| 1 | //--------------------------------------------------------------------------
 | 
|---|
| 2 | // File and Version Information:
 | 
|---|
| 3 | //      $Id: radspec.cc,v 1.8 2004-09-10 09:54:40 cmv Exp $
 | 
|---|
| 4 | //
 | 
|---|
| 5 | // Description:
 | 
|---|
| 6 | //      Aim of the class: To give the energy density
 | 
|---|
| 7 | //                        The unity used here is W/m^2/Hz/sr
 | 
|---|
| 8 | //
 | 
|---|
| 9 | // History (add to end):
 | 
|---|
| 10 | //      Sophie   Oct, 1999  - creation
 | 
|---|
| 11 | //
 | 
|---|
| 12 | //------------------------------------------------------------------------
 | 
|---|
| 13 | 
 | 
|---|
| 14 | //---------------
 | 
|---|
| 15 | // C++ Headers --
 | 
|---|
| 16 | //---------------
 | 
|---|
| 17 | #include "sopnamsp.h"
 | 
|---|
| 18 | #include "machdefs.h"
 | 
|---|
| 19 | #include <iostream>
 | 
|---|
| 20 | #include <typeinfo>
 | 
|---|
| 21 | #include <math.h>
 | 
|---|
| 22 | 
 | 
|---|
| 23 | #include "radspec.h"
 | 
|---|
| 24 | #include "integ.h"
 | 
|---|
| 25 | /*!
 | 
|---|
| 26 |    \defgroup SkyT SkyT module
 | 
|---|
| 27 |    This module contains classes and functions which define 
 | 
|---|
| 28 |    several radiation spectra and filter responses
 | 
|---|
| 29 | */
 | 
|---|
| 30 | 
 | 
|---|
| 31 | /*! 
 | 
|---|
| 32 |  * \class SOPHYA::RadSpectra
 | 
|---|
| 33 |  * \ingroup SkyT
 | 
|---|
| 34 |  * This class is an abstract base class for radiation emission spectra. The flux() function returns the value of the flux (the spectral      <BR>
 | 
|---|
| 35 |  * energy distribution) as a function of the frequency.  As in the SpectralResponse class, the () operator has been redefined <BR>
 | 
|---|
| 36 |  * at this level, so that the user can access the flux value, either by  calling the function or directly by using this operator. <BR>
 | 
|---|
| 37 |  * For all the sub-classes, \nu is given in units of Hz and
 | 
|---|
| 38 |  * the flux is returned in units of W/m^2/sr/Hz.
 | 
|---|
| 39 | */
 | 
|---|
| 40 | 
 | 
|---|
| 41 | 
 | 
|---|
| 42 | //----------------
 | 
|---|
| 43 | // Constructor --
 | 
|---|
| 44 | //----------------
 | 
|---|
| 45 | /*! Default constructor */
 | 
|---|
| 46 | /*!
 | 
|---|
| 47 |   The constructor takes as an argument the minimum
 | 
|---|
| 48 |   and the maximum frequency of the spectrum, if any. <BR>
 | 
|---|
| 49 |   In the case the user does not want to specify these
 | 
|---|
| 50 |   values, there are set respectively to 0. and 9.E49
 | 
|---|
| 51 |   by default.
