| 1 | //      Base class for numerical arrays 
 | 
|---|
| 2 | //                     R. Ansari, C.Magneville   03/2000
 | 
|---|
| 3 | 
 | 
|---|
| 4 | #include "sopnamsp.h"
 | 
|---|
| 5 | #include "machdefs.h"
 | 
|---|
| 6 | #include <stdio.h>
 | 
|---|
| 7 | #include <stdlib.h>
 | 
|---|
| 8 | #include "pexceptions.h"
 | 
|---|
| 9 | #include "basarr.h"
 | 
|---|
| 10 | 
 | 
|---|
| 11 | /*!
 | 
|---|
| 12 |   \class SOPHYA::BaseArray
 | 
|---|
| 13 |   \ingroup TArray
 | 
|---|
| 14 |   Base class for template arrays with number of dimensions up to 
 | 
|---|
| 15 |   \ref BASEARRAY_MAXNDIMS "BASEARRAY_MAXNDIMS".
 | 
|---|
| 16 |   This class is an abstract class and has no data connected to it.
 | 
|---|
| 17 |   
 | 
|---|
| 18 |   Define base methods, enum and defaults for TArray , TMatrix and TVector.
 | 
|---|
| 19 |   BaseArray objects can be used in particular for performing operations on 
 | 
|---|
| 20 |   arrays with unknown data types, or between arrays with different data types.
 | 
|---|
| 21 | */
 | 
|---|
| 22 | 
 | 
|---|
| 23 | // Variables statiques globales
 | 
|---|
| 24 | char * BaseArray::ck_op_msg_[6] =
 | 
|---|
| 25 |      {"???", "Size(int )", "IsPacked(int )"
 | 
|---|
| 26 |      ,"Stride(int )", "ElemCheckBound()", "operator()" };
 | 
|---|
| 27 | sa_size_t BaseArray::max_nprt_ = 50;
 | 
|---|
| 28 | int_4  BaseArray::prt_lev_ = 0;
 | 
|---|
| 29 | short  BaseArray::default_memory_mapping = CMemoryMapping;
 | 
|---|
| 30 | short  BaseArray::default_vector_type = ColumnVector;
 | 
|---|
| 31 | sa_size_t BaseArray::openmp_size_threshold = 200000;
 | 
|---|
| 32 | uint_2 BaseArray::matrix_product_optim = 1;
 | 
|---|
| 33 | 
 | 
|---|
| 34 | // ------ Methodes statiques globales --------
 | 
|---|
| 35 | 
 | 
|---|
| 36 | //! Set optimization strategy for matrix product
 | 
|---|
| 37 | /*!
 | 
|---|
| 38 |   \param opt : bit coded optimization strategy
 | 
|---|
| 39 |   \warning Default is opt=1
 | 
|---|
| 40 |   \verbatim
 | 
|---|
| 41 |   bit 0 : choose matrix product optimization or not
 | 
|---|
| 42 |         0=no optimization, 1=optimization
 | 
|---|
| 43 |   bit 1 : force optimization in any case (only if bit0=1)
 | 
|---|
| 44 |           (if not the TMatrix::Multiply method decide or
 | 
|---|
| 45 |            not if the product should be optimized)
 | 
|---|
| 46 |         0=do not force and let the method decide, 1=force
 | 
|---|
| 47 |   bit 2 : optimize the product A * B when A-columns and
 | 
|---|
| 48 |           B-rows are not packed (for example if the product
 | 
|---|
| 49 |           is C = ("A Fortran-like" * "B C-like").
 | 
|---|
| 50 |         . That will do a copy of one of the two matrices,
 | 
|---|
| 51 |           so that will result in an increase of the memory
 | 
|---|
| 52 |           space needed.
 | 
|---|
| 53 |         . For big matrices that decrease the computing time.
 | 
|---|
| 54 |         . Do not use this optimisation for small matrices
 | 
|---|
| 55 |           because that would increase the computing time.
 | 
|---|
| 56 |         0=do not optimze that way, 1=optimze that way
 | 
|---|
| 57 |   \endverbatim
 | 
|---|
| 58 |   \verbatim
 | 
|---|
| 59 |    Sumary of the allowed values for "opt"
 | 
|---|
| 60 |            0 = no optimization at all (whatever the other bits are)
 | 
|---|
| 61 |            1 = optimize but let the method decides if optimization
 | 
|---|
| 62 |                is needed regarding the sizes of the matrices.
 | 
|---|
| 63 |            3 = force optimization whatever the sizes of the matrices are.
 | 
|---|
| 64 |            5 = optimisation with method decision ("1")
 | 
|---|
| 65 |                AND optimize by copying when A-columns and B-rows
 | 
|---|
| 66 |                are not packed
 | 
|---|
| 67 |            7 = force optimization ("3")
 | 
|---|
| 68 |                AND optimize by copying when A-columns and B-rows
 | 
|---|
| 69 |                are not packed
 | 
|---|
| 70 |   \endverbatim
 | 
|---|
| 71 | */
 | 
|---|
| 72 | void BaseArray::SetMatProdOpt(uint_2 opt)
 | 
|---|
| 73 | {
 | 
|---|
| 74 |   matrix_product_optim = opt;
 | 
|---|
| 75 | }
 | 
|---|
| 76 | 
 | 
|---|
| 77 | //! Set maximum number of printed elements and print level
 | 
|---|
| 78 | /*!
 | 
|---|
| 79 |   \param nprt : maximum number of print
 | 
|---|
| 80 |   \param lev  : print level
 | 
|---|
| 81 | */
 | 
|---|
| 82 | void BaseArray::SetMaxPrint(sa_size_t nprt, int_4 lev)
 | 
|---|
| 83 | {
 | 
|---|
| 84 |   max_nprt_ = nprt;
 | 
|---|
| 85 |   prt_lev_ = (lev < 3) ? lev : 3;
 | 
|---|
| 86 | }
 | 
|---|
| 87 | 
 | 
|---|
| 88 | //! Set Size threshold for parallel routine call
 | 
|---|
| 89 | /*!
 | 
|---|
| 90 |   \param thr : thresold value
 | 
|---|
| 91 | */
 | 
|---|
| 92 | void BaseArray::SetOpenMPSizeThreshold(sa_size_t thr)
 | 
|---|
| 93 | {
 | 
|---|
| 94 |   openmp_size_threshold = thr;
 | 
|---|
| 95 | }
 | 
|---|
| 96 | 
 | 
|---|
| 97 | 
 | 
|---|
| 98 | //! Compute totale size
 | 
|---|
| 99 | /*!
