
|---|
| [601] | 46 | RadSpectra::RadSpectra(double numin, double numax)
 | 
|---|
 | 47 | {
 | 
|---|
 | 48 |   _numin = numin;
 | 
|---|
 | 49 |   _numax = numax;
 | 
|---|
 | 50 | }
 | 
|---|
 | 51 | 
 | 
|---|
 | 52 | 
 | 
|---|
 | 53 | //--------------
 | 
|---|
 | 54 | // Destructor --
 | 
|---|
 | 55 | //--------------
 | 
|---|
 | 56 | RadSpectra::~RadSpectra()
 | 
|---|
 | 57 | {
 | 
|---|
 | 58 | }
 | 
|---|
 | 59 | 
 | 
|---|
 | 60 | //              ---------------------------
 | 
|---|
 | 61 | //              --  Function Definitions --
 | 
|---|
 | 62 | //              ---------------------------
 | 
|---|
 | 63 | 
 | 
|---|
 | 64 | double 
 | 
|---|
 | 65 | RadSpectra::minFreq()  const
 | 
|---|
 | 66 | {
 | 
|---|
 | 67 |   return _numin;
 | 
|---|
 | 68 | }
 | 
|---|
 | 69 | 
 | 
|---|
 | 70 | double 
 | 
|---|
 | 71 | RadSpectra::maxFreq()  const
 | 
|---|
 | 72 | {
 | 
|---|
 | 73 |   return _numax;
 | 
|---|
 | 74 | }
 | 
|---|
 | 75 | 
 | 
|---|
 | 76 | double 
 | 
|---|
 | 77 | RadSpectra::meanFreq()  const
 | 
|---|
 | 78 | {
 | 
|---|
 | 79 |   double result = (_numax+_numin)/2.;
 | 
|---|
 | 80 |   return result;
 | 
|---|
 | 81 | }
 | 
|---|
 | 82 | 
 | 
|---|
 | 83 | 
 | 
|---|
| [909] | 84 | /* 
 | 
|---|
 | 85 |    The peakFreq() function returns the value of the 
 | 
|---|
 | 86 |    frequency for the maximum value of the flux
 | 
|---|
 | 87 | */
 | 
|---|
| [601] | 88 | double 
 | 
|---|
 | 89 | RadSpectra::peakFreq()  const
 | 
|---|
 | 90 | {
 | 
|---|
 | 91 |   double maxAnswer = -1.e99;
 | 
|---|
 | 92 |   double maxNu = -10;
 | 
|---|
 | 93 |   double nu;
 | 
|---|
 | 94 |   for (int i=1; i<1000;i++)
 | 
|---|
 | 95 |     {
 | 
|---|
 | 96 |       nu=(_numax-_numin)*i/1000.+_numin;
 | 
|---|
 | 97 |       double lookForMax = flux(nu);
 | 
|---|
 | 98 |       if(maxAnswer <= lookForMax) {
 | 
|---|
 | 99 |         maxAnswer= lookForMax;
 | 
|---|
 | 100 |         maxNu    = nu;
 | 
|---|
 | 101 |       }
 | 
|---|
 | 102 |     }
 | 
|---|
 | 103 |   return maxNu;  
 | 
|---|
 | 104 | }
 | 
|---|
 | 105 | 
 | 
|---|
 | 106 | void
 | 
|---|
 | 107 | RadSpectra::setMinMaxFreq(double numin, double numax)
 | 
|---|
 | 108 | {
 | 
|---|
 | 109 |   _numin = numin;
 | 
|---|
 | 110 |   _numax = numax;
 | 
|---|
 | 111 | }
 | 
|---|
 | 112 | 
 | 
|---|
 | 113 | // the RadSpectra_fluxFunction function is used to call TrpzInteg double(double) 
 | 
|---|
 | 114 | // (integration over a range of frequencies)
 | 
|---|
 | 115 | static RadSpectra* _raypourfinteg = NULL;
 | 
|---|
 | 116 | static double RadSpectra_fluxFunction(double nu)
 | 
|---|
 | 117 | {
 | 
|---|
 | 118 |    return(_raypourfinteg->flux(nu));   
 | 
|---|
 | 119 | }
 | 
|---|
| [909] | 120 | /*! 
 | 
|---|
 | 121 |   The integratedFlux() function performs the integration
 | 
|---|
 | 122 |   of the flux function in a frequency range <BR> defined by
 | 
|---|
 | 123 |   f1 and f2.