 | 
|---|
| 52 | */
 | 
|---|
| 53 | RadSpectra::RadSpectra(double numin, double numax)
 | 
|---|
| 54 | {
 | 
|---|
| 55 |   _numin = numin;
 | 
|---|
| 56 |   _numax = numax;
 | 
|---|
| 57 | }
 | 
|---|
| 58 | 
 | 
|---|
| 59 | 
 | 
|---|
| 60 | //--------------
 | 
|---|
| 61 | // Destructor --
 | 
|---|
| 62 | //--------------
 | 
|---|
| 63 | RadSpectra::~RadSpectra()
 | 
|---|
| 64 | {
 | 
|---|
| 65 | }
 | 
|---|
| 66 | 
 | 
|---|
| 67 | //              ---------------------------
 | 
|---|
| 68 | //              --  Function Definitions --
 | 
|---|
| 69 | //              ---------------------------
 | 
|---|
| 70 | 
 | 
|---|
| 71 | double 
 | 
|---|
| 72 | RadSpectra::minFreq()  const
 | 
|---|
| 73 | {
 | 
|---|
| 74 |   return _numin;
 | 
|---|
| 75 | }
 | 
|---|
| 76 | 
 | 
|---|
| 77 | double 
 | 
|---|
| 78 | RadSpectra::maxFreq()  const
 | 
|---|
| 79 | {
 | 
|---|
| 80 |   return _numax;
 | 
|---|
| 81 | }
 | 
|---|
| 82 | 
 | 
|---|
| 83 | double 
 | 
|---|
| 84 | RadSpectra::meanFreq()  const
 | 
|---|
| 85 | {
 | 
|---|
| 86 |   double result = (_numax+_numin)/2.;
 | 
|---|
| 87 |   return result;
 | 
|---|
| 88 | }
 | 
|---|
| 89 | 
 | 
|---|
| 90 | 
 | 
|---|
| 91 | /* 
 | 
|---|
| 92 |    The peakFreq() function returns the value of the 
 | 
|---|
| 93 |    frequency for the maximum value of the flux
 | 
|---|
| 94 | */
 | 
|---|
| 95 | double 
 | 
|---|
| 96 | RadSpectra::peakFreq()  const
 | 
|---|
| 97 | {
 | 
|---|
| 98 |   double maxAnswer = -1.e99;
 | 
|---|
| 99 |   double maxNu = -10;
 | 
|---|
| 100 |   double nu;
 | 
|---|
| 101 |   for (int i=1; i<1000;i++)
 | 
|---|
| 102 |     {
 | 
|---|
| 103 |       nu=(_numax-_numin)*i/1000.+_numin;
 | 
|---|
| 104 |       double lookForMax = flux(nu);
 | 
|---|
| 105 |       if(maxAnswer <= lookForMax) {
 | 
|---|
| 106 |         maxAnswer= lookForMax;
 | 
|---|
| 107 |         maxNu    = nu;
 | 
|---|
| 108 |       }
 | 
|---|
| 109 |     }
 | 
|---|
| 110 |   return maxNu;  
 | 
|---|
| 111 | }
 | 
|---|
| 112 | 
 | 
|---|
| 113 | void
 | 
|---|
| 114 | RadSpectra::setMinMaxFreq(double numin, double numax)
 | 
|---|
| 115 | {
 | 
|---|
| 116 |   _numin = numin;
 | 
|---|
| 117 |   _numax = numax;
 | 
|---|
| 118 | }
 | 
|---|
| 119 | 
 | 
|---|
| 120 | // the RadSpectra_fluxFunction function is used to call TrpzInteg double(double) 
 | 
|---|
| 121 | // (integration over a range of frequencies)
 | 
|---|
| 122 | static RadSpectra* _raypourfinteg = NULL;
 | 
|---|
| 123 | static double RadSpectra_fluxFunction(double nu)
 | 
|---|
| 124 | {
 | 
|---|
| 125 |    return(_raypourfinteg->flux(nu));   
 | 
|---|
| 126 | }
 | 
|---|
| 127 | /*! 
 | 
|---|
| 128 |   The integratedFlux() function performs the integration
 | 
|---|
| 129 |   of the flux function in a frequency range <BR> defined by
 | 
|---|
| 130 |   f1 and f2.