 | 
|---|
| 100 |   \param ndim : number of dimensions
 | 
|---|
| 101 |   \param siz : array of size along the \b ndim dimensions
 | 
|---|
| 102 |   \param step[ndim] : step value
 | 
|---|
| 103 |   \param offset : offset value
 | 
|---|
| 104 |   \return Total size of the array
 | 
|---|
| 105 | */
 | 
|---|
| 106 | sa_size_t BaseArray::ComputeTotalSize(int_4 ndim, const sa_size_t * siz, sa_size_t step, sa_size_t offset)
 | 
|---|
| 107 | {
 | 
|---|
| 108 |   sa_size_t rs = step;
 | 
|---|
| 109 |   for(sa_size_t k=0; k<ndim; k++) rs *= siz[k];
 | 
|---|
| 110 |   return(rs+offset);
 | 
|---|
| 111 | }
 | 
|---|
| 112 | 
 | 
|---|
| 113 | //! Set Default Memory Mapping
 | 
|---|
| 114 | /*!
 | 
|---|
| 115 |   \param mm : Memory Mapping type
 | 
|---|
| 116 |   \verbatim
 | 
|---|
| 117 |      mm == CMemoryMapping : C like memory mapping
 | 
|---|
| 118 |      mm == FortranMemoryMapping : Fortran like memory mapping
 | 
|---|
| 119 |   \endverbatim
 | 
|---|
| 120 |   \verbatim
 | 
|---|
| 121 |   # ===== For Matrices
 | 
|---|
| 122 |   *** MATHEMATICS:   m(row,column) with indexes running [1,n])
 | 
|---|
| 123 |                           | 11 12 13 |
 | 
|---|
| 124 |      matrix Math = Mmath= | 21 22 23 |
 | 
|---|
| 125 |                           | 31 32 33 |
 | 
|---|
| 126 |   *** IDL, \b FORTRAN: indexes data in \b row-major format:
 | 
|---|
| 127 |      indexes arrays in (column,row) order.
 | 
|---|
| 128 |      index IDL running [0,n[ ; index FORTRAN running [1,n]
 | 
|---|
| 129 |      M in memory: [ 11 12 13 : 21 22 23 : 31 32 33 : ... ]
 | 
|---|
| 130 |                      line 1  : line 2   : line 3  : ...
 | 
|---|
| 131 |      ex: Midl(0,2) = Mfor(1,3) = Mmath(3,1) = 31
 | 
|---|
| 132 |          Midl(2,0) = Mfor(3,1) = Mmath(1,3) = 13
 | 
|---|
| 133 |   *** C: indexes data in \b column-major format:
 | 
|---|
| 134 |      indexes arrays in [row][column] order.
 | 
|---|
| 135 |      index C running [0,n[
 | 
|---|
| 136 |      M in memory: [ 11 21 31 : 12 22 32 : 13 23 33 : ... ]
 | 
|---|
| 137 |                     column 1 : column 2 : column 3 : ...
 | 
|---|
| 138 |      ex: Mc[2][0] = Mmath(3,1) = 31
 | 
|---|
| 139 |          Mc[0][2] = Mmath(1,3) = 13
 | 
|---|
| 140 |   *** RESUME diff Idl/Fortan/C/Math:
 | 
|---|
| 141 |     Midl(col-1,row-1) = Mfor(col,row) = Mc[row-1][col-1] = Mmath(row,col)
 | 
|---|
| 142 |     TRANSPOSE(column-major array) --> row-major array
 | 
|---|
| 143 |   \endverbatim
 | 
|---|
| 144 |   \return default memory mapping value
 | 
|---|
| 145 |  */
 | 
|---|
| 146 | short BaseArray::SetDefaultMemoryMapping(short mm)
 | 
|---|
| 147 | {
 | 
|---|
| 148 |   default_memory_mapping = (mm != CMemoryMapping) ? FortranMemoryMapping : CMemoryMapping; 
 | 
|---|
| 149 |   return default_memory_mapping;
 | 
|---|
| 150 | }
 | 
|---|
| 151 | 
 | 
|---|
| 152 | //! Set Default Vector Type
 | 
|---|
| 153 | /*!
 | 
|---|
| 154 |   \param vt : vector type (ColumnVector,RowVector)
 | 
|---|
| 155 |   \return default vector type value
 | 
|---|
| 156 |  */
 | 
|---|
| 157 | short BaseArray::SetDefaultVectorType(short vt)
 | 
|---|
| 158 | {
 | 
|---|
| 159 |   default_vector_type = (vt != ColumnVector) ? RowVector : ColumnVector ; 
 | 
|---|
| 160 |   return default_vector_type;
 | 
|---|
| 161 | }
 | 
|---|
| 162 | 
 | 
|---|
| 163 | //! Select Memory Mapping
 | 
|---|
| 164 | /*!
 | 
|---|
| 165 |   Do essentially nothing.
 | 
|---|
| 166 |   \param mm : type of Memory Mapping (CMemoryMapping,FortranMemoryMapping)
 | 
|---|
| 167 |   \return return \b mm if it makes sense or default memory mapping value
 | 
|---|
| 168 |   \sa SetDefaultMemoryMapping
 | 
|---|
| 169 |  */
 | 
|---|
| 170 | short BaseArray::SelectMemoryMapping(short mm)
 | 
|---|
| 171 | {
 | 
|---|
| 172 |   if ( (mm == CMemoryMapping) || (mm == FortranMemoryMapping) )  return (mm) ; 
 | 
|---|
| 173 |   else return (default_memory_mapping);
 | 
|---|
| 174 | }
 | 
|---|
| 175 | 
 | 
|---|
| 176 | //! Select Vector type
 | 
|---|
| 177 | /*!
 | 
|---|
| 178 |   Do essentially nothing.
 | 
|---|
| 179 |   \param vt : vector type (ColumnVector,RowVector)
 | 
|---|
| 180 |   \return return \b vt if it makes sense or default vector type
 | 
|---|
| 181 |   \sa SetDefaultVectorType
 | 
|---|
| 182 |  */
 | 
|---|
| 183 | short BaseArray::SelectVectorType(short vt)
 | 
|---|
| 184 | {
 | 
|---|
| 185 |   if ((vt == ColumnVector) || (vt == RowVector))  return(vt);
 | 
|---|
| 186 |   else return(default_vector_type);
 | 
|---|
| 187 | }
 | 
|---|
| 188 | 
 | 
|---|
| 189 | //! Update Memory Mapping
 | 
|---|
| 190 | /*!
