source: Sophya/trunk/SophyaLib/TArray/basarr.h@ 1385

Last change on this file since 1385 was 1325, checked in by ansari, 25 years ago

Correction bug, confusion sa_size_t et int_4 (2) , Reza 13/11/2000

File size: 9.6 KB
RevLine 
[787]1// This may look like C code, but it is really -*- C++ -*-
2// Base array class - Memory organisation management
3// R. Ansari, C.Magneville 03/2000
4
5#ifndef BaseArray_SEEN
6#define BaseArray_SEEN
7
8#include "machdefs.h"
9#include <math.h>
10#include <iostream.h>
11#include "anydataobj.h"
[1081]12#include "mutyv.h"
[787]13#include "dvlist.h"
14
15
[894]16//! Maximum number of dimensions for an array
17/*! \anchor BASEARRAY_MAXNDIMS */
[787]18#define BASEARRAY_MAXNDIMS 5
19
20namespace SOPHYA {
21
22// ------------ classe template Array -----------
[890]23//! Base class for template arrays
[787]24class BaseArray : public AnyDataObj {
25public:
[890]26 //! To define Array or Matrix memory mapping
27 enum MemoryMapping {
28 AutoMemoryMapping = -1, //!< define Auto Memory Mapping
29 SameMemoryMapping = 0, //!< define Same Memory Mapping
30 CMemoryMapping = 1, //!< define C Memory Mapping
31 FortranMemoryMapping = 2 //!< define Fortran Memory Mapping
32 };
33 //! To define Vector type
34 enum VectorType {
35 AutoVectorType = -1, //!< define Auto Vector Type
36 SameVectorType = 0, //!< define Same Vector Type
37 ColumnVector = 1, //!< define Column Vector Type
38 RowVector = 2 //!< define Row Vector Type
39 };
[804]40
[890]41 // threshold for parallel routine call
[1156]42 static void SetOpenMPSizeThreshold(sa_size_t thr=200000);
[890]43 //! Get Size threshold for parallel routine call
[1156]44 static inline sa_size_t GetOpenMPSizeThreshold() { return openmp_size_threshold; }
[890]45
[1156]46 static void SetMaxPrint(int_4 nprt=50, int_4 lev=0);
[890]47 //! Get maximum number of printed elements
[1156]48 static inline int_4 GetMaxPrint() { return max_nprt_; }
49 //! Get print level
50 static inline int_4 GetPrintLevel() { return prt_lev_; }
[813]51
[804]52 static short SetDefaultMemoryMapping(short mm=CMemoryMapping);
[890]53 //! Get Default Memory Mapping
[804]54 static inline short GetDefaultMemoryMapping() { return default_memory_mapping; }
[813]55 static short SetDefaultVectorType(short vt=ColumnVector);
[890]56 //! Get Default Vector Type
[813]57 static inline short GetDefaultVectorType() { return default_vector_type; }
[804]58
[890]59 // Creator / destructor
[787]60 BaseArray();
61 virtual ~BaseArray();
62
63 // Returns true if ndim and sizes are equal
[1099]64 virtual bool CompareSizes(const BaseArray& a, bool& smo);
[787]65
[890]66 // Compacts \b size=1 array dimensions
67 virtual void CompactAllDim(); // suppresses all size==1 dimensions
68 virtual void CompactTrailingDim(); // suppresses size==1 dimensions after the last size>1 dimension
[787]69
70 // Array dimensions
[890]71 //! Return number of dimensions
[1156]72 inline int_4 NbDimensions() const { return( ndim_ ); }
[787]73
[890]74 //! Return total size of the array
[1156]75 inline sa_size_t Size() const { return(totsize_); }
[890]76 //! Return size along the first dimension
[1156]77 inline sa_size_t SizeX() const { return(size_[0]); }
[890]78 //! Return size along the second dimension
[1156]79 inline sa_size_t SizeY() const { return(size_[1]); }
[890]80 //! Return size along the third dimension
[1156]81 inline sa_size_t SizeZ() const { return(size_[2]); }
