| [601] | 1 | //-------------------------------------------------------------------------- | 
|---|
|  | 2 | // File and Version Information: | 
|---|
| [909] | 3 | //      $Id: radspec.cc,v 1.4 2000-04-13 14:10:44 ansari Exp $ | 
|---|
| [601] | 4 | // | 
|---|
|  | 5 | // Description: | 
|---|
|  | 6 | //      Aim of the class: To give the energy density | 
|---|
|  | 7 | //                        The unity used here is W/m^2/Hz/sr | 
|---|
|  | 8 | // | 
|---|
|  | 9 | // History (add to end): | 
|---|
|  | 10 | //      Sophie   Oct, 1999  - creation | 
|---|
|  | 11 | // | 
|---|
|  | 12 | //------------------------------------------------------------------------ | 
|---|
|  | 13 |  | 
|---|
|  | 14 | //--------------- | 
|---|
|  | 15 | // C++ Headers -- | 
|---|
|  | 16 | //--------------- | 
|---|
|  | 17 | #include "machdefs.h" | 
|---|
|  | 18 | #include <iostream.h> | 
|---|
|  | 19 | #include <typeinfo> | 
|---|
|  | 20 | #include <math.h> | 
|---|
|  | 21 |  | 
|---|
|  | 22 | #include "radspec.h" | 
|---|
|  | 23 | #include "integ.h" | 
|---|
|  | 24 |  | 
|---|
| [909] | 25 | /*! | 
|---|
|  | 26 | * \class SOPHYA::RadSpectra <BR> | 
|---|
|  | 27 | * This class is an abstract base class for radiation emission spectra. The flux() function returns the value of the flux (the spectral      <BR> | 
|---|
|  | 28 | * energy distribution) as a function of the frequency.  As in the SpectralResponse class, the () operator has been redefined <BR> | 
|---|
|  | 29 | * at this level, so that the user can access the flux value, either by  calling the function or directly by using this operator. <BR> | 
|---|
|  | 30 | * For all the sub-classes, \nu is given in units of Hz and | 
|---|
|  | 31 | * the flux is returned in units of W/m^2/sr/Hz. | 
|---|
|  | 32 | */ | 
|---|
|  | 33 |  | 
|---|
|  | 34 |  | 
|---|
| [601] | 35 | //---------------- | 
|---|
|  | 36 | // Constructor -- | 
|---|
|  | 37 | //---------------- | 
|---|
| [909] | 38 | /*! Default constructor */ | 
|---|
|  | 39 | /*! | 
|---|
|  | 40 | The constructor takes as an argument the minimum | 
|---|
|  | 41 | and the maximum frequency of the spectrum, if any. <BR> | 
|---|
|  | 42 | In the case the user does not want to specify these | 
|---|
|  | 43 | values, there are set respectively to 0. and 9.E49 | 
|---|
|  | 44 | by default. | 
|---|
|  | 45 | */ | 
|---|
| [601] | 46 | RadSpectra::RadSpectra(double numin, double numax) | 
|---|
|  | 47 | { | 
|---|
|  | 48 | _numin = numin; | 
|---|
|  | 49 | _numax = numax; | 
|---|
|  | 50 | } | 
|---|
|  | 51 |  | 
|---|
|  | 52 |  | 
|---|
|  | 53 | //-------------- | 
|---|
|  | 54 | // Destructor -- | 
|---|
|  | 55 | //-------------- | 
|---|
|  | 56 | RadSpectra::~RadSpectra() | 
|---|
|  | 57 | { | 
|---|
|  | 58 | } | 
|---|
|  | 59 |  | 
|---|
