| 1 | //-------------------------------------------------------------------------- | 
|---|
| 2 | // File and Version Information: | 
|---|
| 3 | //      $Id: radspec.cc,v 1.6 2002-07-31 10:25:34 ansari Exp $ | 
|---|
| 4 | // | 
|---|
| 5 | // Description: | 
|---|
| 6 | //      Aim of the class: To give the energy density | 
|---|
| 7 | //                        The unity used here is W/m^2/Hz/sr | 
|---|
| 8 | // | 
|---|
| 9 | // History (add to end): | 
|---|
| 10 | //      Sophie   Oct, 1999  - creation | 
|---|
| 11 | // | 
|---|
| 12 | //------------------------------------------------------------------------ | 
|---|
| 13 |  | 
|---|
| 14 | //--------------- | 
|---|
| 15 | // C++ Headers -- | 
|---|
| 16 | //--------------- | 
|---|
| 17 | #include "machdefs.h" | 
|---|
| 18 | #include <iostream.h> | 
|---|
| 19 | #include <typeinfo> | 
|---|
| 20 | #include <math.h> | 
|---|
| 21 |  | 
|---|
| 22 | #include "radspec.h" | 
|---|
| 23 | #include "integ.h" | 
|---|
| 24 | /*! | 
|---|
| 25 | \defgroup SkyT SkyT module | 
|---|
| 26 | This module contains classes and functions which define | 
|---|
| 27 | several radiation spectra and filter responses | 
|---|
| 28 | */ | 
|---|
| 29 |  | 
|---|
| 30 | /*! | 
|---|
| 31 | * \class SOPHYA::RadSpectra | 
|---|
| 32 | * \ingroup SkyT | 
|---|
| 33 | * This class is an abstract base class for radiation emission spectra. The flux() function returns the value of the flux (the spectral      <BR> | 
|---|
| 34 | * energy distribution) as a function of the frequency.  As in the SpectralResponse class, the () operator has been redefined <BR> | 
|---|
| 35 | * at this level, so that the user can access the flux value, either by  calling the function or directly by using this operator. <BR> | 
|---|
| 36 | * For all the sub-classes, \nu is given in units of Hz and | 
|---|
| 37 | * the flux is returned in units of W/m^2/sr/Hz. | 
|---|
| 38 | */ | 
|---|
| 39 |  | 
|---|
| 40 |  | 
|---|
| 41 | //---------------- | 
|---|
| 42 | // Constructor -- | 
|---|
| 43 | //---------------- | 
|---|
| 44 | /*! Default constructor */ | 
|---|
| 45 | /*! | 
|---|
| 46 | The constructor takes as an argument the minimum | 
|---|
| 47 | and the maximum frequency of the spectrum, if any. <BR> | 
|---|
| 48 | In the case the user does not want to specify these | 
|---|
| 49 | values, there are set respectively to 0. and 9.E49 | 
|---|
| 50 | by default. | 
|---|
| 51 | */ | 
|---|
| 52 | RadSpectra::RadSpectra(double numin, double numax) | 
|---|
| 53 | { | 
|---|
| 54 | _numin = numin; | 
|---|
| 55 | _numax = numax; | 
|---|
| 56 | } | 
|---|
| 57 |  | 
|---|
| 58 |  | 
|---|
| 59 | //-------------- | 
|---|
| 60 | // Destructor -- | 
|---|
| 61 | //-------------- | 
|---|
| 62 | RadSpectra::~RadSpectra() | 
|---|
| 63 | { | 
|---|
| 64 | } | 
|---|
| 65 |  | 
|---|
| 66 | //              --------------------------- | 
|---|
| 67 | //              --  Function Definitions -- | 
|---|
| 68 | //              --------------------------- | 
|---|
| 69 |  | 
|---|
| 70 | double | 
|---|
| 71 | RadSpectra::minFreq()  const | 
|---|
| 72 | { | 
|---|
| 73 | return _numin; | 
|---|
| 74 | } | 
|---|
| 75 |  | 
|---|
| 76 | double | 
|---|
| 77 | RadSpectra::maxFreq()  const | 
|---|
| 78 | { | 
|---|
| 79 | return _numax; | 
|---|