[890]82 //! Return size along the \b ka th dimension
[1156]83 inline sa_size_t Size(int_4 ka) const { return(size_[CheckDI(ka,1)]); }
[787]84
[1156]85 int_4 MaxSizeKA() const ;
[787]86
[890]87 //! Get memory organization
[1099]88 inline short GetMemoryMapping() const
[890]89 { return ( (marowi_ == 1) ? CMemoryMapping : FortranMemoryMapping) ; }
90 //! line index dimension
[1156]91 inline int_4 RowsKA() const {return marowi_; }
[1005]92 //! column index dimension
[1156]93 inline int_4 ColsKA() const {return macoli_; }
[890]94 //! Index dimension of the elements of a vector
[1156]95 inline int_4 VectKA() const {return veceli_; }
[813]96 void SetMemoryMapping(short mm=AutoMemoryMapping);
[804]97
[890]98 //! Get Vector type ( \b Line or \b Column vector )
[813]99 inline short GetVectorType() const
100 { return((marowi_ == veceli_) ? ColumnVector : RowVector); }
[890]101 void SetVectorType(short vt=AutoVectorType);
[813]102
[890]103 // memory organisation - packing information
104 //! return true if array is packed in memory
[787]105 inline bool IsPacked() const { return(moystep_ == 1); }
[890]106 //! return true if array is packed along the first dimension
[787]107 inline bool IsPackedX() const { return(step_[0] == 1); }
[890]108 //! return true if array is packed along the second dimension
[787]109 inline bool IsPackedY() const { return(step_[1] == 1); }
[890]110 //! return true if array is packed along the third dimension
[787]111 inline bool IsPackedZ() const { return(step_[2] == 1); }
[890]112 //! return true if array is packed along the \b ka th dimension
[1156]113 inline bool IsPacked(int_4 ka) const { return(step_[CheckDI(ka,2)] == 1); }
[787]114
[890]115 //! return the minimum step value along all the dimensions
[1156]116 inline sa_size_t MinStep() const { return(minstep_); }
[890]117 //! return the average step value along all the dimensions
[1156]118 inline sa_size_t AvgStep() const { return(moystep_); }
[890]119 //! return the step along the first dimension
[1156]120 inline sa_size_t StepX() const { return(step_[0]); }
[890]121 //! return the step along the second dimension
[1156]122 inline sa_size_t StepY() const { return(step_[1]); }
[890]123 //! return the step along the third dimension
[1156]124 inline sa_size_t StepZ() const { return(step_[2]); }
[890]125 //! return the step along the \b ka th dimension
[1156]126 inline sa_size_t Step(int_4 ka) const { return(step_[CheckDI(ka,3)]); }
[787]127
[1156]128 int_4 MinStepKA() const ;
[787]129
[813]130 // Offset of element ip
[1156]131 sa_size_t Offset(sa_size_t ip=0) const ;
[813]132 // Offset of the i'th vector along axe ka
[1156]133 sa_size_t Offset(int_4 ka, sa_size_t i) const ;
134 inline sa_size_t Offset(sa_size_t ix, sa_size_t iy, sa_size_t iz, sa_size_t it=0, sa_size_t iu=0) const;
[1314]135 // Index values of element ip
136 void IndexAtPosition(sa_size_t ip, sa_size_t & ix, sa_size_t & iy, sa_size_t & iz,
137 sa_size_t & it, sa_size_t & iu) const;
[890]138 // an abstract element acces methode
[1156]139 virtual MuTyV & ValueAtPosition(sa_size_t ip) const = 0;
[787]140
[1099]141 // Pour recuperer pas et numero d'axe pour operations sur deux arrays
[1156]142 void GetOpeParams(const BaseArray& a, bool smo, int_4& ax, int_4& axa, sa_size_t& step,
143 sa_size_t& stepa, sa_size_t& gpas, sa_size_t& naxa);
[1099]144 // Impression, I/O, ...