 | 
|---|
 | 124 | */
 | 
|---|
| [601] | 125 | double 
 | 
|---|
 | 126 | RadSpectra::integratedFlux(double f1, double f2)  const
 | 
|---|
 | 127 | {
 | 
|---|
| [668] | 128 |   if(f1 < this->minFreq()) f1 = this->minFreq();
 | 
|---|
 | 129 |   if(f2 > this->maxFreq()) f2 = this->maxFreq();
 | 
|---|
 | 130 |   _raypourfinteg = const_cast<RadSpectra *>(this);
 | 
|---|
 | 131 |   TrpzInteg I(RadSpectra_fluxFunction , f1, f2);  
 | 
|---|
 | 132 |   double val = (double)I;
 | 
|---|
 | 133 |   _raypourfinteg = NULL;  // On ne peut pas faire ca avant la destruction de I
 | 
|---|
 | 134 |   return(val);        
 | 
|---|
| [601] | 135 | }
 | 
|---|
| [909] | 136 | 
 | 
|---|
 | 137 | /*!
 | 
|---|
 | 138 |   Same than integratedFlux() over the frequency range 
 | 
|---|
 | 139 |   of definition of the flux function
 | 
|---|
 | 140 |  */
 | 
|---|
| [601] | 141 | double 
 | 
|---|
 | 142 | RadSpectra::integratedFlux()  const
 | 
|---|
 | 143 | {
 | 
|---|
| [668] | 144 |   return integratedFlux(this->minFreq(),this->maxFreq());
 | 
|---|
| [601] | 145 | }
 | 
|---|
 | 146 | 
 | 
|---|
 | 147 | // integration using the logarithm !!
 | 
|---|
 | 148 | // Carefull!! Base 10....
 | 
|---|
 | 149 | static RadSpectra* _rayIntLog = NULL;
 | 
|---|
 | 150 | 
 | 
|---|
 | 151 | static double RadSpectra_logFluxFunction(double tau)
 | 
|---|
 | 152 | {
 | 
|---|
 | 153 |   double value = _rayIntLog->flux(pow(10,tau))*pow(10,tau);
 | 
|---|
 | 154 |   return(value);   
 | 
|---|
 | 155 | }
 | 
|---|
 | 156 | 
 | 
|---|
| [909] | 157 | /*! 
 | 
|---|
 | 158 |   The logIntegratedFlux() function performs the integration
 | 
|---|
 | 159 |   of the flux function in a frequency range <BR> defined by
 | 
|---|
 | 160 |   f1 and f2. The integration is here performed
 | 
|---|
 | 161 |   on the logarithm of the flux function. 
 | 
|---|
 | 162 | */
 | 
|---|
| [601] | 163 | double 
 | 
|---|
 | 164 | RadSpectra::logIntegratedFlux(double f1, double f2)  const
 | 
|---|
 | 165 | {
 | 
|---|
| [668] | 166 |   if(f1 < this->minFreq()) f1 = this->minFreq();
 | 
|---|
 | 167 |   if(f2 > this->maxFreq()) f2 = this->maxFreq();
 | 
|---|
 | 168 | 
 | 
|---|
| [601] | 169 |   double f1Log = log10(f1);
 | 
|---|
 | 170 |   double f2Log = log10(f2);
 | 
|---|
 | 171 |   if(f1Log < -1.e99) f1Log = -1.e99;
 | 
|---|
 | 172 |   if(f2Log > 1.e99)  f2Log = 1.e99;
 | 
|---|
 | 173 |   _rayIntLog = const_cast<RadSpectra *>(this);
 | 
|---|
 | 174 |   TrpzInteg I(RadSpectra_logFluxFunction,f1Log,f2Log);
 | 
|---|
 | 175 |   double value = (double)I * log(10.);
 | 
|---|
 | 176 |   _rayIntLog = NULL;
 | 
|---|
 | 177 |   return(value);        
 | 
|---|
 | 178 | }
 | 
|---|
 | 179 | 
 | 
|---|
| [909] | 180 | /*!