| 80 | } | 
|---|
| 81 |  | 
|---|
| 82 | double | 
|---|
| 83 | RadSpectra::meanFreq()  const | 
|---|
| 84 | { | 
|---|
| 85 | double result = (_numax+_numin)/2.; | 
|---|
| 86 | return result; | 
|---|
| 87 | } | 
|---|
| 88 |  | 
|---|
| 89 |  | 
|---|
| 90 | /* | 
|---|
| 91 | The peakFreq() function returns the value of the | 
|---|
| 92 | frequency for the maximum value of the flux | 
|---|
| 93 | */ | 
|---|
| 94 | double | 
|---|
| 95 | RadSpectra::peakFreq()  const | 
|---|
| 96 | { | 
|---|
| 97 | double maxAnswer = -1.e99; | 
|---|
| 98 | double maxNu = -10; | 
|---|
| 99 | double nu; | 
|---|
| 100 | for (int i=1; i<1000;i++) | 
|---|
| 101 | { | 
|---|
| 102 | nu=(_numax-_numin)*i/1000.+_numin; | 
|---|
| 103 | double lookForMax = flux(nu); | 
|---|
| 104 | if(maxAnswer <= lookForMax) { | 
|---|
| 105 | maxAnswer= lookForMax; | 
|---|
| 106 | maxNu    = nu; | 
|---|
| 107 | } | 
|---|
| 108 | } | 
|---|
| 109 | return maxNu; | 
|---|
| 110 | } | 
|---|
| 111 |  | 
|---|
| 112 | void | 
|---|
| 113 | RadSpectra::setMinMaxFreq(double numin, double numax) | 
|---|
| 114 | { | 
|---|
| 115 | _numin = numin; | 
|---|
| 116 | _numax = numax; | 
|---|
| 117 | } | 
|---|
| 118 |  | 
|---|
| 119 | // the RadSpectra_fluxFunction function is used to call TrpzInteg double(double) | 
|---|
| 120 | // (integration over a range of frequencies) | 
|---|
| 121 | static RadSpectra* _raypourfinteg = NULL; | 
|---|
| 122 | static double RadSpectra_fluxFunction(double nu) | 
|---|
| 123 | { | 
|---|
| 124 | return(_raypourfinteg->flux(nu)); | 
|---|
| 125 | } | 
|---|
| 126 | /*! | 
|---|
| 127 | The integratedFlux() function performs the integration | 
|---|
| 128 | of the flux function in a frequency range <BR> defined by | 
|---|
| 129 | f1 and f2. | 
|---|
| 130 | */ | 
|---|
| 131 | double | 
|---|
| 132 | RadSpectra::integratedFlux(double f1, double f2)  const | 
|---|
| 133 | { | 
|---|
| 134 | if(f1 < this->minFreq()) f1 = this->minFreq(); | 
|---|
| 135 | if(f2 > this->maxFreq()) f2 = this->maxFreq(); | 
|---|
| 136 | _raypourfinteg = const_cast<RadSpectra *>(this); | 
|---|
| 137 | TrpzInteg I(RadSpectra_fluxFunction , f1, f2); | 
|---|
| 138 | double val = (double)I; | 
|---|
| 139 | _raypourfinteg = NULL;  // On ne peut pas faire ca avant la destruction de I | 
|---|
| 140 | return(val); | 
|---|
| 141 | } | 
|---|
| 142 |  | 
|---|
| 143 | /*! | 
|---|
| 144 | Same than integratedFlux() over the frequency range | 
|---|
| 145 | of definition of the flux function | 
|---|
| 146 | */ | 
|---|
| 147 | double | 
|---|
| 148 | RadSpectra::integratedFlux()  const | 
|---|
| 149 | { | 
|---|
| 150 | return integratedFlux(this->minFreq(),this->maxFreq()); | 
|---|
| 151 | } | 
|---|
| 152 |  | 
|---|
| 153 | // integration using the logarithm !! | 
|---|
| 154 | // Carefull!! Base 10.... | 
|---|
| 155 | static RadSpectra* _rayIntLog = NULL; | 
|---|
| 156 |  | 
|---|
| 157 | static double RadSpectra_logFluxFunction(double tau) | 
|---|
| 158 | { | 
|---|
| 159 | double value = _rayIntLog->flux(pow(10.,tau))*pow(10.,tau); | 
|---|
| 160 | return(value); | 
|---|
| 161 | } | 
|---|
| 162 |  | 
|---|
| 163 | /*! | 
|---|
| 164 | The logIntegratedFlux() function performs the integration | 
|---|
| 165 | of the flux function in a frequency range <BR> defined by | 