 | 
|---|
| 191 |   Update variables marowi_ macoli_ veceli_
 | 
|---|
| 192 |   \param mm : type of Memory Mapping (CMemoryMapping,FortranMemoryMapping)
 | 
|---|
| 193 |   \sa SetDefaultMemoryMapping
 | 
|---|
| 194 |  */
 | 
|---|
| 195 | void BaseArray::UpdateMemoryMapping(short mm)
 | 
|---|
| 196 | {
 | 
|---|
| 197 |   short vt = default_vector_type;
 | 
|---|
| 198 |   if ( (mm != CMemoryMapping) && (mm != FortranMemoryMapping) ) mm = default_memory_mapping;
 | 
|---|
| 199 |   if (mm == CMemoryMapping) {
 | 
|---|
| 200 |     marowi_  = 1;  macoli_ = 0;
 | 
|---|
| 201 |   }
 | 
|---|
| 202 |   else {
 | 
|---|
| 203 |     marowi_ = 0;  macoli_ = 1;
 | 
|---|
| 204 |   }
 | 
|---|
| 205 | 
 | 
|---|
| 206 |   if ( (ndim_ == 2) && ((size_[0] == 1) || (size_[1] == 1)) ) {
 | 
|---|
| 207 |     // Choix automatique Vecteur ligne ou colonne
 | 
|---|
| 208 |     if ( size_[macoli_] == 1)  veceli_ = marowi_;
 | 
|---|
| 209 |     else veceli_ = macoli_;
 | 
|---|
| 210 |   }
 | 
|---|
| 211 |   else veceli_ = (vt ==  ColumnVector ) ?  marowi_ : macoli_;
 | 
|---|
| 212 | }
 | 
|---|
| 213 | 
 | 
|---|
| 214 | //! Update Memory Mapping
 | 
|---|
| 215 | /*!
 | 
|---|
| 216 |   \param a  : Array to be compared with
 | 
|---|
| 217 |   \param mm : type of Memory Mapping or memory mapping transfert
 | 
|---|
| 218 |        (SameMemoryMapping,AutoMemoryMapping,CMemoryMapping,FortranMemoryMapping)
 | 
|---|
| 219 |   \sa SetDefaultMemoryMapping
 | 
|---|
| 220 |  */
 | 
|---|
| 221 | void BaseArray::UpdateMemoryMapping(BaseArray const & a, short mm)
 | 
|---|
| 222 | {
 | 
|---|
| 223 |   short vt = default_vector_type;
 | 
|---|
| 224 |   if (mm == SameMemoryMapping) {
 | 
|---|
| 225 |     mm = ((a.marowi_ == 1) ? CMemoryMapping : FortranMemoryMapping);
 | 
|---|
| 226 |     vt = (a.marowi_ == a.veceli_) ? ColumnVector : RowVector;
 | 
|---|
| 227 |   }
 | 
|---|
| 228 |   else if (mm == AutoMemoryMapping)   mm = default_memory_mapping;
 | 
|---|
| 229 | 
 | 
|---|
| 230 |   if ( (mm != CMemoryMapping) && (mm != FortranMemoryMapping) ) mm = default_memory_mapping;
 | 
|---|
| 231 |   if (mm == CMemoryMapping) {
 | 
|---|
| 232 |     marowi_  = 1;  macoli_ = 0;
 | 
|---|
| 233 |   }
 | 
|---|
| 234 |   else {
 | 
|---|
| 235 |     marowi_ = 0;  macoli_ = 1;
 | 
|---|
| 236 |   }
 | 
|---|
| 237 |   if ( (ndim_ == 2) && ((size_[0] == 1) || (size_[1] == 1)) ) {
 | 
|---|
| 238 |     // Choix automatique Vecteur ligne ou colonne
 | 
|---|
| 239 |     if ( size_[macoli_] == 1)  veceli_ = marowi_;
 | 
|---|
| 240 |     else veceli_ = macoli_;
 | 
|---|
| 241 |   }
 | 
|---|
| 242 |   else veceli_ = (vt ==  ColumnVector ) ?  marowi_ : macoli_;
 | 
|---|
| 243 | }
 | 
|---|
| 244 | 
 | 
|---|
| 245 | //! Set Memory Mapping type
 | 
|---|
| 246 | /*!
 | 
|---|
| 247 |   Compute values for variables marowi_ macoli_ veceli_
 | 
|---|
| 248 |   \param mm : Memory Mapping type (SameMemoryMapping,AutoMemoryMapping
 | 
|---|
| 249 |                                   ,CMemoryMapping,FortranMemoryMapping)
 | 
|---|
| 250 |   \sa SetDefaultMemoryMapping
 | 
|---|
| 251 |  */
 | 
|---|
| 252 | void BaseArray::SetMemoryMapping(short mm)
 | 
|---|
| 253 | {
 | 
|---|
| 254 |   if (mm == SameMemoryMapping) mm = GetMemoryMapping();
 | 
|---|
| 255 |   else if (mm == AutoMemoryMapping)  mm = default_memory_mapping;
 | 
|---|
| 256 |   if ( (mm != CMemoryMapping) && (mm != FortranMemoryMapping) ) mm = CMemoryMapping;
 | 
|---|
| 257 |   short vt = GetVectorType(); 
 | 
|---|
| 258 |   if (mm == CMemoryMapping) {
 | 
|---|
| 259 |     marowi_ =  1;  macoli_ = 0;
 | 
|---|
| 260 |   }
 | 
|---|
| 261 |   else {
 | 
|---|
| 262 |     marowi_ =  0;  macoli_ = 1;
 | 
|---|
| 263 |   }
 | 
|---|
| 264 |   if ( (ndim_ == 2) && ((size_[0] == 1) || (size_[1] == 1)) 
 | 
|---|
| 265 |        && (size_[0] != size_[1]) ) {
 | 
|---|
| 266 |     // Choix automatique Vecteur ligne ou colonne
 | 
|---|
| 267 |     if ( size_[macoli_] == 1)  veceli_ = marowi_;
 | 
|---|
| 268 |     else veceli_ = macoli_;
 | 
|---|
| 269 |   }
 | 
|---|
| 270 |   else  veceli_ = (vt ==  ColumnVector ) ?  marowi_ : macoli_;
 | 
|---|
| 271 | }
 | 
|---|
| 272 | 
 | 
|---|
| 273 | //! Set Vector Type
 | 
|---|
| 274 | /*!