|  | 60 | //              --------------------------- | 
|---|
|  | 61 | //              --  Function Definitions -- | 
|---|
|  | 62 | //              --------------------------- | 
|---|
|  | 63 |  | 
|---|
|  | 64 | double | 
|---|
|  | 65 | RadSpectra::minFreq()  const | 
|---|
|  | 66 | { | 
|---|
|  | 67 | return _numin; | 
|---|
|  | 68 | } | 
|---|
|  | 69 |  | 
|---|
|  | 70 | double | 
|---|
|  | 71 | RadSpectra::maxFreq()  const | 
|---|
|  | 72 | { | 
|---|
|  | 73 | return _numax; | 
|---|
|  | 74 | } | 
|---|
|  | 75 |  | 
|---|
|  | 76 | double | 
|---|
|  | 77 | RadSpectra::meanFreq()  const | 
|---|
|  | 78 | { | 
|---|
|  | 79 | double result = (_numax+_numin)/2.; | 
|---|
|  | 80 | return result; | 
|---|
|  | 81 | } | 
|---|
|  | 82 |  | 
|---|
|  | 83 |  | 
|---|
| [909] | 84 | /* | 
|---|
|  | 85 | The peakFreq() function returns the value of the | 
|---|
|  | 86 | frequency for the maximum value of the flux | 
|---|
|  | 87 | */ | 
|---|
| [601] | 88 | double | 
|---|
|  | 89 | RadSpectra::peakFreq()  const | 
|---|
|  | 90 | { | 
|---|
|  | 91 | double maxAnswer = -1.e99; | 
|---|
|  | 92 | double maxNu = -10; | 
|---|
|  | 93 | double nu; | 
|---|
|  | 94 | for (int i=1; i<1000;i++) | 
|---|
|  | 95 | { | 
|---|
|  | 96 | nu=(_numax-_numin)*i/1000.+_numin; | 
|---|
|  | 97 | double lookForMax = flux(nu); | 
|---|
|  | 98 | if(maxAnswer <= lookForMax) { | 
|---|
|  | 99 | maxAnswer= lookForMax; | 
|---|
|  | 100 | maxNu    = nu; | 
|---|
|  | 101 | } | 
|---|
|  | 102 | } | 
|---|
|  | 103 | return maxNu; | 
|---|
|  | 104 | } | 
|---|
|  | 105 |  | 
|---|
|  | 106 | void | 
|---|
|  | 107 | RadSpectra::setMinMaxFreq(double numin, double numax) | 
|---|
|  | 108 | { | 
|---|
|  | 109 | _numin = numin; | 
|---|
|  | 110 | _numax = numax; | 
|---|
|  | 111 | } | 
|---|
|  | 112 |  | 
|---|
|  | 113 | // the RadSpectra_fluxFunction function is used to call TrpzInteg double(double) | 
|---|
|  | 114 | // (integration over a range of frequencies) | 
|---|
|  | 115 | static RadSpectra* _raypourfinteg = NULL; | 
|---|
|  | 116 | static double RadSpectra_fluxFunction(double nu) | 
|---|
|  | 117 | { | 
|---|
|  | 118 | return(_raypourfinteg->flux(nu)); | 
|---|
|  | 119 | } | 
|---|
| [909] | 120 | /*! | 
|---|
|  | 121 | The integratedFlux() function performs the integration | 
|---|
|  | 122 | of the flux function in a frequency range <BR> defined by | 
|---|
|  | 123 | f1 and f2. | 
|---|
|  | 124 | */ | 
|---|
| [601] | 125 | double | 
|---|
|  | 126 | RadSpectra::integratedFlux(double f1, double f2)  const | 
|---|
|  | 127 | { | 
|---|
| [668] | 128 | if(f1 < this->minFreq()) f1 = this->minFreq(); | 
|---|
|  | 129 | if(f2 > this->maxFreq()) f2 = this->maxFreq(); | 
|---|
|  | 130 | _raypourfinteg = const_cast<RadSpectra *>(this); | 
|---|
