source: Sophya/trunk/SophyaLib/TArray/basarr.h@ 1837

Last change on this file since 1837 was 1581, checked in by ansari, 24 years ago

Uniformisation int_4 -> sa_size_t ds les limites de Print - Reza 19/7/2001

File size: 9.9 KB
RevLine 
[787]1// This may look like C code, but it is really -*- C++ -*-
2// Base array class - Memory organisation management
3// R. Ansari, C.Magneville 03/2000
4
5#ifndef BaseArray_SEEN
6#define BaseArray_SEEN
7
8#include "machdefs.h"
9#include <math.h>
10#include <iostream.h>
11#include "anydataobj.h"
[1081]12#include "mutyv.h"
[787]13#include "dvlist.h"
14
15
[894]16//! Maximum number of dimensions for an array
17/*! \anchor BASEARRAY_MAXNDIMS */
[787]18#define BASEARRAY_MAXNDIMS 5
19
20namespace SOPHYA {
21
22// ------------ classe template Array -----------
[890]23//! Base class for template arrays
[787]24class BaseArray : public AnyDataObj {
25public:
[890]26 //! To define Array or Matrix memory mapping
27 enum MemoryMapping {
28 AutoMemoryMapping = -1, //!< define Auto Memory Mapping
29 SameMemoryMapping = 0, //!< define Same Memory Mapping
30 CMemoryMapping = 1, //!< define C Memory Mapping
31 FortranMemoryMapping = 2 //!< define Fortran Memory Mapping
32 };
33 //! To define Vector type
34 enum VectorType {
35 AutoVectorType = -1, //!< define Auto Vector Type
36 SameVectorType = 0, //!< define Same Vector Type
37 ColumnVector = 1, //!< define Column Vector Type
38 RowVector = 2 //!< define Row Vector Type
39 };
[804]40
[890]41 // threshold for parallel routine call
[1156]42 static void SetOpenMPSizeThreshold(sa_size_t thr=200000);
[890]43 //! Get Size threshold for parallel routine call
[1156]44 static inline sa_size_t GetOpenMPSizeThreshold() { return openmp_size_threshold; }
[890]45
[1581]46 static void SetMaxPrint(sa_size_t nprt=50, int_4 lev=0);
[890]47 //! Get maximum number of printed elements
[1581]48 static inline sa_size_t GetMaxPrint() { return max_nprt_; }
[1156]49 //! Get print level
50 static inline int_4 GetPrintLevel() { return prt_lev_; }
[813]51
[804]52 static short SetDefaultMemoryMapping(short mm=CMemoryMapping);
[890]53 //! Get Default Memory Mapping
[804]54 static inline short GetDefaultMemoryMapping() { return default_memory_mapping; }
[813]55 static short SetDefaultVectorType(short vt=ColumnVector);
[890]56 //! Get Default Vector Type
[813]57 static inline short GetDefaultVectorType() { return default_vector_type; }
[804]58
[890]59 // Creator / destructor
[787]60 BaseArray();
61 virtual ~BaseArray();
62
63 // Returns true if ndim and sizes are equal
[1517]64 virtual bool CompareSizes(const BaseArray& a, bool& smo) const;
[787]65
[890]66 // Compacts \b size=1 array dimensions
67 virtual void CompactAllDim(); // suppresses all size==1 dimensions
68 virtual void CompactTrailingDim(); // suppresses size==1 dimensions after the last size>1 dimension
[787]69
70 // Array dimensions
[1550]71 //! Return true if the array was allocated ( Rank() > 0 )
72 inline bool IsAllocated() const { return( (ndim_ > 0) ? true : false ); }
[1389]73 //! Return number of dimensions (array rank)
[1156]74 inline int_4 NbDimensions() const { return( ndim_ ); }
[1389]75 //! Return array rank (number of dimensions)
76 inline int_4 Rank() const { return( ndim_ ); }
[787]77
[890]78 //! Return total size of the array
[1156]79 inline sa_size_t Size() const { return(totsize_); }
[890]80 //! Return size along the first dimension
[1156]81 inline sa_size_t SizeX() const { return(size_[0]); }
[890]82 //! Return size along the second dimension