 | 
|---|
| 131 | */
 | 
|---|
| 132 | double 
 | 
|---|
| 133 | RadSpectra::integratedFlux(double f1, double f2)  const
 | 
|---|
| 134 | {
 | 
|---|
| 135 |   if(f1 < this->minFreq()) f1 = this->minFreq();
 | 
|---|
| 136 |   if(f2 > this->maxFreq()) f2 = this->maxFreq();
 | 
|---|
| 137 |   _raypourfinteg = const_cast<RadSpectra *>(this);
 | 
|---|
| 138 |   TrpzInteg I(RadSpectra_fluxFunction , f1, f2);  
 | 
|---|
| 139 |   double val = (double)I;
 | 
|---|
| 140 |   _raypourfinteg = NULL;  // On ne peut pas faire ca avant la destruction de I
 | 
|---|
| 141 |   return(val);        
 | 
|---|
| 142 | }
 | 
|---|
| 143 | 
 | 
|---|
| 144 | /*!
 | 
|---|
| 145 |   Same than integratedFlux() over the frequency range 
 | 
|---|
| 146 |   of definition of the flux function
 | 
|---|
| 147 |  */
 | 
|---|
| 148 | double 
 | 
|---|
| 149 | RadSpectra::integratedFlux()  const
 | 
|---|
| 150 | {
 | 
|---|
| 151 |   return integratedFlux(this->minFreq(),this->maxFreq());
 | 
|---|
| 152 | }
 | 
|---|
| 153 | 
 | 
|---|
| 154 | // integration using the logarithm !!
 | 
|---|
| 155 | // Carefull!! Base 10....
 | 
|---|
| 156 | static RadSpectra* _rayIntLog = NULL;
 | 
|---|
| 157 | 
 | 
|---|
| 158 | static double RadSpectra_logFluxFunction(double tau)
 | 
|---|
| 159 | {
 | 
|---|
| 160 |   double value = _rayIntLog->flux(pow(10.,tau))*pow(10.,tau);
 | 
|---|
| 161 |   return(value);   
 | 
|---|
| 162 | }
 | 
|---|
| 163 | 
 | 
|---|
| 164 | /*! 
 | 
|---|
| 165 |   The logIntegratedFlux() function performs the integration
 | 
|---|
| 166 |   of the flux function in a frequency range <BR> defined by
 | 
|---|
| 167 |   f1 and f2. The integration is here performed
 | 
|---|
| 168 |   on the logarithm of the flux function. 
 | 
|---|
| 169 | */
 | 
|---|
| 170 | double 
 | 
|---|
| 171 | RadSpectra::logIntegratedFlux(double f1, double f2)  const
 | 
|---|
| 172 | {
 | 
|---|
| 173 |   if(f1 < this->minFreq()) f1 = this->minFreq();
 | 
|---|
| 174 |   if(f2 > this->maxFreq()) f2 = this->maxFreq();
 | 
|---|
| 175 | 
 | 
|---|
| 176 |   double f1Log = log10(f1);
 | 
|---|
| 177 |   double f2Log = log10(f2);
 | 
|---|
| 178 |   if(f1Log < -1.e99) f1Log = -1.e99;
 | 
|---|
| 179 |   if(f2Log > 1.e99)  f2Log = 1.e99;
 | 
|---|
| 180 |   _rayIntLog = const_cast<RadSpectra *>(this);
 | 
|---|
| 181 |   TrpzInteg I(RadSpectra_logFluxFunction,f1Log,f2Log);
 | 
|---|
| 182 |   double value = (double)I * log(10.);
 | 
|---|
| 183 |   _rayIntLog = NULL;
 | 
|---|
| 184 |   return(value);        
 | 
|---|
| 185 | }
 | 
|---|
| 186 | 
 | 
|---|
| 187 | /*!
 | 
|---|
| 188 |   same than logIntegratedFlux over the frequency range
 | 
|---|
| 189 |   of definition of the flux function
 | 
|---|
| 190 |  */
 | 
|---|
| 191 | double 
 | 
|---|
| 192 | RadSpectra::logIntegratedFlux()  const
 | 
|---|
| 193 | {
 | 
|---|
| 194 |   return logIntegratedFlux(_numin,_numax);
 | 
|---|
| 195 | }
 | 
|---|
| 196 | 
 | 
|---|
| 197 | // the RadSpectra_filteredFlux function is used to call TrpzInteg double(double) 
 | 
|---|
| 198 | // (integration over a range of frequencies with a filter)
 | 
|---|
| 199 | static SpectralResponse* _filter = NULL ;
 | 
|---|
| 200 | static double RadSpectra_filteredFlux(double nu) 
 | 
|---|
| 201 | {
 | 
|---|
| 202 |   double flux = _raypourfinteg->flux(nu);
 | 
|---|
| 203 |   return(flux * _filter->transmission(nu));
 | 
|---|
| 204 | }
 | 
|---|
| 205 | 
 | 
|---|
| 206 | /*! 