|  | 131 | TrpzInteg I(RadSpectra_fluxFunction , f1, f2); | 
|---|
|  | 132 | double val = (double)I; | 
|---|
|  | 133 | _raypourfinteg = NULL;  // On ne peut pas faire ca avant la destruction de I | 
|---|
|  | 134 | return(val); | 
|---|
| [601] | 135 | } | 
|---|
| [909] | 136 |  | 
|---|
|  | 137 | /*! | 
|---|
|  | 138 | Same than integratedFlux() over the frequency range | 
|---|
|  | 139 | of definition of the flux function | 
|---|
|  | 140 | */ | 
|---|
| [601] | 141 | double | 
|---|
|  | 142 | RadSpectra::integratedFlux()  const | 
|---|
|  | 143 | { | 
|---|
| [668] | 144 | return integratedFlux(this->minFreq(),this->maxFreq()); | 
|---|
| [601] | 145 | } | 
|---|
|  | 146 |  | 
|---|
|  | 147 | // integration using the logarithm !! | 
|---|
|  | 148 | // Carefull!! Base 10.... | 
|---|
|  | 149 | static RadSpectra* _rayIntLog = NULL; | 
|---|
|  | 150 |  | 
|---|
|  | 151 | static double RadSpectra_logFluxFunction(double tau) | 
|---|
|  | 152 | { | 
|---|
|  | 153 | double value = _rayIntLog->flux(pow(10,tau))*pow(10,tau); | 
|---|
|  | 154 | return(value); | 
|---|
|  | 155 | } | 
|---|
|  | 156 |  | 
|---|
| [909] | 157 | /*! | 
|---|
|  | 158 | The logIntegratedFlux() function performs the integration | 
|---|
|  | 159 | of the flux function in a frequency range <BR> defined by | 
|---|
|  | 160 | f1 and f2. The integration is here performed | 
|---|
|  | 161 | on the logarithm of the flux function. | 
|---|
|  | 162 | */ | 
|---|
| [601] | 163 | double | 
|---|
|  | 164 | RadSpectra::logIntegratedFlux(double f1, double f2)  const | 
|---|
|  | 165 | { | 
|---|
| [668] | 166 | if(f1 < this->minFreq()) f1 = this->minFreq(); | 
|---|
|  | 167 | if(f2 > this->maxFreq()) f2 = this->maxFreq(); | 
|---|
|  | 168 |  | 
|---|
| [601] | 169 | double f1Log = log10(f1); | 
|---|
|  | 170 | double f2Log = log10(f2); | 
|---|
|  | 171 | if(f1Log < -1.e99) f1Log = -1.e99; | 
|---|
|  | 172 | if(f2Log > 1.e99)  f2Log = 1.e99; | 
|---|
|  | 173 | _rayIntLog = const_cast<RadSpectra *>(this); | 
|---|
|  | 174 | TrpzInteg I(RadSpectra_logFluxFunction,f1Log,f2Log); | 
|---|
|  | 175 | double value = (double)I * log(10.); | 
|---|
|  | 176 | _rayIntLog = NULL; | 
|---|
|  | 177 | return(value); | 
|---|
|  | 178 | } | 
|---|
|  | 179 |  | 
|---|
| [909] | 180 | /*! | 
|---|
|  | 181 | same than logIntegratedFlux over the frequency range | 
|---|
|  | 182 | of definition of the flux function | 
|---|
|  | 183 | */ | 
|---|
| [601] | 184 | double | 
|---|
|  | 185 | RadSpectra::logIntegratedFlux()  const | 
|---|
|  | 186 | { | 
|---|
|  | 187 | return logIntegratedFlux(_numin,_numax); | 
|---|
|  | 188 | } | 
|---|
|  | 189 |  | 
|---|
|  | 190 | // the RadSpectra_filteredFlux function is used to call TrpzInteg double(double) | 
|---|
|  | 191 | // (integration over a range of frequencies with a filter) | 