 | 
|---|
| 275 |   Compute values for variable veceli_
 | 
|---|
| 276 |   \param vt : vector type ()
 | 
|---|
| 277 |   \sa SetDefaultVectorType
 | 
|---|
| 278 |  */
 | 
|---|
| 279 | void BaseArray::SetVectorType(short vt)
 | 
|---|
| 280 | {
 | 
|---|
| 281 |   if (vt == SameVectorType) return;
 | 
|---|
| 282 |   if (vt == AutoVectorType) vt =  default_vector_type;
 | 
|---|
| 283 |   if ( (ndim_ == 2) && ((size_[0] == 1) || (size_[1] == 1)) ) {
 | 
|---|
| 284 |     // Choix automatique Vecteur ligne ou colonne
 | 
|---|
| 285 |     if ( size_[macoli_] == 1)  veceli_ = marowi_;
 | 
|---|
| 286 |     else veceli_ = macoli_;
 | 
|---|
| 287 |   }
 | 
|---|
| 288 |   else  veceli_ = (vt ==  ColumnVector ) ?  marowi_ : macoli_;
 | 
|---|
| 289 | }
 | 
|---|
| 290 | 
 | 
|---|
| 291 | // -------------------------------------------------------
 | 
|---|
| 292 | //                Methodes de la classe
 | 
|---|
| 293 | // -------------------------------------------------------
 | 
|---|
| 294 | 
 | 
|---|
| 295 | //! Default constructor
 | 
|---|
| 296 | BaseArray::BaseArray()
 | 
|---|
| 297 |   : mInfo(NULL)
 | 
|---|
| 298 | {
 | 
|---|
| 299 |   ndim_ = 0;
 | 
|---|
| 300 |   for(int_4 k=0; k<BASEARRAY_MAXNDIMS; k++) step_[k] = size_[k] = 0;
 | 
|---|
| 301 |   totsize_ = 0;
 | 
|---|
| 302 |   minstep_ = 0;
 | 
|---|
| 303 |   moystep_ = 0;
 | 
|---|
| 304 |   offset_ = 0;
 | 
|---|
| 305 |   // Default for matrices : Memory organisation and Vector type 
 | 
|---|
| 306 |   if (default_memory_mapping == CMemoryMapping) {
 | 
|---|
| 307 |     marowi_ =  1;  macoli_ = 0;
 | 
|---|
| 308 |   }
 | 
|---|
| 309 |   else {
 | 
|---|
| 310 |     marowi_ =  0;  macoli_ = 1;
 | 
|---|
| 311 |   }
 | 
|---|
| 312 |   veceli_ = (default_vector_type ==  ColumnVector ) ?  marowi_ : macoli_;
 | 
|---|
| 313 |   arrtype_ = 0;    // Default Array type, not a Matrix or Vector
 | 
|---|
| 314 |   
 | 
|---|
| 315 | }
 | 
|---|
| 316 | 
 | 
|---|
| 317 | //! Destructor 
 | 
|---|
| 318 | BaseArray::~BaseArray()
 | 
|---|
| 319 | {
 | 
|---|
| 320 |   if (mInfo) { delete mInfo; mInfo = NULL; }
 | 
|---|
| 321 | }
 | 
|---|
| 322 | 
 | 
|---|
| 323 | 
 | 
|---|
| 324 | //! Returns true if the two arrays have compatible dimensions.
 | 
|---|
| 325 | /*!
 | 
|---|
| 326 |   \param a : array to be compared
 | 
|---|
| 327 |   \param smo : Return flag = true if the two arrays have the same memory organisation
 | 
|---|
| 328 |   \return true if \c NbDimensions() and \c Size() are equal, false if not
 | 
|---|
| 329 | 
 | 
|---|
| 330 |   If the array (on which the operation is being performed, \c this) 
 | 
|---|
| 331 |   is a \b Matrix or a \b Vector, the matrix dimensions \c NRows() \c NCols()
 | 
|---|
| 332 |   are checked. The flag \c smo is returned true if the two arrays, viewed 
 | 
|---|
| 333 |   as a matrix have the same memory organisation.
 | 
|---|
| 334 |   Otherwise, (if the array is of not a Matrix or a Vector) 
 | 
|---|
| 335 |   the size compatibility viewed as a TArray is checked <tt> 
 | 
|---|
| 336 |   (Size(k) == a.Size(k), k=0,...NbDimensions()), </tt> disregard of the memory 
 | 
|---|
| 337 |   organisation and the row and column index. The flag \c smo is returned true 
 | 
|---|
| 338 |   in this case.
 | 
|---|
| 339 | */
 | 
|---|
| 340 | bool BaseArray::CompareSizes(const BaseArray& a, bool& smo) const
 | 
|---|
| 341 | {
 | 
|---|
| 342 |   if (ndim_ != a.ndim_)  return(false);
 | 
|---|
| 343 |   if (arrtype_ == 0) {  // Simple TArray, not a matrix 
 | 
|---|
| 344 |     smo = true;
 | 
|---|
| 345 |     for(int_4 k=0; k<ndim_; k++) 
 | 
|---|
| 346 |       if (size_[k] != a.size_[k])  return(false);
 | 
|---|
| 347 |     return(true);
 | 
|---|
| 348 |   }
 | 
|---|
| 349 |   else {
 | 
|---|
| 350 |     smo = false;
 | 
|---|
| 351 |     if ( (size_[marowi_] != a.size_[a.marowi_]) || 
 | 
|---|
| 352 |          (size_[macoli_] != a.size_[a.macoli_])  ) return(false);
 | 
|---|
| 353 |     if (ndim_ > 2)  
 | 
|---|
| 354 |       for(int_4 k=2; k<ndim_; k++) 
 | 
|---|
| 355 |         if (size_[k] != a.size_[k])  return(false);
 | 
|---|
| 356 |     if ( (macoli_ == a.macoli_) && (marowi_ == a.marowi_) ||
 | 
|---|
| 357 |          (veceli_ == a.veceli_) )  smo = true;
 | 
|---|
| 358 |     return(true);
 | 
|---|
| 359 |   }
 | 
|---|
| 360 | }
 | 
|---|
| 361 | 
 | 
|---|
| 362 | //! Compact arrays - supresses size=1 axes.