[1156]83 inline sa_size_t SizeY() const { return(size_[1]); }
[890]84 //! Return size along the third dimension
[1156]85 inline sa_size_t SizeZ() const { return(size_[2]); }
[890]86 //! Return size along the \b ka th dimension
[1156]87 inline sa_size_t Size(int_4 ka) const { return(size_[CheckDI(ka,1)]); }
[787]88
[1156]89 int_4 MaxSizeKA() const ;
[787]90
[890]91 //! Get memory organization
[1099]92 inline short GetMemoryMapping() const
[890]93 { return ( (marowi_ == 1) ? CMemoryMapping : FortranMemoryMapping) ; }
94 //! line index dimension
[1156]95 inline int_4 RowsKA() const {return marowi_; }
[1005]96 //! column index dimension
[1156]97 inline int_4 ColsKA() const {return macoli_; }
[890]98 //! Index dimension of the elements of a vector
[1156]99 inline int_4 VectKA() const {return veceli_; }
[813]100 void SetMemoryMapping(short mm=AutoMemoryMapping);
[804]101
[890]102 //! Get Vector type ( \b Line or \b Column vector )
[813]103 inline short GetVectorType() const
104 { return((marowi_ == veceli_) ? ColumnVector : RowVector); }
[890]105 void SetVectorType(short vt=AutoVectorType);
[813]106
[890]107 // memory organisation - packing information
108 //! return true if array is packed in memory
[787]109 inline bool IsPacked() const { return(moystep_ == 1); }
[890]110 //! return true if array is packed along the first dimension
[787]111 inline bool IsPackedX() const { return(step_[0] == 1); }
[890]112 //! return true if array is packed along the second dimension
[787]113 inline bool IsPackedY() const { return(step_[1] == 1); }
[890]114 //! return true if array is packed along the third dimension
[787]115 inline bool IsPackedZ() const { return(step_[2] == 1); }
[890]116 //! return true if array is packed along the \b ka th dimension
[1156]117 inline bool IsPacked(int_4 ka) const { return(step_[CheckDI(ka,2)] == 1); }
[787]118
[890]119 //! return the minimum step value along all the dimensions
[1156]120 inline sa_size_t MinStep() const { return(minstep_); }
[890]121 //! return the average step value along all the dimensions
[1156]122 inline sa_size_t AvgStep() const { return(moystep_); }
[890]123 //! return the step along the first dimension
[1156]124 inline sa_size_t StepX() const { return(step_[0]); }
[890]125 //! return the step along the second dimension
[1156]126 inline sa_size_t StepY() const { return(step_[1]); }
[890]127 //! return the step along the third dimension
[1156]128 inline sa_size_t StepZ() const { return(step_[2]); }
[890]129 //! return the step along the \b ka th dimension
[1156]130 inline sa_size_t Step(int_4 ka) const { return(step_[CheckDI(ka,3)]); }
[787]131
[1156]132 int_4 MinStepKA() const ;
[787]133
[813]134 // Offset of element ip
[1156]135 sa_size_t Offset(sa_size_t ip=0) const ;
[813]136 // Offset of the i'th vector along axe ka
[1156]137 sa_size_t Offset(int_4 ka, sa_size_t i) const ;
138 inline sa_size_t Offset(sa_size_t ix, sa_size_t iy, sa_size_t iz, sa_size_t it=0, sa_size_t iu=0) const;
[1314]139 // Index values of element ip
140 void IndexAtPosition(sa_size_t ip, sa_size_t & ix, sa_size_t & iy, sa_size_t & iz,
141 sa_size_t & it, sa_size_t & iu) const;
[890]142 // an abstract element acces methode
[1156]143 virtual MuTyV & ValueAtPosition(sa_size_t ip) const = 0;
[787]144
[1099]145 // Pour recuperer pas et numero d'axe pour operations sur deux arrays
[1156]146 void GetOpeParams(const BaseArray& a, bool smo, int_4& ax, int_4& axa, sa_size_t& step,
[1517]147 sa_size_t& stepa, sa_size_t& gpas, sa_size_t& naxa) const;
[1099]148 // Impression, I/O, ...