 | 
|---|
| 207 |   The filteredIntegratedFlux() function performs the integration
 | 
|---|
| 208 |   of the flux function in a frequency range <BR> defined by
 | 
|---|
| 209 |   f1 and f2 convolved by a SpectralResponse filter.
 | 
|---|
| 210 | */
 | 
|---|
| 211 | double 
 | 
|---|
| 212 | RadSpectra::filteredIntegratedFlux(SpectralResponse const& filter, double f1, double f2) const
 | 
|---|
| 213 | {
 | 
|---|
| 214 |   _raypourfinteg = const_cast<RadSpectra *>(this);
 | 
|---|
| 215 |   _filter = const_cast<SpectralResponse *>(&filter);
 | 
|---|
| 216 |    if(f1 < this->minFreq()) f1 = this->minFreq();
 | 
|---|
| 217 |    if(f2 > this->maxFreq()) f2 = this->maxFreq();
 | 
|---|
| 218 | 
 | 
|---|
| 219 |   TrpzInteg I(RadSpectra_filteredFlux,f1,f2);
 | 
|---|
| 220 |   double val = (double)I;
 | 
|---|
| 221 |   _raypourfinteg = NULL;
 | 
|---|
| 222 |   _filter = NULL;
 | 
|---|
| 223 |   return(val);        
 | 
|---|
| 224 | }
 | 
|---|
| 225 | 
 | 
|---|
| 226 | /*!
 | 
|---|
| 227 |   Same than filteredIntegratedFlux() over the frequency range
 | 
|---|
| 228 |   defined as: <BR>
 | 
|---|
| 229 |    min_freq = MAX(minfreq_flux, minfreq_filter), <BR>
 | 
|---|
| 230 |    max_freq = MIN(maxfreq_flux, maxfreq_filter), <BR>
 | 
|---|
| 231 |   where:
 | 
|---|
| 232 | <UL>  
 | 
|---|
| 233 | <LI>   minfreq_flux   is the minimum frequency of the flux definition
 | 
|---|
| 234 | <LI>   maxfreq_flux   is the maximum frequency of the flux definition
 | 
|---|
| 235 | <LI>   minfreq_filter is the minimum frequency of the filter definition
 | 
|---|
| 236 | <LI>   maxfreq_filter is the maximum frequency of the filter definition
 | 
|---|
| 237 |   </UL>
 | 
|---|
| 238 |  */
 | 
|---|
| 239 | double 
 | 
|---|
| 240 | RadSpectra::filteredIntegratedFlux(SpectralResponse const& filter)
 | 
|---|
| 241 | {
 | 
|---|
| 242 |   double minOfMin = filter.minFreq();
 | 
|---|
| 243 |   double maxOfMax = filter.maxFreq();
 | 
|---|
| 244 |   if(minOfMin < this->minFreq()) minOfMin = this->minFreq();
 | 
|---|
| 245 |   if(maxOfMax > this->maxFreq()) maxOfMax = this->maxFreq();  
 | 
|---|
| 246 |   return(filteredIntegratedFlux(filter, minOfMin, maxOfMax ) );
 | 
|---|
| 247 | }
 | 
|---|
| 248 | 
 | 
|---|
| 249 | 
 | 
|---|
| 250 | // the RadSpectraVec_filteredFlux function is used to call TrpzInteg double(double) 
 | 
|---|
| 251 | // (integration over a range of frequencies with a filter)
 | 
|---|
| 252 | static double RadSpectra_logFilteredFlux(double tau) 
 | 
|---|
| 253 | {
 | 
|---|
| 254 |   double nu = pow(10.,tau);
 | 
|---|
| 255 |   double flux = _raypourfinteg->flux(nu)*nu;
 | 
|---|
| 256 |   double result = flux * _filter->transmission(nu);
 | 
|---|
| 257 |   return(result);
 | 
|---|
| 258 | }
 | 
|---|
| 259 | 
 | 
|---|
| 260 | 
 | 
|---|
| 261 | /*! 