 | 
|---|
| 363 | void BaseArray::CompactAllDim()
 | 
|---|
| 364 | {
 | 
|---|
| 365 |   if (ndim_ < 2)  return;
 | 
|---|
| 366 |   int_4 ndim = 0;
 | 
|---|
| 367 |   sa_size_t size[BASEARRAY_MAXNDIMS];
 | 
|---|
| 368 |   sa_size_t step[BASEARRAY_MAXNDIMS];
 | 
|---|
| 369 |   for(int_4 k=0; k<ndim_; k++) {
 | 
|---|
| 370 |     if (size_[k] < 2)  continue;
 | 
|---|
| 371 |     size[ndim] = size_[k];
 | 
|---|
| 372 |     step[ndim] = step_[k];
 | 
|---|
| 373 |     ndim++;
 | 
|---|
| 374 |   }
 | 
|---|
| 375 |   if (ndim == 0)  {
 | 
|---|
| 376 |     size[0] = size_[0];
 | 
|---|
| 377 |     step[0] = step_[0];
 | 
|---|
| 378 |     ndim = 1;
 | 
|---|
| 379 |   }
 | 
|---|
| 380 |   string exmsg = "BaseArray::CompactAllDim() ";
 | 
|---|
| 381 |   if (!UpdateSizes(ndim, size, step, offset_, exmsg))  throw( ParmError(exmsg) );
 | 
|---|
| 382 |   return;
 | 
|---|
| 383 | }
 | 
|---|
| 384 | 
 | 
|---|
| 385 | //! Compact array taling dimensions, for size=1 traling axes.
 | 
|---|
| 386 | void BaseArray::CompactTrailingDim()
 | 
|---|
| 387 | {
 | 
|---|
| 388 |   if (ndim_ < 2)  return;
 | 
|---|
| 389 |   int_4 ndim = 0;
 | 
|---|
| 390 |   sa_size_t size[BASEARRAY_MAXNDIMS];
 | 
|---|
| 391 |   sa_size_t step[BASEARRAY_MAXNDIMS];
 | 
|---|
| 392 |   for(int_4 k=0; k<ndim_; k++) {
 | 
|---|
| 393 |     size[k] = size_[k];
 | 
|---|
| 394 |     step[k] = step_[k];
 | 
|---|
| 395 |     if (size_[k] > 1)  ndim=k+1;
 | 
|---|
| 396 |   }
 | 
|---|
| 397 |   if (ndim == 0)  ndim = 1;
 | 
|---|
| 398 |   string exmsg = "BaseArray::CompactTrailingDim() ";
 | 
|---|
| 399 |   if (!UpdateSizes(ndim, size, step, offset_, exmsg))  throw( ParmError(exmsg) );
 | 
|---|
| 400 |   return;
 | 
|---|
| 401 | }
 | 
|---|
| 402 | 
 | 
|---|
| 403 | //! return minimum value for step[ndim]
 | 
|---|
| 404 | int_4  BaseArray::MinStepKA() const
 | 
|---|
| 405 | {
 | 
|---|
| 406 |   for(int_4 ka=0; ka<ndim_; ka++)
 | 
|---|
| 407 |     if (step_[ka] == minstep_) return((int)ka);
 | 
|---|
| 408 |   return(0);
 | 
|---|
| 409 | }
 | 
|---|
| 410 | 
 | 
|---|
| 411 | //! return maximum value for step[ndim]
 | 
|---|
| 412 | int_4  BaseArray::MaxSizeKA() const
 | 
|---|
| 413 | {
 | 
|---|
| 414 |   int_4 ka = 0;
 | 
|---|
| 415 |   sa_size_t mx = size_[0];
 | 
|---|
| 416 |   for(int_4 k=1; k<ndim_; k++)  
 | 
|---|
| 417 |     if (size_[k] > mx) {  ka = k;  mx = size_[k]; } 
 | 
|---|
| 418 |   return(ka);
 | 
|---|
| 419 | }
 | 
|---|
| 420 | 
 | 
|---|
| 421 | 
 | 
|---|
| 422 | //  Acces lineaire aux elements ....  Calcul d'offset
 | 
|---|
| 423 | // --------------------------------------------------
 | 
|---|
| 424 | // Position de l'element 0 du vecteur i selon l'axe ka
 | 
|---|
| 425 | // --------------------------------------------------
 | 
|---|
| 426 | //! return position of first element for vector \b i alond \b ka th axe.
 | 
|---|
| 427 | sa_size_t BaseArray::Offset(int_4 ka, sa_size_t i) const
 | 
|---|
| 428 | {
 | 
|---|
| 429 | 
 | 
|---|
| 430 |   if ( (ndim_ < 1) || (i == 0) )  return(offset_);
 | 
|---|
| 431 |   //#ifdef SO_BOUNDCHECKING
 | 
|---|
| 432 |   if (ka >= ndim_) 
 | 
|---|
| 433 |     throw RangeCheckError("BaseArray::Offset(int_4 ka, sa_size_t i) Axe KA Error");
 | 
|---|
| 434 |   if ( i*size_[ka] >= totsize_ )  
 | 
|---|
| 435 |     throw RangeCheckError("BaseArray::Offset(int_4 ka, sa_size_t i) Index Error");
 | 
|---|
| 436 |   //#endif
 | 
|---|
| 437 |   sa_size_t idx[BASEARRAY_MAXNDIMS];
 | 
|---|
| 438 |   int_4 k;
 | 
|---|
| 439 |   sa_size_t rest = i;
 | 
|---|
| 440 |   idx[ka] = 0;
 | 
|---|
| 441 |   for(k=0; k<ndim_; k++) {
 | 
|---|
| 442 |     if (k == ka) continue;
 | 
|---|
| 443 |     idx[k] = rest%size_[k];   rest /= size_[k];
 | 
|---|
| 444 |   }
 | 
|---|
| 445 |   sa_size_t off = offset_;
 | 
|---|
| 446 |   for(k=0; k<ndim_; k++)  off += idx[k]*step_[k];
 | 
|---|
| 447 |   return (off);
 | 
|---|
| 448 | }
 | 
|---|
| 449 | 
 | 
|---|
| 450 | //! return position of element \b ip.