|---|
| 166 | f1 and f2. The integration is here performed | 
|---|
| 167 | on the logarithm of the flux function. | 
|---|
| 168 | */ | 
|---|
| 169 | double | 
|---|
| 170 | RadSpectra::logIntegratedFlux(double f1, double f2)  const | 
|---|
| 171 | { | 
|---|
| 172 | if(f1 < this->minFreq()) f1 = this->minFreq(); | 
|---|
| 173 | if(f2 > this->maxFreq()) f2 = this->maxFreq(); | 
|---|
| 174 |  | 
|---|
| 175 | double f1Log = log10(f1); | 
|---|
| 176 | double f2Log = log10(f2); | 
|---|
| 177 | if(f1Log < -1.e99) f1Log = -1.e99; | 
|---|
| 178 | if(f2Log > 1.e99)  f2Log = 1.e99; | 
|---|
| 179 | _rayIntLog = const_cast<RadSpectra *>(this); | 
|---|
| 180 | TrpzInteg I(RadSpectra_logFluxFunction,f1Log,f2Log); | 
|---|
| 181 | double value = (double)I * log(10.); | 
|---|
| 182 | _rayIntLog = NULL; | 
|---|
| 183 | return(value); | 
|---|
| 184 | } | 
|---|
| 185 |  | 
|---|
| 186 | /*! | 
|---|
| 187 | same than logIntegratedFlux over the frequency range | 
|---|
| 188 | of definition of the flux function | 
|---|
| 189 | */ | 
|---|
| 190 | double | 
|---|
| 191 | RadSpectra::logIntegratedFlux()  const | 
|---|
| 192 | { | 
|---|
| 193 | return logIntegratedFlux(_numin,_numax); | 
|---|
| 194 | } | 
|---|
| 195 |  | 
|---|
| 196 | // the RadSpectra_filteredFlux function is used to call TrpzInteg double(double) | 
|---|
| 197 | // (integration over a range of frequencies with a filter) | 
|---|
| 198 | static SpectralResponse* _filter = NULL ; | 
|---|
| 199 | static double RadSpectra_filteredFlux(double nu) | 
|---|
| 200 | { | 
|---|
| 201 | double flux = _raypourfinteg->flux(nu); | 
|---|
| 202 | return(flux * _filter->transmission(nu)); | 
|---|
| 203 | } | 
|---|
| 204 |  | 
|---|
| 205 | /*! | 
|---|
| 206 | The filteredIntegratedFlux() function performs the integration | 
|---|
| 207 | of the flux function in a frequency range <BR> defined by | 
|---|
| 208 | f1 and f2 convolved by a SpectralResponse filter. | 
|---|
| 209 | */ | 
|---|
| 210 | double | 
|---|
| 211 | RadSpectra::filteredIntegratedFlux(SpectralResponse const& filter, double f1, double f2) const | 
|---|
| 212 | { | 
|---|
| 213 | _raypourfinteg = const_cast<RadSpectra *>(this); | 
|---|
| 214 | _filter = const_cast<SpectralResponse *>(&filter); | 
|---|
| 215 | if(f1 < this->minFreq()) f1 = this->minFreq(); | 
|---|
| 216 | if(f2 > this->maxFreq()) f2 = this->maxFreq(); | 
|---|
| 217 |  | 
|---|
| 218 | TrpzInteg I(RadSpectra_filteredFlux,f1,f2); | 
|---|
| 219 | double val = (double)I; | 
|---|
| 220 | _raypourfinteg = NULL; | 
|---|
| 221 | _filter = NULL; | 
|---|
| 222 | return(val); | 
|---|
| 223 | } | 
|---|
| 224 |  | 
|---|
| 225 | /*! | 
|---|
| 226 | Same than filteredIntegratedFlux() over the frequency range | 
|---|
| 227 | defined as: <BR> | 
|---|
| 228 | min_freq = MAX(minfreq_flux, minfreq_filter), <BR> | 
|---|
| 229 | max_freq = MIN(maxfreq_flux, maxfreq_filter), <BR> | 
|---|
| 230 | where: | 
|---|
| 231 | <UL> | 
|---|
| 232 | <LI>   minfreq_flux   is the minimum frequency of the flux definition | 
|---|
| 233 | <LI>   maxfreq_flux   is the maximum frequency of the flux definition | 
|---|
| 234 | <LI>   minfreq_filter is the minimum frequency of the filter definition | 
|---|
| 235 | <LI>   maxfreq_filter is the maximum frequency of the filter definition | 