[804]149 void Show(ostream& os, bool si=false) const;
[890]150 //! Show information on \b cout
[804]151 inline void Show() const { Show(cout); }
[813]152 virtual string InfoString() const;
[787]153
[894]154 // DVList info Object
155 DVList& Info();
[787]156
157protected:
[1156]158 inline int_4 CheckDI(int_4 ka, int msg) const ;
159 inline void CheckBound(sa_size_t ix, sa_size_t iy, sa_size_t iz, sa_size_t it, sa_size_t iu, int msg) const ;
[787]160 // Changing Sizes/NDim ... return true if OK
[1324]161 bool UpdateSizes(int_4 ndim, const sa_size_t * siz, sa_size_t step, sa_size_t offset, string & exmsg);
162 bool UpdateSizes(int_4 ndim, const sa_size_t * siz, const sa_size_t * step, sa_size_t offset, string & exmsg);
[787]163 bool UpdateSizes(const BaseArray& a, string & exmsg);
[1324]164 static sa_size_t ComputeTotalSize(int_4 ndim, const sa_size_t * siz, sa_size_t step, sa_size_t offset) ;
[804]165 // Organisation memoire
166 static short SelectMemoryMapping(short mm);
[813]167 static short SelectVectorType(short vt);
168 void UpdateMemoryMapping(short mm);
[804]169 void UpdateMemoryMapping(BaseArray const & a, short mm);
[787]170
[804]171 // Pour Extraction de sous-tableau
[1325]172 virtual void UpdateSubArraySizes(BaseArray & ra, int_4 ndim, sa_size_t * siz, sa_size_t * pos, sa_size_t * step) const;
[804]173
[1156]174 int_4 ndim_; //!< number of dimensions of array
175 sa_size_t size_[BASEARRAY_MAXNDIMS]; //!< array of the size in each dimension
176 sa_size_t totsize_; //!< Total number of elements
177 sa_size_t offset_; //!< global offset -\> position of elem[0] in DataBlock
[890]178 //! two consecutive elements distance in a given dimension
[1156]179 sa_size_t step_[BASEARRAY_MAXNDIMS];
180 sa_size_t minstep_; //!< minimal step (in any axes)
181 sa_size_t moystep_; //!< mean step, if == 0 --\> non regular steps
[1099]182 int_2 marowi_; //!< For matrices, Row index in dimensions
183 int_2 macoli_; //!< For matrices, Column index in dimensions
184 int_2 veceli_; //!< For vectors, dimension index = marowi_/macoli_ (Row/Col vectors)
185 int_2 arrtype_; //!< 0 a TArray, 1 TMatrix , 2 TVector
[894]186 DVList* mInfo; //!< Infos (variables) attached to the array
[787]187
[894]188 static char * ck_op_msg_[6]; //!< Operation messages for CheckDI() CheckBound()
[1581]189 static sa_size_t max_nprt_; //!< maximum number of printed elements
[1156]190 static int_4 prt_lev_; //!< Print level
[894]191 static short default_memory_mapping; //!< Default memory mapping
192 static short default_vector_type; //!< Default vector type Row/Column
[1156]193 static sa_size_t openmp_size_threshold; //!< Size limit for parallel routine calls
[787]194};
195
196// --------------------------------------------------
197// Methodes inline de verification
198// --------------------------------------------------
[890]199//! to verify the compatibility of the dimension index
[1156]200inline int_4 BaseArray::CheckDI(int_4 ka, int msg) const
[787]201{
[1156]202 if ( (ka < 0) || (ka >= ndim_) ) {
[787]203 string txt = "BaseArray::CheckDimensionIndex/Error "; txt += ck_op_msg_[msg];
[813]204 throw(RangeCheckError(txt));
[787]205 }
206 return(ka);
207}
208
[890]209//! to verify the compatibility of the indexes in all dimensions
[1156]210inline void BaseArray::CheckBound(sa_size_t ix, sa_size_t iy, sa_size_t iz, sa_size_t it, sa_size_t iu, int msg) const
[787]211{
[1156]212 if ( (ix >= size_[0]) || (ix < 0) || (iy >= size_[1]) || (iy < 0) ||
213 (iz >= size_[2]) || (iz < 0) || (it >= size_[3]) || (it < 0) ||
214 (iu >= size_[4]) || (iu < 0) ) {
[787]215 string txt = "BaseArray::CheckArrayBound/Error "; txt += ck_op_msg_[msg];
[813]216 throw(RangeCheckError(txt));
[787]217 }
218 return;
219}
220
221
[813]222
[787]223// --------------------------------------------------
224// Position d'un element
225// --------------------------------------------------
[890]226//! Offset of element (ix,iy,iz,it,iu)
[1156]227inline sa_size_t BaseArray::Offset(sa_size_t ix, sa_size_t iy, sa_size_t iz, sa_size_t it, sa_size_t iu) const
[787]228{
229#ifdef SO_BOUNDCHECKING
230 CheckBound(ix, iy, iz, it, iu, 4);
231#endif
232 return ( offset_+ ix*step_[0] + iy*step_[1] + iz*step_[2] +
233 it*step_[3] + iu*step_[4] );
234}
235
236
237} // Fin du namespace
238
239#endif
Note: See TracBrowser for help on using the repository browser.