 | 
|---|
| 451 | sa_size_t BaseArray::Offset(sa_size_t ip) const
 | 
|---|
| 452 | {
 | 
|---|
| 453 |   if ( (ndim_ < 1) || (ip == 0) )  return(offset_);
 | 
|---|
| 454 |   //#ifdef SO_BOUNDCHECKING
 | 
|---|
| 455 |   if (ip >= totsize_)
 | 
|---|
| 456 |     throw RangeCheckError("BaseArray::Offset(sa_size_t ip) Out of range index ip");
 | 
|---|
| 457 |   //#endif
 | 
|---|
| 458 | 
 | 
|---|
| 459 |   sa_size_t idx[BASEARRAY_MAXNDIMS];
 | 
|---|
| 460 |   int_4 k;
 | 
|---|
| 461 |   sa_size_t rest = ip;
 | 
|---|
| 462 |   for(k=0; k<ndim_; k++) {
 | 
|---|
| 463 |     idx[k] = rest%size_[k];   rest /= size_[k];
 | 
|---|
| 464 |   }
 | 
|---|
| 465 |   //#ifdef SO_BOUNDCHECKING
 | 
|---|
| 466 |   if (rest != 0) 
 | 
|---|
| 467 |     throw PError("BaseArray::Offset(sa_size_t ip) BUG !!! rest != 0");
 | 
|---|
| 468 |   //#endif
 | 
|---|
| 469 | //   if (rest != 0) cerr << " BUG ---- BaseArray::Offset( " << ip << " )" << rest << endl;
 | 
|---|
| 470 | //   cerr << " DBG-Offset( " << ip << ")" ;
 | 
|---|
| 471 | //   for(k=0; k<ndim_; k++) cerr << idx[k] << "," ;
 | 
|---|
| 472 | //   cerr << " ZZZZ " << endl;
 | 
|---|
| 473 |   sa_size_t off = offset_;
 | 
|---|
| 474 |   for(k=0; k<ndim_; k++)  off += idx[k]*step_[k];
 | 
|---|
| 475 |   return (off);
 | 
|---|
| 476 | }
 | 
|---|
| 477 | //! return index of element \b ip, along the five array axes 
 | 
|---|
| 478 | void BaseArray::IndexAtPosition(sa_size_t ip, sa_size_t & ix, sa_size_t & iy, 
 | 
|---|
| 479 |                                 sa_size_t & iz, sa_size_t & it, sa_size_t & iu) const
 | 
|---|
| 480 | {
 | 
|---|
| 481 |   ix = iy = iz = it = iu = 0;
 | 
|---|
| 482 |   if ( (ndim_ < 1) || (ip == 0) )  return;
 | 
|---|
| 483 |   if (ip >= totsize_)
 | 
|---|
| 484 |     throw RangeCheckError("BaseArray::IndexAtPosition(...) Out of range index ip");
 | 
|---|
| 485 |   sa_size_t idx[BASEARRAY_MAXNDIMS]={0,0,0,0,0};
 | 
|---|
| 486 |   int_4 k;
 | 
|---|
| 487 |   sa_size_t rest = ip;
 | 
|---|
| 488 |   for(k=0; k<ndim_; k++) {
 | 
|---|
| 489 |     idx[k] = rest%size_[k];   rest /= size_[k];
 | 
|---|
| 490 |     if (rest == 0)  break;
 | 
|---|
| 491 |   }
 | 
|---|
| 492 |   if (rest != 0) 
 | 
|---|
| 493 |     throw PError("BaseArray::IndexAtPosition(...) BUG !!! rest != 0");
 | 
|---|
| 494 |   ix = idx[0];
 | 
|---|
| 495 |   iy = idx[1];
 | 
|---|
| 496 |   iz = idx[2];
 | 
|---|
| 497 |   it = idx[3];
 | 
|---|
| 498 |   iu = idx[4];  
 | 
|---|
| 499 |   return;
 | 
|---|
| 500 | }
 | 
|---|
| 501 | 
 | 
|---|
| 502 | //! return various parameters for double loop operations on two arrays.
 | 
|---|
| 503 | void BaseArray::GetOpeParams(const BaseArray& a, bool smo, int_4& ax, int_4& axa, sa_size_t& step,
 | 
|---|
| 504 |                              sa_size_t& stepa, sa_size_t& gpas, sa_size_t& naxa) const
 | 
|---|
| 505 | {
 | 
|---|
| 506 |   if (smo) { // Same memory organisation
 | 
|---|
| 507 |     ax = axa = MaxSizeKA();
 | 
|---|
| 508 |   }
 | 
|---|
| 509 |   else {
 | 
|---|
| 510 |     if (Size(RowsKA()) >= Size(ColsKA()) ) {
 | 
|---|
| 511 |       ax = RowsKA();
 | 
|---|
| 512 |       axa = a.RowsKA();
 | 
|---|
| 513 |     }
 | 
|---|
| 514 |     else {
 | 
|---|
| 515 |       ax = ColsKA();
 | 
|---|
| 516 |       axa = a.ColsKA();
 | 
|---|
| 517 |     }
 | 
|---|
| 518 |   }
 | 
|---|
| 519 |   step = Step(ax);
 | 
|---|
| 520 |   stepa = a.Step(axa);
 | 
|---|
| 521 |   gpas = Size(ax)*step;
 | 
|---|
| 522 |   naxa = Size()/Size(ax);
 | 
|---|
| 523 |   return;
 | 
|---|
| 524 | }
 | 
|---|
| 525 | 
 | 
|---|
| 526 | // ----------------------------------------------------
 | 
|---|
| 527 | //       Impression, etc ...
 | 
|---|
| 528 | // ----------------------------------------------------
 | 
|---|
| 529 | 
 | 
|---|
| 530 | //! Show infos on stream \b os (\b si to display DvList)
 | 
|---|
| 531 | void BaseArray::Show(ostream& os, bool si) const
 | 
|---|
| 532 | {
 | 
|---|
| 533 |   if (ndim_ < 1) {
 | 
|---|
| 534 |     os << "#--- " << BaseArray::InfoString() << " Unallocated Array ! " << endl;
 | 
|---|
| 535 |     return;
 | 
|---|
| 536 |   } 
 | 
|---|
| 537 |   os << "#--- " << InfoString() ; 
 | 
|---|
| 538 |   os << " ND=" << ndim_ << " SizeX*Y*...= " ;
 | 
|---|
| 539 |   for(int_4 k=0; k<ndim_; k++) { 
 | 
|---|
| 540 |     os << size_[k];
 | 
|---|
| 541 |     if (k<ndim_-1)  os << "x";
 | 
|---|
| 542 |   }
 | 
|---|
| 543 |   os << " ---" << endl;
 | 
|---|
| 544 |   if (prt_lev_ > 0) {
 | 
|---|
| 545 |     os <<  " TotSize= " << totsize_ << " Step(X Y ...)="  ;
 | 
|---|
| 546 |     for(int_4 k=0; k<ndim_; k++)     os << step_[k] << "  " ;
 | 
|---|
| 547 |     os << " Offset= " << offset_  << endl;
 | 
|---|
| 548 |   }
 | 
|---|
| 549 |   if (prt_lev_ > 1) {
 | 
|---|
| 550 |     os << " MemoryMapping=" << GetMemoryMapping() << " VecType= " << GetVectorType()
 | 
|---|
| 551 |        << " RowsKA= " << RowsKA() << " ColsKA= " << ColsKA() 
 | 
|---|
| 552 |        << " VectKA=" << VectKA() << " ArrayType=" << arrtype_ << endl;
 | 
|---|
| 553 |   }
 | 
|---|
| 554 |   if (!si && (prt_lev_ < 2)) return;
 | 
|---|
| 555 |   if (mInfo != NULL) os << (*mInfo) << endl;
 | 
|---|
| 556 |  
 | 
|---|
| 557 | }
 | 
|---|
| 558 | 
 | 
|---|
| 559 | //! Return BaseArray Type
 | 
|---|
| 560 | string BaseArray::InfoString() const
 | 
|---|
| 561 | {
 | 
|---|
| 562 |   string rs = "BaseArray Type= ";
 | 
|---|
| 563 |   rs +=  typeid(*this).name() ;
 | 
|---|
| 564 |   return rs;
 | 
|---|
| 565 | }
 | 
|---|
| 566 | 
 | 
|---|
| 567 | //! Return attached DVList
 | 
|---|
| 568 | DVList& BaseArray::Info()
 | 
|---|
| 569 | {
 | 
|---|
| 570 | if (mInfo == NULL)  mInfo = new DVList;
 | 
|---|
| 571 | return(*mInfo);
 | 
|---|
| 572 | }
 | 
|---|
| 573 | 
 | 
|---|
| 574 | //! Update sizes and information for array
 | 
|---|
| 575 | /*!