|---|
|  | 192 | static SpectralResponse* _filter = NULL ; | 
|---|
|  | 193 | static double RadSpectra_filteredFlux(double nu) | 
|---|
|  | 194 | { | 
|---|
|  | 195 | double flux = _raypourfinteg->flux(nu); | 
|---|
|  | 196 | return(flux * _filter->transmission(nu)); | 
|---|
|  | 197 | } | 
|---|
|  | 198 |  | 
|---|
| [909] | 199 | /*! | 
|---|
|  | 200 | The filteredIntegratedFlux() function performs the integration | 
|---|
|  | 201 | of the flux function in a frequency range <BR> defined by | 
|---|
|  | 202 | f1 and f2 convolved by a SpectralResponse filter. | 
|---|
|  | 203 | */ | 
|---|
| [601] | 204 | double | 
|---|
|  | 205 | RadSpectra::filteredIntegratedFlux(SpectralResponse const& filter, double f1, double f2) const | 
|---|
|  | 206 | { | 
|---|
|  | 207 | _raypourfinteg = const_cast<RadSpectra *>(this); | 
|---|
|  | 208 | _filter = const_cast<SpectralResponse *>(&filter); | 
|---|
| [668] | 209 | if(f1 < this->minFreq()) f1 = this->minFreq(); | 
|---|
|  | 210 | if(f2 > this->maxFreq()) f2 = this->maxFreq(); | 
|---|
|  | 211 |  | 
|---|
| [607] | 212 | TrpzInteg I(RadSpectra_filteredFlux,f1,f2); | 
|---|
|  | 213 | double val = (double)I; | 
|---|
| [601] | 214 | _raypourfinteg = NULL; | 
|---|
|  | 215 | _filter = NULL; | 
|---|
| [607] | 216 | return(val); | 
|---|
| [601] | 217 | } | 
|---|
|  | 218 |  | 
|---|
| [909] | 219 | /*! | 
|---|
|  | 220 | Same than filteredIntegratedFlux() over the frequency range | 
|---|
|  | 221 | defined as: <BR> | 
|---|
|  | 222 | min_freq = MAX(minfreq_flux, minfreq_filter), <BR> | 
|---|
|  | 223 | max_freq = MIN(maxfreq_flux, maxfreq_filter), <BR> | 
|---|
|  | 224 | where: | 
|---|
|  | 225 | <UL> | 
|---|
|  | 226 | <LI>   minfreq_flux   is the minimum frequency of the flux definition | 
|---|
|  | 227 | <LI>   maxfreq_flux   is the maximum frequency of the flux definition | 
|---|
|  | 228 | <LI>   minfreq_filter is the minimum frequency of the filter definition | 
|---|
|  | 229 | <LI>   maxfreq_filter is the maximum frequency of the filter definition | 
|---|
|  | 230 | </UL> | 
|---|
|  | 231 | */ | 
|---|
| [601] | 232 | double | 
|---|
|  | 233 | RadSpectra::filteredIntegratedFlux(SpectralResponse const& filter) | 
|---|
|  | 234 | { | 
|---|
|  | 235 | double minOfMin = filter.minFreq(); | 
|---|
|  | 236 | double maxOfMax = filter.maxFreq(); | 
|---|
|  | 237 | if(minOfMin < this->minFreq()) minOfMin = this->minFreq(); | 
|---|
|  | 238 | if(maxOfMax > this->maxFreq()) maxOfMax = this->maxFreq(); | 
|---|
|  | 239 | return(filteredIntegratedFlux(filter, minOfMin, maxOfMax ) ); | 
|---|
|  | 240 | } | 
|---|
|  | 241 |  | 
|---|
|  | 242 |  | 
|---|
|  | 243 | // the RadSpectraVec_filteredFlux function is used to call TrpzInteg double(double) | 
|---|
|  | 244 | // (integration over a range of frequencies with a filter) | 