[804]145 void Show(ostream& os, bool si=false) const;
[890]146 //! Show information on \b cout
[804]147 inline void Show() const { Show(cout); }
[813]148 virtual string InfoString() const;
[787]149
[894]150 // DVList info Object
151 DVList& Info();
[787]152
153protected:
[1156]154 inline int_4 CheckDI(int_4 ka, int msg) const ;
155 inline void CheckBound(sa_size_t ix, sa_size_t iy, sa_size_t iz, sa_size_t it, sa_size_t iu, int msg) const ;
[787]156 // Changing Sizes/NDim ... return true if OK
[1324]157 bool UpdateSizes(int_4 ndim, const sa_size_t * siz, sa_size_t step, sa_size_t offset, string & exmsg);
158 bool UpdateSizes(int_4 ndim, const sa_size_t * siz, const sa_size_t * step, sa_size_t offset, string & exmsg);
[787]159 bool UpdateSizes(const BaseArray& a, string & exmsg);
[1324]160 static sa_size_t ComputeTotalSize(int_4 ndim, const sa_size_t * siz, sa_size_t step, sa_size_t offset) ;
[804]161 // Organisation memoire
162 static short SelectMemoryMapping(short mm);
[813]163 static short SelectVectorType(short vt);
164 void UpdateMemoryMapping(short mm);
[804]165 void UpdateMemoryMapping(BaseArray const & a, short mm);
[787]166
[804]167 // Pour Extraction de sous-tableau
[1325]168 virtual void UpdateSubArraySizes(BaseArray & ra, int_4 ndim, sa_size_t * siz, sa_size_t * pos, sa_size_t * step) const;
[804]169
[1156]170 int_4 ndim_; //!< number of dimensions of array
171 sa_size_t size_[BASEARRAY_MAXNDIMS]; //!< array of the size in each dimension
172 sa_size_t totsize_; //!< Total number of elements
173 sa_size_t offset_; //!< global offset -\> position of elem[0] in DataBlock
[890]174 //! two consecutive elements distance in a given dimension
[1156]175 sa_size_t step_[BASEARRAY_MAXNDIMS];
176 sa_size_t minstep_; //!< minimal step (in any axes)
177 sa_size_t moystep_; //!< mean step, if == 0 --\> non regular steps
[1099]178 int_2 marowi_; //!< For matrices, Row index in dimensions
179 int_2 macoli_; //!< For matrices, Column index in dimensions
180 int_2 veceli_; //!< For vectors, dimension index = marowi_/macoli_ (Row/Col vectors)
181 int_2 arrtype_; //!< 0 a TArray, 1 TMatrix , 2 TVector
[894]182 DVList* mInfo; //!< Infos (variables) attached to the array
[787]183
[894]184 static char * ck_op_msg_[6]; //!< Operation messages for CheckDI() CheckBound()
[1156]185 static int_4 max_nprt_; //!< maximum number of printed elements
186 static int_4 prt_lev_; //!< Print level
[894]187 static short default_memory_mapping; //!< Default memory mapping
188 static short default_vector_type; //!< Default vector type Row/Column
[1156]189 static sa_size_t openmp_size_threshold; //!< Size limit for parallel routine calls
[787]190};
191
192// --------------------------------------------------
193// Methodes inline de verification
194// --------------------------------------------------
[890]195//! to verify the compatibility of the dimension index
[1156]196inline int_4 BaseArray::CheckDI(int_4 ka, int msg) const
[787]197{
[1156]198 if ( (ka < 0) || (ka >= ndim_) ) {
[787]199 string txt = "BaseArray::CheckDimensionIndex/Error "; txt += ck_op_msg_[msg];
[813]200 throw(RangeCheckError(txt));
[787]201 }
202 return(ka);
203}
204
[890]205//! to verify the compatibility of the indexes in all dimensions
[1156]206inline void BaseArray::CheckBound(sa_size_t ix, sa_size_t iy, sa_size_t iz, sa_size_t it, sa_size_t iu, int msg) const
[787]207{
[1156]208 if ( (ix >= size_[0]) || (ix < 0) || (iy >= size_[1]) || (iy < 0) ||
209 (iz >= size_[2]) || (iz < 0) || (it >= size_[3]) || (it < 0) ||
210 (iu >= size_[4]) || (iu < 0) ) {
[787]211 string txt = "BaseArray::CheckArrayBound/Error "; txt += ck_op_msg_[msg];
[813]212 throw(RangeCheckError(txt));
[787]213 }
214 return;
215}
216
217
[813]218
[787]219// --------------------------------------------------
220// Position d'un element
221// --------------------------------------------------
[890]222//! Offset of element (ix,iy,iz,it,iu)
[1156]223inline sa_size_t BaseArray::Offset(sa_size_t ix, sa_size_t iy, sa_size_t iz, sa_size_t it, sa_size_t iu) const
[787]224{
225#ifdef SO_BOUNDCHECKING
226 CheckBound(ix, iy, iz, it, iu, 4);
227#endif
228 return ( offset_+ ix*step_[0] + iy*step_[1] + iz*step_[2] +
229 it*step_[3] + iu*step_[4] );
230}
231
232
233} // Fin du namespace
234
235#endif
Note: See TracBrowser for help on using the repository browser.