 | 
|---|
| 576 |   \param ndim : dimension
 | 
|---|
| 577 |   \param siz[ndim] : sizes
 | 
|---|
| 578 |   \param step : step (must be the same on all dimensions)
 | 
|---|
| 579 |   \param offset : offset of the first element
 | 
|---|
| 580 |   \return true if all OK, false if problems appear
 | 
|---|
| 581 |   \return string \b exmsg for explanation in case of problems
 | 
|---|
| 582 |  */
 | 
|---|
| 583 | bool BaseArray::UpdateSizes(int_4 ndim, const sa_size_t * siz, sa_size_t step, sa_size_t offset, string & exmsg)
 | 
|---|
| 584 | {
 | 
|---|
| 585 |   if (ndim >= BASEARRAY_MAXNDIMS) {
 | 
|---|
| 586 |     exmsg += " NDim Error";  return false;
 | 
|---|
| 587 |   }
 | 
|---|
| 588 |   if (step < 1) {
 | 
|---|
| 589 |     exmsg += " Step(=0) Error";  return false;
 | 
|---|
| 590 |   }
 | 
|---|
| 591 | 
 | 
|---|
| 592 |   minstep_ = moystep_ = step;
 | 
|---|
| 593 | 
 | 
|---|
| 594 |   // Flagging bad updates ...
 | 
|---|
| 595 |   ndim_ = 0;
 | 
|---|
| 596 | 
 | 
|---|
| 597 |   totsize_ = 1;
 | 
|---|
| 598 |   int_4 k;
 | 
|---|
| 599 |   for(k=0; k<BASEARRAY_MAXNDIMS; k++) {
 | 
|---|
| 600 |     size_[k] = 1;
 | 
|---|
| 601 |     step_[k] = 0;
 | 
|---|
| 602 |   }
 | 
|---|
| 603 |   for(k=0; k<ndim; k++) {
 | 
|---|
| 604 |     size_[k] = siz[k] ;
 | 
|---|
| 605 |     step_[k] = totsize_*step;
 | 
|---|
| 606 |     totsize_ *= size_[k];
 | 
|---|
| 607 |   }
 | 
|---|
| 608 |   if (totsize_ < 1) {
 | 
|---|
| 609 |     exmsg += " Size Error";  return false;
 | 
|---|
| 610 |   }
 | 
|---|
| 611 |   offset_ = offset;
 | 
|---|
| 612 |   // Update OK 
 | 
|---|
| 613 |   ndim_ = ndim;
 | 
|---|
| 614 |   // Default for matrices : Memory organisation and Vector type 
 | 
|---|
| 615 |   SetMemoryMapping(BaseArray::SameMemoryMapping);
 | 
|---|
| 616 |   return true;
 | 
|---|
| 617 | }
 | 
|---|
| 618 | 
 | 
|---|
| 619 | //! Update sizes and information for array
 | 
|---|
| 620 | /*!
 | 
|---|
| 621 |   \param ndim : dimension
 | 
|---|
| 622 |   \param siz[ndim] : sizes
 | 
|---|
| 623 |   \param step[ndim] : steps
 | 
|---|
| 624 |   \param offset : offset of the first element
 | 
|---|
| 625 |   \return true if all OK, false if problems appear
 | 
|---|
| 626 |   \return string \b exmsg for explanation in case of problems
 | 
|---|
| 627 |  */
 | 
|---|
| 628 | bool BaseArray::UpdateSizes(int_4 ndim, const sa_size_t * siz, const sa_size_t * step, sa_size_t offset, string & exmsg)
 | 
|---|
| 629 | {
 | 
|---|
| 630 |   if (ndim >= BASEARRAY_MAXNDIMS) {
 | 
|---|
| 631 |     exmsg += " NDim Error";  return false;
 | 
|---|
| 632 |   }
 | 
|---|
| 633 | 
 | 
|---|
| 634 |   // Flagging bad updates ...
 | 
|---|
| 635 |   ndim_ = 0;
 | 
|---|
| 636 | 
 | 
|---|
| 637 |   totsize_ = 1;
 | 
|---|
| 638 |   int_4 k;
 | 
|---|
| 639 |   for(k=0; k<BASEARRAY_MAXNDIMS; k++) {
 | 
|---|
| 640 |     size_[k] = 1;
 | 
|---|
| 641 |     step_[k] = 0;
 | 
|---|
| 642 |   }
 | 
|---|
| 643 |   sa_size_t minstep = step[0];
 | 
|---|
| 644 |   for(k=0; k<ndim; k++) {
 | 
|---|
| 645 |     size_[k] = siz[k] ;
 | 
|---|
| 646 |     step_[k] = step[k];
 | 
|---|
| 647 |     totsize_ *= size_[k];
 | 
|---|
| 648 |     if (step_[k] < minstep)  minstep = step_[k];
 | 
|---|
| 649 |   }
 | 
|---|
| 650 |   if (minstep < 1) {
 | 
|---|
| 651 |     exmsg += " Step(=0) Error";  return false;
 | 
|---|
| 652 |   }
 | 
|---|
| 653 |   if (totsize_ < 1) {
 | 
|---|
| 654 |     exmsg += " Size Error";  return false;
 | 
|---|
| 655 |   }
 | 
|---|
| 656 |   sa_size_t plast = 0;
 | 
|---|
| 657 |   for(k=0; k<ndim; k++)   plast += (siz[k]-1)*step[k];
 | 
|---|
| 658 |   if (plast == minstep*(totsize_-1) )  moystep_ = minstep;
 | 
|---|
| 659 |   else moystep_ = 0;
 | 
|---|
| 660 |   minstep_ = minstep;
 | 
|---|
| 661 |   offset_ = offset;
 | 
|---|
| 662 |   // Update OK 
 | 
|---|
| 663 |   ndim_ = ndim;
 | 
|---|
| 664 |   // Default for matrices : Memory organisation and Vector type 
 | 
|---|
| 665 |   SetMemoryMapping(BaseArray::SameMemoryMapping);
 | 
|---|
| 666 |   return true;
 | 
|---|
| 667 | }
 | 
|---|
| 668 | 
 | 
|---|
| 669 | //! Update sizes and information relative to array \b a
 | 
|---|
| 670 | /*!
