source: Sophya/trunk/SophyaLib/TArray/basarr.h@ 4067

Last change on this file since 4067 was 4035, checked in by ansari, 14 years ago

1/ modif mineure ds TArray<T>::::ReadASCII() au print level global de BaseArray
2/ Correction bug gestion memoire au niveau des constructeurs de copie TArray/TMatrix/TVector
avec un BaseArray en argument. Ajout argument optionnel bool pack a ces constructeurs
3/ On autorise desormais la creation des objets TArray/TMatrix/TVector par constructeur de
copie sur des objets non alloues

Reza, 14/11/2011

File size: 10.8 KB
Line 
1// This may look like C code, but it is really -*- C++ -*-
2// Base array class - Memory organisation management
3// R. Ansari, C.Magneville 03/2000
4
5#ifndef BaseArray_SEEN
6#define BaseArray_SEEN
7
8#include "machdefs.h"
9#include <math.h>
10#include <iostream>
11#include "anydataobj.h"
12#include "mutyv.h"
13#include "dvlist.h"
14
15
16//! Maximum number of dimensions for an array
17/*! \anchor BASEARRAY_MAXNDIMS */
18#define BASEARRAY_MAXNDIMS 5
19
20namespace SOPHYA {
21
22// ------------ classe template Array -----------
23//! Base class for template arrays
24class BaseArray : public AnyDataObj {
25public:
26 //! To define Array or Matrix memory mapping
27 enum MemoryMapping {
28 AutoMemoryMapping = -1, //!< define Auto Memory Mapping
29 SameMemoryMapping = 0, //!< define Same Memory Mapping
30 CMemoryMapping = 1, //!< define C Memory Mapping
31 FortranMemoryMapping = 2 //!< define Fortran Memory Mapping
32 };
33 //! To define Vector type
34 enum VectorType {
35 AutoVectorType = -1, //!< define Auto Vector Type
36 SameVectorType = 0, //!< define Same Vector Type
37 ColumnVector = 1, //!< define Column Vector Type
38 RowVector = 2 //!< define Row Vector Type
39 };
40
41 // threshold for parallel routine call
42 static void SetOpenMPSizeThreshold(sa_size_t thr=200000);
43 //! Get Size threshold for parallel routine call
44 static inline sa_size_t GetOpenMPSizeThreshold() { return openmp_size_threshold; }
45
46 static void SetMaxPrint(sa_size_t nprt=50, int_4 lev=0);
47 //! Get maximum number of printed elements
48 static inline sa_size_t GetMaxPrint() { return max_nprt_; }
49 //! Get print level
50 static inline int_4 GetPrintLevel() { return prt_lev_; }
51
52 static short SetDefaultMemoryMapping(short mm=CMemoryMapping);
53 //! Get Default Memory Mapping
54 static inline short GetDefaultMemoryMapping() { return default_memory_mapping; }
55 static short SetDefaultVectorType(short vt=ColumnVector);
56 //! Get Default Vector Type
57 static inline short GetDefaultVectorType() { return default_vector_type; }
58
59 //! Optimization choice for matrix product
60 static void SetMatProdOpt(uint_2 opt=1);
61 static inline uint_2 GetMatProdOpt(void) {return matrix_product_optim;}
62
63 // Creator / destructor
64 BaseArray();
65 virtual ~BaseArray();
66
67 // Returns true if ndim and sizes are equal
68 virtual bool CompareSizes(const BaseArray& a, bool& smo) const;
69
70 // Array dimensions
71 //! Return true if the array was allocated ( Rank() > 0 )
72 inline bool IsAllocated() const { return( (ndim_ > 0) ? true : false ); }
73 //! Return number of dimensions (array rank)
74 inline int_4 NbDimensions() const { return( ndim_ ); }
75 //! Return array rank (number of dimensions)
76 inline int_4 Rank() const { return( ndim_ ); }
77
78 //! Return total size of the array
79 inline sa_size_t Size() const { return(totsize_); }
