// This may look like C code, but it is really -*- C++ -*- // Base array class - Memory organisation management // R. Ansari, C.Magneville 03/2000 #ifndef BaseArray_SEEN #define BaseArray_SEEN #include "machdefs.h" #include #include #include "anydataobj.h" #include "dvlist.h" // Maximum number of dimensions for array #define BASEARRAY_MAXNDIMS 5 namespace SOPHYA { // ------------ classe template Array ----------- class BaseArray : public AnyDataObj { public: // To define Array / Matrix memory mapping enum { AutoMemoryMapping = -1, SameMemoryMapping = 0, CMemoryMapping = 1, FortranMemoryMapping = 2 }; // Max Nb of printed elements static void SetMaxPrint(uint_4 nprt=50); // Memory organisation (for matrices) static short SetDefaultMemoryMapping(short mm=CMemoryMapping); static inline short GetDefaultMemoryMapping() { return default_memory_mapping; } // Creation / destruction BaseArray(); virtual ~BaseArray(); // Returns true if ndim and sizes are equal virtual bool CompareSizes(const BaseArray& a); // Compacts size=1 array dimensions virtual void CompactAllDim(); // suppresses all size==1 dimensions virtual void CompactTrailingDim(); // suppresses size==1 dimensions after the last size>1 dimension // Array dimensions inline uint_4 NbDimensions() const { return( ndim_ ); } inline uint_8 Size() const { return(totsize_); } inline uint_4 SizeX() const { return(size_[0]); } inline uint_4 SizeY() const { return(size_[1]); } inline uint_4 SizeZ() const { return(size_[2]); } inline uint_4 Size(int ka) const { return(size_[CheckDI(ka,1)]); } uint_4 MaxSizeKA() const ; // memory organisation - packing information inline short GetMemoryMapping() const {return ( (marowi_ == 1) ? CMemoryMapping : FortranMemoryMapping) ; } inline uint_4 RowsKA() const {return marowi_; } // Dimension correspondant aux lignes inline uint_4 ColsKA() const {return macoli_; } // Dimension correspondant aux colonnes inline uint_4 VectKA() const {return veceli_; } // Dimension corr. aux elts d'un vecteur inline bool IsPacked() const { return(moystep_ == 1); } inline bool IsPackedX() const { return(step_[0] == 1); } inline bool IsPackedY() const { return(step_[1] == 1); } inline bool IsPackedZ() const { return(step_[2] == 1); } inline bool IsPacked(int ka) const { return(step_[CheckDI(ka,2)] == 1); } inline uint_4 MinStep() const { return(minstep_); } inline uint_4 AvgStep() const { return(moystep_); } inline uint_4 StepX() const { return(step_[0]); } inline uint_4 StepY() const { return(step_[1]); } inline uint_4 StepZ() const { return(step_[2]); } inline uint_4 Step(int ka) const { return(step_[CheckDI(ka,3)]); } uint_4 MinStepKA() const ; uint_8 Offset(uint_8 ip=0) const ; inline uint_8 Offset(uint_4 ix, uint_4 iy, uint_4 iz, uint_4 it=0, uint_4 iu=0) const; // a abstract element acces methode virtual double ValueAtPosition(uint_8 ip) const = 0; // Impression, I/O, ... void Show(ostream& os, bool si=false) const; inline void Show() const { Show(cout); } virtual string DataType() const = 0; // Objet DVList info DVList& Info(); protected: // Verifie la compatibilite de l'index de dimension inline int CheckDI(int ka, int msg) const ; // Verifie la compatibilite des bornes d'index inline void CheckBound(int ix, uint_4 iy, uint_4 iz, uint_4 it, uint_4 iu, int msg) const ; // Changing Sizes/NDim ... return true if OK bool UpdateSizes(uint_4 ndim, const uint_4 * siz, uint_4 step, uint_8 offset, string & exmsg); bool UpdateSizes(uint_4 ndim, const uint_4 * siz, const uint_4 * step, uint_8 offset, string & exmsg); bool UpdateSizes(const BaseArray& a, string & exmsg); static uint_8 ComputeTotalSize(uint_4 ndim, const uint_4 * siz, uint_4 step, uint_8 offset) ; // Organisation memoire static short SelectMemoryMapping(short mm); void UpdateMemoryMapping(short mm, uint_4 & nx, uint_4 & ny); void UpdateMemoryMapping(BaseArray const & a, short mm); // Pour Extraction de sous-tableau virtual void UpdateSubArraySizes(BaseArray & ra, uint_4 ndim, uint_4 * siz, uint_4 * pos, uint_4 * step) const; uint_4 ndim_; // nb of dimensions uint_4 size_[BASEARRAY_MAXNDIMS]; // array size in each dimension uint_8 totsize_; // Total number of elements uint_4 step_[BASEARRAY_MAXNDIMS]; // two consecutive elements distance in a given dimension uint_4 minstep_; // minimal step (in any axes) uint_4 moystep_; // mean step 0 non regular steps uint_8 offset_; // global offset -> position of elem[0] in DataBlock uint_4 marowi_, macoli_; // For matrices, Row index and column index in dimensions uint_4 veceli_; // For vectors, dimension index = marowi_/macoli_ (Row/Col vectors) DVList* mInfo; // Infos (variables) attachees au tableau static char * ck_op_msg_[6]; // Operation messages for CheckDI() CheckBound() static uint_4 max_nprt_; // Nb maxi d'elements imprimes static short default_memory_mapping; // Default memory mapping }; // -------------------------------------------------- // Methodes inline de verification // -------------------------------------------------- inline int BaseArray::CheckDI(int ka, int msg) const { if ( (ka < 0) || (ka >= ndim_) ) { string txt = "BaseArray::CheckDimensionIndex/Error "; txt += ck_op_msg_[msg]; throw(ParmError(txt)); } return(ka); } inline void BaseArray::CheckBound(int ix, uint_4 iy, uint_4 iz, uint_4 it, uint_4 iu, int msg) const { if ( (ix >= size_[0]) || (iy >= size_[1]) || (iz > size_[2]) || (it >= size_[3]) || (iu >= size_[4]) ) { string txt = "BaseArray::CheckArrayBound/Error "; txt += ck_op_msg_[msg]; throw(ParmError(txt)); } return; } // -------------------------------------------------- // Position d'un element // -------------------------------------------------- inline uint_8 BaseArray::Offset(uint_4 ix, uint_4 iy, uint_4 iz, uint_4 it, uint_4 iu) const { #ifdef SO_BOUNDCHECKING CheckBound(ix, iy, iz, it, iu, 4); #endif return ( offset_+ ix*step_[0] + iy*step_[1] + iz*step_[2] + it*step_[3] + iu*step_[4] ); } } // Fin du namespace #endif