|---|
|  | 245 | static double RadSpectra_logFilteredFlux(double tau) | 
|---|
|  | 246 | { | 
|---|
|  | 247 | double nu = pow(10,tau); | 
|---|
|  | 248 | double flux = _raypourfinteg->flux(nu)*nu; | 
|---|
| [668] | 249 | double result = flux * _filter->transmission(nu); | 
|---|
|  | 250 | return(result); | 
|---|
| [601] | 251 | } | 
|---|
|  | 252 |  | 
|---|
|  | 253 |  | 
|---|
| [909] | 254 | /*! | 
|---|
|  | 255 | *  The filteredIntegratedFlux() function performs the integration | 
|---|
|  | 256 | * of the flux function in a frequency range <BR> defined by | 
|---|
|  | 257 | * f1 and f2 convolved by a SpectralResponse filter (using the | 
|---|
|  | 258 | * logarithm of the function). | 
|---|
|  | 259 | */ | 
|---|
| [601] | 260 | double | 
|---|
|  | 261 | RadSpectra::filteredLogIntFlux(SpectralResponse const& filter, double f1, double f2) const | 
|---|
|  | 262 | { | 
|---|
|  | 263 |  | 
|---|
|  | 264 | _raypourfinteg = NULL; | 
|---|
|  | 265 | _filter = NULL; | 
|---|
| [668] | 266 | if(f1 < this->minFreq()) f1 = this->minFreq(); | 
|---|
|  | 267 | if(f2 > this->maxFreq()) f2 = this->maxFreq(); | 
|---|
|  | 268 |  | 
|---|
| [601] | 269 | double f1Log = log10(f1); | 
|---|
|  | 270 | double f2Log = log10(f2); | 
|---|
|  | 271 | if(f1Log < -1.e99) f1Log = -1.e99; | 
|---|
|  | 272 | if(f2Log > 1.e99)  f2Log = 1.e99; | 
|---|
|  | 273 | _raypourfinteg = const_cast<RadSpectra *>(this); | 
|---|
|  | 274 | _filter = const_cast<SpectralResponse *>(&filter); | 
|---|
|  | 275 | TrpzInteg I(RadSpectra_logFilteredFlux,f1Log,f2Log); | 
|---|
| [607] | 276 | double val = (double)I; | 
|---|
| [601] | 277 | _raypourfinteg = NULL; | 
|---|
|  | 278 | _filter = NULL; | 
|---|
| [607] | 279 | return(val* log(10.)); | 
|---|
| [601] | 280 | } | 
|---|
|  | 281 |  | 
|---|
|  | 282 | double | 
|---|
|  | 283 | RadSpectra::filteredLogIntFlux(SpectralResponse const& filter) | 
|---|
|  | 284 | { | 
|---|
|  | 285 | return(filteredLogIntFlux(filter, filter.minFreq(), filter.maxFreq() ) ); | 
|---|
|  | 286 | } | 
|---|
|  | 287 |  | 
|---|
|  | 288 |  | 
|---|
|  | 289 |  | 
|---|
| [668] | 290 |  | 
|---|
| [601] | 291 | void | 
|---|
|  | 292 | RadSpectra::Print(ostream& os) const | 
|---|
|  | 293 | { | 
|---|
|  | 294 | //  os << "RadSpectra::Print (" << typeid(*this).name() | 
|---|
|  | 295 | //     << ") - Fmin,Fmax= " << minFreq() << "," << maxFreq() << endl; | 
|---|
|  | 296 | os << "RadSpectra::Print  - Fmin,Fmax= " << minFreq() << "," << maxFreq() << endl; | 
|---|
|  | 297 | os << "MeanFreq= " << meanFreq() << "  Emission= " << flux(meanFreq()) << endl; | 
|---|
|  | 298 | os << "PeakFreq= " << peakFreq() << "  Emission= " << flux(peakFreq()) << endl; | 
|---|
|  | 299 |  | 
|---|
|  | 300 | } | 
|---|
|  | 301 |  | 
|---|
|  | 302 |  | 
|---|