80 //! Return size along the first dimension
81 inline sa_size_t SizeX() const { return(size_[0]); }
82 //! Return size along the second dimension
83 inline sa_size_t SizeY() const { return(size_[1]); }
84 //! Return size along the third dimension
85 inline sa_size_t SizeZ() const { return(size_[2]); }
86 //! Return size along the \b ka th dimension
87 inline sa_size_t Size(int_4 ka) const { return(size_[CheckDI(ka,1)]); }
88
89 int_4 MaxSizeKA() const ;
90
91 //! Get memory organization
92 inline short GetMemoryMapping() const
93 { return ( (marowi_ == 1) ? CMemoryMapping : FortranMemoryMapping) ; }
94 //! line index dimension
95 inline int_4 RowsKA() const {return marowi_; }
96 //! column index dimension
97 inline int_4 ColsKA() const {return macoli_; }
98 //! Index dimension of the elements of a vector
99 inline int_4 VectKA() const {return veceli_; }
100 void SetMemoryMapping(short mm=AutoMemoryMapping);
101
102 //! Get Vector type ( \b Line or \b Column vector )
103 inline short GetVectorType() const
104 { return((marowi_ == veceli_) ? ColumnVector : RowVector); }
105 void SetVectorType(short vt=AutoVectorType);
106
107 // memory organisation - packing information
108 //! return true if array is packed in memory
109 inline bool IsPacked() const { return(moystep_ == 1); }
110 //! return true if array is packed along the first dimension
111 inline bool IsPackedX() const { return(step_[0] == 1); }
112 //! return true if array is packed along the second dimension
113 inline bool IsPackedY() const { return(step_[1] == 1); }
114 //! return true if array is packed along the third dimension
115 inline bool IsPackedZ() const { return(step_[2] == 1); }
116 //! return true if array is packed along the \b ka th dimension
117 inline bool IsPacked(int_4 ka) const { return(step_[CheckDI(ka,2)] == 1); }
118
119 //! return the minimum step value along all the dimensions
120 inline sa_size_t MinStep() const { return(minstep_); }
121 //! return the average step value along all the dimensions
122 inline sa_size_t AvgStep() const { return(moystep_); }
123 //! return the step along the first dimension
124 inline sa_size_t StepX() const { return(step_[0]); }
125 //! return the step along the second dimension
126 inline sa_size_t StepY() const { return(step_[1]); }
127 //! return the step along the third dimension
128 inline sa_size_t StepZ() const { return(step_[2]); }
129 //! return the step along the \b ka th dimension
130 inline sa_size_t Step(int_4 ka) const { return(step_[CheckDI(ka,3)]); }
131
132 int_4 MinStepKA() const ;
133
134 // Offset of element ip
135 sa_size_t Offset(sa_size_t ip=0) const ;
136 // Offset of the i'th vector along axe ka
137 sa_size_t Offset(int_4 ka, sa_size_t i) const ;
138 inline sa_size_t Offset(sa_size_t ix, sa_size_t iy, sa_size_t iz, sa_size_t it=0, sa_size_t iu=0) const;
139 // Index values of element ip
140 void IndexAtPosition(sa_size_t ip, sa_size_t & ix, sa_size_t & iy, sa_size_t & iz,
141 sa_size_t & it, sa_size_t & iu) const;
142 // an abstract element acces methode
143 virtual MuTyV & ValueAtPosition(sa_size_t ip) const = 0;
144 virtual MuTyV & ValueAtPositionDB(sa_size_t ip) const = 0;
145
146 // Pour recuperer pas et numero d'axe pour operations sur deux arrays
147 void GetOpeParams(const BaseArray& a, bool smo, int_4& ax, int_4& axa, sa_size_t& step,
148 sa_size_t& stepa, sa_size_t& gpas, sa_size_t& naxa) const;
149 // Impression, I/O, ...