 | 
|---|
| 262 |  *  The filteredIntegratedFlux() function performs the integration
 | 
|---|
| 263 |  * of the flux function in a frequency range <BR> defined by
 | 
|---|
| 264 |  * f1 and f2 convolved by a SpectralResponse filter (using the
 | 
|---|
| 265 |  * logarithm of the function).
 | 
|---|
| 266 |  */
 | 
|---|
| 267 | double 
 | 
|---|
| 268 | RadSpectra::filteredLogIntFlux(SpectralResponse const& filter, double f1, double f2) const
 | 
|---|
| 269 | {
 | 
|---|
| 270 |   
 | 
|---|
| 271 |    _raypourfinteg = NULL;
 | 
|---|
| 272 |    _filter = NULL;
 | 
|---|
| 273 |    if(f1 < this->minFreq()) f1 = this->minFreq();
 | 
|---|
| 274 |    if(f2 > this->maxFreq()) f2 = this->maxFreq();
 | 
|---|
| 275 |    
 | 
|---|
| 276 |    double f1Log = log10(f1);
 | 
|---|
| 277 |    double f2Log = log10(f2);
 | 
|---|
| 278 |    if(f1Log < -1.e99) f1Log = -1.e99;
 | 
|---|
| 279 |    if(f2Log > 1.e99)  f2Log = 1.e99;
 | 
|---|
| 280 |    _raypourfinteg = const_cast<RadSpectra *>(this);
 | 
|---|
| 281 |    _filter = const_cast<SpectralResponse *>(&filter);
 | 
|---|
| 282 |    TrpzInteg I(RadSpectra_logFilteredFlux,f1Log,f2Log);  
 | 
|---|
| 283 |    double val = (double)I;
 | 
|---|
| 284 |    _raypourfinteg = NULL;
 | 
|---|
| 285 |    _filter = NULL;
 | 
|---|
| 286 |    return(val* log(10.));        
 | 
|---|
| 287 | }
 | 
|---|
| 288 | 
 | 
|---|
| 289 | double 
 | 
|---|
| 290 | RadSpectra::filteredLogIntFlux(SpectralResponse const& filter)
 | 
|---|
| 291 | {
 | 
|---|
| 292 |   return(filteredLogIntFlux(filter, filter.minFreq(), filter.maxFreq() ) );
 | 
|---|
| 293 | }
 | 
|---|
| 294 | 
 | 
|---|
| 295 | 
 | 
|---|
| 296 | 
 | 
|---|
| 297 | 
 | 
|---|
| 298 | void
 | 
|---|
| 299 | RadSpectra::Print(ostream& os) const
 | 
|---|
| 300 | {
 | 
|---|
| 301 |   //  os << "RadSpectra::Print (" << typeid(*this).name() 
 | 
|---|
| 302 |   //     << ") - Fmin,Fmax= " << minFreq() << "," << maxFreq() << endl;
 | 
|---|
| 303 |   os << "RadSpectra::Print  - Fmin,Fmax= " << minFreq() << "," << maxFreq() << endl;
 | 
|---|
| 304 |   os << "MeanFreq= " << meanFreq() << "  Emission= " << flux(meanFreq()) << endl;
 | 
|---|
| 305 |   os << "PeakFreq= " << peakFreq() << "  Emission= " << flux(peakFreq()) << endl;
 | 
|---|
| 306 | 
 | 
|---|
| 307 | }
 | 
|---|
| 308 | 
 | 
|---|
| 309 | 
 | 
|---|