|---|
| 236 | </UL> | 
|---|
| 237 | */ | 
|---|
| 238 | double | 
|---|
| 239 | RadSpectra::filteredIntegratedFlux(SpectralResponse const& filter) | 
|---|
| 240 | { | 
|---|
| 241 | double minOfMin = filter.minFreq(); | 
|---|
| 242 | double maxOfMax = filter.maxFreq(); | 
|---|
| 243 | if(minOfMin < this->minFreq()) minOfMin = this->minFreq(); | 
|---|
| 244 | if(maxOfMax > this->maxFreq()) maxOfMax = this->maxFreq(); | 
|---|
| 245 | return(filteredIntegratedFlux(filter, minOfMin, maxOfMax ) ); | 
|---|
| 246 | } | 
|---|
| 247 |  | 
|---|
| 248 |  | 
|---|
| 249 | // the RadSpectraVec_filteredFlux function is used to call TrpzInteg double(double) | 
|---|
| 250 | // (integration over a range of frequencies with a filter) | 
|---|
| 251 | static double RadSpectra_logFilteredFlux(double tau) | 
|---|
| 252 | { | 
|---|
| 253 | double nu = pow(10.,tau); | 
|---|
| 254 | double flux = _raypourfinteg->flux(nu)*nu; | 
|---|
| 255 | double result = flux * _filter->transmission(nu); | 
|---|
| 256 | return(result); | 
|---|
| 257 | } | 
|---|
| 258 |  | 
|---|
| 259 |  | 
|---|
| 260 | /*! | 
|---|
| 261 | *  The filteredIntegratedFlux() function performs the integration | 
|---|
| 262 | * of the flux function in a frequency range <BR> defined by | 
|---|
| 263 | * f1 and f2 convolved by a SpectralResponse filter (using the | 
|---|
| 264 | * logarithm of the function). | 
|---|
| 265 | */ | 
|---|
| 266 | double | 
|---|
| 267 | RadSpectra::filteredLogIntFlux(SpectralResponse const& filter, double f1, double f2) const | 
|---|
| 268 | { | 
|---|
| 269 |  | 
|---|
| 270 | _raypourfinteg = NULL; | 
|---|
| 271 | _filter = NULL; | 
|---|
| 272 | if(f1 < this->minFreq()) f1 = this->minFreq(); | 
|---|
| 273 | if(f2 > this->maxFreq()) f2 = this->maxFreq(); | 
|---|
| 274 |  | 
|---|
| 275 | double f1Log = log10(f1); | 
|---|
| 276 | double f2Log = log10(f2); | 
|---|
| 277 | if(f1Log < -1.e99) f1Log = -1.e99; | 
|---|
| 278 | if(f2Log > 1.e99)  f2Log = 1.e99; | 
|---|
| 279 | _raypourfinteg = const_cast<RadSpectra *>(this); | 
|---|
| 280 | _filter = const_cast<SpectralResponse *>(&filter); | 
|---|
| 281 | TrpzInteg I(RadSpectra_logFilteredFlux,f1Log,f2Log); | 
|---|
| 282 | double val = (double)I; | 
|---|
| 283 | _raypourfinteg = NULL; | 
|---|
| 284 | _filter = NULL; | 
|---|
| 285 | return(val* log(10.)); | 
|---|
| 286 | } | 
|---|
| 287 |  | 
|---|
| 288 | double | 
|---|
| 289 | RadSpectra::filteredLogIntFlux(SpectralResponse const& filter) | 
|---|
| 290 | { | 
|---|
| 291 | return(filteredLogIntFlux(filter, filter.minFreq(), filter.maxFreq() ) ); | 
|---|
| 292 | } | 
|---|
| 293 |  | 
|---|
| 294 |  | 
|---|
| 295 |  | 
|---|
| 296 |  | 
|---|
| 297 | void | 
|---|
| 298 | RadSpectra::Print(ostream& os) const | 
|---|
| 299 | { | 
|---|
| 300 | //  os << "RadSpectra::Print (" << typeid(*this).name() | 
|---|
| 301 | //     << ") - Fmin,Fmax= " << minFreq() << "," << maxFreq() << endl; | 
|---|
| 302 | os << "RadSpectra::Print  - Fmin,Fmax= " << minFreq() << "," << maxFreq() << endl; | 
|---|
| 303 | os << "MeanFreq= " << meanFreq() << "  Emission= " << flux(meanFreq()) << endl; | 
|---|
| 304 | os << "PeakFreq= " << peakFreq() << "  Emission= " << flux(peakFreq()) << endl; | 
|---|
| 305 |  | 
|---|
| 306 | } | 
|---|
| 307 |  | 
|---|
| 308 |  | 
|---|