 | 
|---|
 | 181 |   same than logIntegratedFlux over the frequency range
 | 
|---|
 | 182 |   of definition of the flux function
 | 
|---|
 | 183 |  */
 | 
|---|
| [601] | 184 | double 
 | 
|---|
 | 185 | RadSpectra::logIntegratedFlux()  const
 | 
|---|
 | 186 | {
 | 
|---|
 | 187 |   return logIntegratedFlux(_numin,_numax);
 | 
|---|
 | 188 | }
 | 
|---|
 | 189 | 
 | 
|---|
 | 190 | // the RadSpectra_filteredFlux function is used to call TrpzInteg double(double) 
 | 
|---|
 | 191 | // (integration over a range of frequencies with a filter)
 | 
|---|
 | 192 | static SpectralResponse* _filter = NULL ;
 | 
|---|
 | 193 | static double RadSpectra_filteredFlux(double nu) 
 | 
|---|
 | 194 | {
 | 
|---|
 | 195 |   double flux = _raypourfinteg->flux(nu);
 | 
|---|
 | 196 |   return(flux * _filter->transmission(nu));
 | 
|---|
 | 197 | }
 | 
|---|
 | 198 | 
 | 
|---|
| [909] | 199 | /*! 
 | 
|---|
 | 200 |   The filteredIntegratedFlux() function performs the integration
 | 
|---|
 | 201 |   of the flux function in a frequency range <BR> defined by
 | 
|---|
 | 202 |   f1 and f2 convolved by a SpectralResponse filter.
 | 
|---|
 | 203 | */
 | 
|---|
| [601] | 204 | double 
 | 
|---|
 | 205 | RadSpectra::filteredIntegratedFlux(SpectralResponse const& filter, double f1, double f2) const
 | 
|---|
 | 206 | {
 | 
|---|
 | 207 |   _raypourfinteg = const_cast<RadSpectra *>(this);
 | 
|---|
 | 208 |   _filter = const_cast<SpectralResponse *>(&filter);
 | 
|---|
| [668] | 209 |    if(f1 < this->minFreq()) f1 = this->minFreq();
 | 
|---|
 | 210 |    if(f2 > this->maxFreq()) f2 = this->maxFreq();
 | 
|---|
 | 211 | 
 | 
|---|
| [607] | 212 |   TrpzInteg I(RadSpectra_filteredFlux,f1,f2);
 | 
|---|
 | 213 |   double val = (double)I;
 | 
|---|
| [601] | 214 |   _raypourfinteg = NULL;
 | 
|---|
 | 215 |   _filter = NULL;
 | 
|---|
| [607] | 216 |   return(val);        
 | 
|---|
| [601] | 217 | }
 | 
|---|
 | 218 | 
 | 
|---|
| [909] | 219 | /*!
 | 
|---|
 | 220 |   Same than filteredIntegratedFlux() over the frequency range
 | 
|---|
 | 221 |   defined as: <BR>
 | 
|---|
 | 222 |    min_freq = MAX(minfreq_flux, minfreq_filter), <BR>
 | 
|---|
 | 223 |    max_freq = MIN(maxfreq_flux, maxfreq_filter), <BR>
 | 
|---|
 | 224 |   where:
 | 
|---|
 | 225 | <UL>  
 | 
|---|
 | 226 | <LI>   minfreq_flux   is the minimum frequency of the flux definition
 | 
|---|
 | 227 | <LI>   maxfreq_flux   is the maximum frequency of the flux definition
 | 
|---|
 | 228 | <LI>   minfreq_filter is the minimum frequency of the filter definition
 | 
|---|
 | 229 | <LI>   maxfreq_filter is the maximum frequency of the filter definition
 | 
|---|
 | 230 |   </UL>
 | 
|---|
 | 231 |  */
 | 
|---|
| [601] | 232 | double 
 | 
|---|
 | 233 | RadSpectra::filteredIntegratedFlux(SpectralResponse const& filter)
 | 
|---|
 | 234 | {
 | 
|---|
 | 235 |   double minOfMin = filter.minFreq();
 | 
|---|
 | 236 |   double maxOfMax = filter.maxFreq();
 | 
|---|
 | 237 |   if(minOfMin < this->minFreq()) minOfMin = this->minFreq();
 | 
|---|
 | 238 |   if(maxOfMax > this->maxFreq()) maxOfMax = this->maxFreq();  
 | 
|---|
 | 239 |   return(filteredIntegratedFlux(filter, minOfMin, maxOfMax ) );
 | 
|---|
 | 240 | }
 | 
|---|
 | 241 | 
 | 
|---|
 | 242 | 
 | 
|---|
 | 243 | // the RadSpectraVec_filteredFlux function is used to call TrpzInteg double(double) 
 | 
|---|
 | 244 | // (integration over a range of frequencies with a filter)
 | 
|---|
 | 245 | static double RadSpectra_logFilteredFlux(double tau) 
 | 
|---|
 | 246 | {
 | 
|---|
 | 247 |   double nu = pow(10,tau);
 | 
|---|
 | 248 |   double flux = _raypourfinteg->flux(nu)*nu;
 | 
|---|
| [668] | 249 |   double result = flux * _filter->transmission(nu);
 | 
|---|
 | 250 |   return(result);
 | 
|---|
| [601] | 251 | }
 | 
|---|
 | 252 | 
 | 
|---|
 | 253 | 
 | 
|---|
| [909] | 254 | /*! 