 | 
|---|
| 671 |   \param a : array to be compare with
 | 
|---|
| 672 |   \return true if all OK, false if problems appear
 | 
|---|
| 673 |   \return string \b exmsg for explanation in case of problems
 | 
|---|
| 674 |  */
 | 
|---|
| 675 | bool BaseArray::UpdateSizes(const BaseArray& a, string & exmsg)
 | 
|---|
| 676 | {
 | 
|---|
| 677 |   if (a.ndim_ >= BASEARRAY_MAXNDIMS) {
 | 
|---|
| 678 |     exmsg += " NDim Error";  return false;
 | 
|---|
| 679 |   }
 | 
|---|
| 680 | 
 | 
|---|
| 681 |   // Flagging bad updates ...
 | 
|---|
| 682 |   ndim_ = 0;
 | 
|---|
| 683 | 
 | 
|---|
| 684 |   totsize_ = 1;
 | 
|---|
| 685 |   int_4 k;
 | 
|---|
| 686 |   for(k=0; k<BASEARRAY_MAXNDIMS; k++) {
 | 
|---|
| 687 |     size_[k] = 1;
 | 
|---|
| 688 |     step_[k] = 0;
 | 
|---|
| 689 |   }
 | 
|---|
| 690 |   sa_size_t minstep = a.step_[0];
 | 
|---|
| 691 |   for(k=0; k<a.ndim_; k++) {
 | 
|---|
| 692 |     size_[k] = a.size_[k] ;
 | 
|---|
| 693 |     step_[k] = a.step_[k];
 | 
|---|
| 694 |     totsize_ *= size_[k];
 | 
|---|
| 695 |     if (step_[k] < minstep)  minstep = step_[k];
 | 
|---|
| 696 |   }
 | 
|---|
| 697 |   if (minstep < 1) {
 | 
|---|
| 698 |     exmsg += " Step(=0) Error";  return false;
 | 
|---|
| 699 |   }
 | 
|---|
| 700 |   if (totsize_ < 1) {
 | 
|---|
| 701 |     exmsg += " Size Error";  return false;
 | 
|---|
| 702 |   }
 | 
|---|
| 703 | 
 | 
|---|
| 704 |   minstep_ = a.minstep_;
 | 
|---|
| 705 |   moystep_ = a.moystep_;
 | 
|---|
| 706 |   offset_ = a.offset_;
 | 
|---|
| 707 |   macoli_ = a.macoli_;
 | 
|---|
| 708 |   marowi_ = a.marowi_;
 | 
|---|
| 709 |   veceli_ = a.veceli_;
 | 
|---|
| 710 |   // Update OK 
 | 
|---|
| 711 |   ndim_ = a.ndim_;
 | 
|---|
| 712 |   return true;
 | 
|---|
| 713 | }
 | 
|---|
| 714 | 
 | 
|---|
| 715 | 
 | 
|---|
| 716 | //! Update sizes information for sub-array \b ra
 | 
|---|
| 717 | /*!
 | 
|---|
| 718 |   \param ra : sub-array for which size information has to be computed 
 | 
|---|
| 719 |   \param ndim : number of dimensions for \b ra
 | 
|---|
| 720 |   \param siz[ndim],pos[ndim],step[ndim] : number of elements, offset and step along each dimension,
 | 
|---|
| 721 |    relative to the original array.
 | 
|---|
| 722 |   \warning throw SzMismatchError in case of incompatible dimensions.
 | 
|---|
| 723 |  */
 | 
|---|
| 724 | void BaseArray::UpdateSubArraySizes(BaseArray & ra, int_4 ndim, sa_size_t * siz, sa_size_t * pos, sa_size_t * step) const
 | 
|---|
| 725 | {
 | 
|---|
| 726 |   if ( (ndim > ndim_) || (ndim < 1) ) 
 | 
|---|
| 727 |     throw(SzMismatchError("BaseArray::UpdateSubArraySizes( ... ) NDim Error") );
 | 
|---|
| 728 |   int_4 k;
 | 
|---|
| 729 |   for(k=0; k<ndim; k++) 
 | 
|---|
| 730 |     if ( ((siz[k]-1)*step[k]+pos[k]) >= size_[k] )  
 | 
|---|
| 731 |       throw(SzMismatchError("BaseArray::UpdateSubArraySizes( ... ) Size/Pos Error") );
 | 
|---|
| 732 |   sa_size_t offset = offset_;
 | 
|---|
| 733 |   for(k=0; k<ndim_; k++) { 
 | 
|---|
| 734 |     offset += pos[k]*step_[k]; 
 | 
|---|
| 735 |     step[k] *= step_[k];
 | 
|---|
| 736 |   }
 | 
|---|
| 737 |   string exm = "BaseArray::UpdateSubArraySizes() ";
 | 
|---|
| 738 |   if (!ra.UpdateSizes(ndim, siz, step, offset,  exm))
 | 
|---|
| 739 |      throw( ParmError(exm) );
 | 
|---|
| 740 |   return;
 | 
|---|
| 741 | }
 | 
|---|
| 742 | 
 | 
|---|
| 743 | //! Set the array sizes to zero, corresponding to an unallocated array
 | 
|---|
| 744 | void BaseArray::SetZeroSize()
 | 
|---|
| 745 | {
 | 
|---|
| 746 |   ndim_ = 0;
 | 
|---|
| 747 |   for(int_4 k=0; k<BASEARRAY_MAXNDIMS; k++) step_[k] = size_[k] = 0;
 | 
|---|
| 748 |   totsize_ = 0;
 | 
|---|
| 749 |   minstep_ = 0;
 | 
|---|
| 750 |   moystep_ = 0;
 | 
|---|
| 751 |   offset_ = 0;
 | 
|---|
| 752 |   // On ne change pas l'organisation memoire, le type de vecteur
 | 
|---|
| 753 |   // et le array type
 | 
|---|
| 754 | }
 | 
|---|
| 755 | 
 | 
|---|