150 void Show(ostream& os, bool si=false) const;
151 //! Show information on \b cout
152 inline void Show() const { Show(cout); }
153 virtual string InfoString() const;
154
155 // Lecture,Ecriture sur fichier ASCII
156 //! Reads an array from an ASCII stream
157 virtual sa_size_t ReadASCII(istream& is, sa_size_t & nr, sa_size_t & nc,
158 char clm='#', const char* sep=" \t") = 0;
159 //! Writes an array to an ASCII stream
160 virtual void WriteASCII(ostream& os) const = 0;
161
162 // Access to the DVList info Object
163 DVList& Info();
164 //! return true if the DVList info Object has been created (not empty)
165 inline bool HasInfoObject() const { return ((mInfo!=NULL)?true:false); }
166
167//! Return the attached DVList object pointer (for special uses only TArray ... )
168 inline DVList* getInfoPointer() const { return mInfo; }
169
170protected:
171 inline int_4 CheckDI(int_4 ka, int msg) const ;
172 inline void CheckBound(sa_size_t ix, sa_size_t iy, sa_size_t iz, sa_size_t it, sa_size_t iu, int msg) const ;
173 // Compacts size=1 array dimensions
174 void CompactAllDim(); // suppresses all size==1 dimensions
175 void CompactTrailingDim(); // suppresses size==1 dimensions after the last size>1 dimension
176 // Changing Sizes/NDim ... return true if OK
177 bool UpdateSizes(int_4 ndim, const sa_size_t * siz, sa_size_t step, sa_size_t offset, string & exmsg);
178 bool UpdateSizes(int_4 ndim, const sa_size_t * siz, const sa_size_t * step, sa_size_t offset, string & exmsg);
179 bool UpdateSizes(const BaseArray& a, string & exmsg);
180 static sa_size_t ComputeTotalSize(int_4 ndim, const sa_size_t * siz, sa_size_t step, sa_size_t offset) ;
181 // Organisation memoire
182 static short SelectMemoryMapping(short mm);
183 static short SelectVectorType(short vt);
184 void UpdateMemoryMapping(short mm);
185 void UpdateMemoryMapping(BaseArray const & a, short mm);
186
187 // Pour Extraction de sous-tableau
188 virtual void UpdateSubArraySizes(BaseArray & ra, int_4 ndim, sa_size_t * siz, sa_size_t * pos, sa_size_t * step) const;
189
190 // Pour mettre les tailles a zero
191 virtual void SetZeroSize();
192
193 int_4 ndim_; //!< number of dimensions of array
194 sa_size_t size_[BASEARRAY_MAXNDIMS]; //!< array of the size in each dimension
195 sa_size_t totsize_; //!< Total number of elements
196 sa_size_t offset_; //!< global offset -\> position of elem[0] in DataBlock
197 //! two consecutive elements distance in a given dimension
198 sa_size_t step_[BASEARRAY_MAXNDIMS];
199 sa_size_t minstep_; //!< minimal step (in any axes)
200 sa_size_t moystep_; //!< mean step, if == 0 --\> non regular steps
201 int_2 marowi_; //!< For matrices, Row index in dimensions
202 int_2 macoli_; //!< For matrices, Column index in dimensions
203 int_2 veceli_; //!< For vectors, dimension index = marowi_/macoli_ (Row/Col vectors)
204 int_2 arrtype_; //!< 0 a TArray, 1 TMatrix , 2 TVector
205 DVList* mInfo; //!< Infos (variables) attached to the array
206
207 static const char * ck_op_msg_[6]; //!< Operation messages for CheckDI() CheckBound()
208 static sa_size_t max_nprt_; //!< maximum number of printed elements
209 static int_4 prt_lev_; //!< Print level
210 static short default_memory_mapping; //!< Default memory mapping
211 static short default_vector_type; //!< Default vector type Row/Column
212 static sa_size_t openmp_size_threshold; //!< Size limit for parallel routine calls
213 static uint_2 matrix_product_optim; //!< optimization level for matrix product
214};
215
216// --------------------------------------------------
217// Methodes inline de verification
218// --------------------------------------------------
219//! to verify the compatibility of the dimension index
220inline int_4 BaseArray::CheckDI(int_4 ka, int msg) const
221{
222 if ( (ka < 0) || (ka >= ndim_) ) {
223 string txt = "BaseArray::CheckDimensionIndex/Error "; txt += ck_op_msg_[msg];
224 throw(RangeCheckError(txt));
225 }
226 return(ka);
227}
228
229//! to verify the compatibility of the indexes in all dimensions
230inline void BaseArray::CheckBound(sa_size_t ix, sa_size_t iy, sa_size_t iz, sa_size_t it, sa_size_t iu, int msg) const
231{
232 if ( (ix >= size_[0]) || (ix < 0) || (iy >= size_[1]) || (iy < 0) ||
233 (iz >= size_[2]) || (iz < 0) || (it >= size_[3]) || (it < 0) ||
234 (iu >= size_[4]) || (iu < 0) ) {
235 string txt = "BaseArray::CheckArrayBound/Error "; txt += ck_op_msg_[msg];
236 throw(RangeCheckError(txt));
237 }
238 return;
239}
240
241
242
243// --------------------------------------------------
244// Position d'un element
245// --------------------------------------------------
246//! Offset of element (ix,iy,iz,it,iu)
247inline sa_size_t BaseArray::Offset(sa_size_t ix, sa_size_t iy, sa_size_t iz, sa_size_t it, sa_size_t iu) const
248{
249#ifdef SO_BOUNDCHECKING
250 CheckBound(ix, iy, iz, it, iu, 4);
251#endif
252 return ( offset_+ ix*step_[0] + iy*step_[1] + iz*step_[2] +
253 it*step_[3] + iu*step_[4] );
254}
255
256
257} // Fin du namespace
258
259#endif
Note: See TracBrowser for help on using the repository browser.