 | 
|---|
 | 255 |  *  The filteredIntegratedFlux() function performs the integration
 | 
|---|
 | 256 |  * of the flux function in a frequency range <BR> defined by
 | 
|---|
 | 257 |  * f1 and f2 convolved by a SpectralResponse filter (using the
 | 
|---|
 | 258 |  * logarithm of the function).
 | 
|---|
 | 259 |  */
 | 
|---|
| [601] | 260 | double 
 | 
|---|
 | 261 | RadSpectra::filteredLogIntFlux(SpectralResponse const& filter, double f1, double f2) const
 | 
|---|
 | 262 | {
 | 
|---|
 | 263 |   
 | 
|---|
 | 264 |    _raypourfinteg = NULL;
 | 
|---|
 | 265 |    _filter = NULL;
 | 
|---|
| [668] | 266 |    if(f1 < this->minFreq()) f1 = this->minFreq();
 | 
|---|
 | 267 |    if(f2 > this->maxFreq()) f2 = this->maxFreq();
 | 
|---|
 | 268 |    
 | 
|---|
| [601] | 269 |    double f1Log = log10(f1);
 | 
|---|
 | 270 |    double f2Log = log10(f2);
 | 
|---|
 | 271 |    if(f1Log < -1.e99) f1Log = -1.e99;
 | 
|---|
 | 272 |    if(f2Log > 1.e99)  f2Log = 1.e99;
 | 
|---|
 | 273 |    _raypourfinteg = const_cast<RadSpectra *>(this);
 | 
|---|
 | 274 |    _filter = const_cast<SpectralResponse *>(&filter);
 | 
|---|
 | 275 |    TrpzInteg I(RadSpectra_logFilteredFlux,f1Log,f2Log);  
 | 
|---|
| [607] | 276 |    double val = (double)I;
 | 
|---|
| [601] | 277 |    _raypourfinteg = NULL;
 | 
|---|
 | 278 |    _filter = NULL;
 | 
|---|
| [607] | 279 |    return(val* log(10.));        
 | 
|---|
| [601] | 280 | }
 | 
|---|
 | 281 | 
 | 
|---|
 | 282 | double 
 | 
|---|
 | 283 | RadSpectra::filteredLogIntFlux(SpectralResponse const& filter)
 | 
|---|
 | 284 | {
 | 
|---|
 | 285 |   return(filteredLogIntFlux(filter, filter.minFreq(), filter.maxFreq() ) );
 | 
|---|
 | 286 | }
 | 
|---|
 | 287 | 
 | 
|---|
 | 288 | 
 | 
|---|
 | 289 | 
 | 
|---|
| [668] | 290 | 
 | 
|---|
| [601] | 291 | void
 | 
|---|
 | 292 | RadSpectra::Print(ostream& os) const
 | 
|---|
 | 293 | {
 | 
|---|
 | 294 |   //  os << "RadSpectra::Print (" << typeid(*this).name() 
 | 
|---|
 | 295 |   //     << ") - Fmin,Fmax= " << minFreq() << "," << maxFreq() << endl;
 | 
|---|
 | 296 |   os << "RadSpectra::Print  - Fmin,Fmax= " << minFreq() << "," << maxFreq() << endl;
 | 
|---|
 | 297 |   os << "MeanFreq= " << meanFreq() << "  Emission= " << flux(meanFreq()) << endl;
 | 
|---|
 | 298 |   os << "PeakFreq= " << peakFreq() << "  Emission= " << flux(peakFreq()) << endl;
 | 
|---|
 | 299 | 
 | 
|---|
 | 300 | }
 | 
|---|
 | 301 | 
 | 
|---|
 | 302 | 
 | 
|---|